Globus RK, Bikle DD, Morey-Holton E. The temporal response of bone to unloading. Endocrinology. 1986;118:733–42.
CAS
Google Scholar
von Kroge S, Wolfel EM, Buravkova LB, Atiakshin DA, Markina EA, Schinke T, Rolvien T, Busse B, Jahn-Rickert K. Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics. Eur Cell Mater. 2021;41:220–31.
Google Scholar
Qin YX, Xia Y, Muir J, Lin W, Rubin CT. Quantitative ultrasound imaging monitoring progressive disuse osteopenia and mechanical stimulation mitigation in calcaneus region through a 90-day bed rest human study. J Orthop Translat. 2019;18:48–58.
Google Scholar
Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355:1607–11.
CAS
Google Scholar
Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.
Google Scholar
Deymier AC, Schwartz AG, Cai Z, Daulton TL, Pasteris JD, Genin GM, Thomopoulos S. The multiscale structural and mechanical effects of mouse supraspinatus muscle unloading on the mature enthesis. Acta Biomater. 2019;83:302–13.
Google Scholar
Lloyd SA, Morony SE, Ferguson VL, Simske SJ, Stodieck LS, Warmington KS, Livingston EW, Lacey DL, Kostenuik PJ, Bateman TA. Osteoprotegerin is an effective countermeasure for spaceflight-induced bone loss in mice. Bone. 2015;81:562–72.
CAS
Google Scholar
Laurens C, Simon C, Vernikos J, Gauquelin-Koch G, Blanc S, Bergouignan A. Revisiting the role of exercise countermeasure on the regulation of energy balance during space flight. Front Physiol. 2019;10:321.
Google Scholar
Taylor PW. Impact of space flight on bacterial virulence and antibiotic susceptibility. Infect Drug Resist. 2015;8:249–62.
CAS
Google Scholar
Wilson JW, Ott CM, Honer zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA. 2007;104:16299–304.
CAS
Google Scholar
Sonnenfeld G, Shearer WT. Immune function during space flight. Nutrition. 2002;18:899–903.
CAS
Google Scholar
Millward DJ. Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Res Rev. 2017;30:50–72.
CAS
Google Scholar
Urbaniak C, Sielaff AC, Frey KG, Allen JE, Singh N, Jaing C, Wheeler K, Venkateswaran K. Detection of antimicrobial resistance genes associated with the International Space Station environmental surfaces. Sci Rep. 2018;8:814.
CAS
Google Scholar
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome. 2018;6:204.
Google Scholar
Halloran BP, Bikle DD, Wronski TJ, Globus RK, Levens MJ, Morey-Holton E. The role of 1,25-dihydroxyvitamin D in the inhibition of bone formation induced by skeletal unloading. Endocrinology. 1986;118:948–54.
CAS
Google Scholar
Bikle DD, Morey-Holton ER, Doty SB, Currier PA, Tanner SJ, Halloran BP. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage. J Bone Miner Res. 1994;9:1777–87.
CAS
Google Scholar
Kodama Y, Nakayama K, Fuse H, Fukumoto S, Kawahara H, Takahashi H, Kurokawa T, Sekiguchi C, Nakamura T, Matsumoto T. Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. J Bone Miner Res. 1997;12:1058–67.
CAS
Google Scholar
Feghali K, Feldman M, La VD, Santos J, Grenier D. Cranberry proanthocyanidins: natural weapons against periodontal diseases. J Agric Food Chem. 2012;60:5728–35.
CAS
Google Scholar
Tanabe S, Santos J, La VD, Howell AB, Grenier D. A-type cranberry proanthocyanidins inhibit the RANKL-dependent differentiation and function of human osteoclasts. Molecules. 2011;16:2365–74.
CAS
Google Scholar
Domazetovic V, Marcucci G, Pierucci F, Bruno G, Di Cesare ML, Ghelardini C, Brandi ML, Iantomasi T, Meacci E, Vincenzini MT. Blueberry juice protects osteocytes and bone precursor cells against oxidative stress partly through SIRT1. FEBS Open Bio. 2019;9:1082–96.
CAS
Google Scholar
Morii Y, Matsushita H, Minami A, Kanazawa H, Suzuki T, Subhadhirasakul S, Watanabe K, Wakatsuki A. Young coconut juice supplementation results in greater bone mass and bone formation indices in ovariectomized rats: a preliminary study. Phytother Res. 2015;29:1950–5.
CAS
Google Scholar
Deyhim F, Garica K, Lopez E, Gonzalez J, Ino S, Garcia M, Patil BS. Citrus juice modulates bone strength in male senescent rat model of osteoporosis. Nutrition. 2006;22:559–63.
CAS
Google Scholar
Neto CC. Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr. 2007;137:186S-193S.
CAS
Google Scholar
Ruel G, Couillard C. Evidences of the cardioprotective potential of fruits: the case of cranberries. Mol Nutr Food Res. 2007;51:692–701.
CAS
Google Scholar
Pappas E, Schaich KM. Phytochemicals of cranberries and cranberry products: characterization, potential health effects, and processing stability. Crit Rev Food Sci Nutr. 2009;49:741–81.
CAS
Google Scholar
Guay DR. Cranberry and urinary tract infections. Drugs. 2009;69:775–807.
CAS
Google Scholar
Jepson R, Craig J, Williams G. Cranberry products and prevention of urinary tract infections. JAMA. 2013;310:1395–6.
CAS
Google Scholar
Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem. 1999;47:2274–9.
CAS
Google Scholar
Wallace TC, Giusti MM. Extraction and normal-phase HPLC-fluorescence-electrospray MS characterization and quantification of procyanidins in cranberry extracts. J Food Sci. 2010;75:C690-696.
CAS
Google Scholar
Ichikawa M, Scott DA, Losfeld ME, Freeze HH. The metabolic origins of mannose in glycoproteins. J Biol Chem. 2014;289:6751–61.
CAS
Google Scholar
Grunert SC, Marquardt T, Lausch E, Fuchs H, Thiel C, Sutter M, Schumann A, Hannibal L, Spiekerkoetter U. Unsuccessful intravenous D-mannose treatment in PMM2-CDG. Orphanet J Rare Dis. 2019;14:231.
Google Scholar
Taday R, Park JH, Gruneberg M, DuChesne I, Reunert J, Marquardt T. Mannose supplementation in PMM2-CDG. Orphanet J Rare Dis. 2021;16:359.
Google Scholar
Lenger SM, Bradley MS, Thomas DA, Bertolet MH, Lowder JL, Sutcliffe S. D-mannose vs other agents for recurrent urinary tract infection prevention in adult women: a systematic review and meta-analysis. Am J Obstet Gynecol. 2020;223(2):265.
Google Scholar
Kuzmenko AV, Kuzmenko VV, Gyaurgiev TA. Use of D-mannose in the prevention of recurrent lower urinary tract infection in women. Urologiia. 2020;1(3):128–32.
Google Scholar
Kyriakides R, Jones P, Somani BK. Role of D-Mannose in the prevention of recurrent urinary tract infections: evidence from a systematic review of the literature. Eur Urol Focus. 2021;7:1166–9.
Google Scholar
De Nunzio C, Bartoletti R, Tubaro A, Simonato A, Ficarra V. Role of D-Mannose in the prevention of recurrent uncomplicated cystitis: state of the art and future perspectives. Antibiotics. 2021. https://doi.org/10.3390/antibiotics10040373.
Article
Google Scholar
Franssen M, Cook J, Robinson J, Williams N, Glogowska M, Yang Y, Allen J, Butler CC, Thomas N, Hay A, et al. D-MannosE to prevent Recurrent urinary tract InfecTions (MERIT): protocol for a randomised controlled trial. BMJ Open. 2021;11: e037128.
Google Scholar
Kuzmenko AV, Kuzmenko VV, Gyaurgiev TA. Efficacy of combined antibacterial-prebiotic therapy in combination with D-mannose in women with uncomplicated lower urinary tract infection. Urologiia. 2019. https://doi.org/10.18565/urology.2019.6.38-43.
Article
Google Scholar
Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, Konkel JE, Nakatsukasa H, Zanvit P, Goldberg N, et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med. 2017;23:1036–45.
CAS
Google Scholar
Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, Kajaste-Rudnitski A, Sumpton D, Ryan KM, Cardaci S. D-mannose suppresses macrophage IL-1beta production. Nat Commun. 2020;11:6343.
CAS
Google Scholar
Liu H, Gu R, Zhu Y, Lian X, Wang S, Liu X, Ping Z, Liu Y, Zhou Y. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects. Ther Adv Chronic Dis. 2020;11:2040622320912661.
CAS
Google Scholar
Yang H, Han N, Luo Z, Xu J, Guo L, Liu Y. D-Mannose alleviated alveolar bone loss in experimental periodontitis mice via regulating the anti-inflammatory effect of amino acids. J Periodontol. 2022. https://doi.org/10.1002/JPER.22-0294.
Article
Google Scholar
Jee WS, Wronski TJ, Morey ER, Kimmel DB. Effects of spaceflight on trabecular bone in rats. Am J Physiol. 1983;244:R310-314.
CAS
Google Scholar
Smith BJ, King JB, Lucas EA, Akhter MP, Arjmandi BH, Stoecker BJ. Skeletal unloading and dietary copper depletion are detrimental to bone quality of mature rats. J Nutr. 2002;132:190–6.
CAS
Google Scholar
Yang J, Li J, Cui X, Li W, Xue Y, Shang P, Zhang H. Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone. 2020;130: 115108.
CAS
Google Scholar
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86.
Google Scholar
Liu H, Gu R, Li W, Xue J, Cong Z, Wei Q, Zhou Y. Probiotics protect against tenofovir-induced mandibular bone loss in mice by rescuing mandible-derived mesenchymal stem cell proliferation and osteogenic differentiation. J Oral Rehabil. 2020;47(Suppl 1):83–90.
CAS
Google Scholar
Shi Z, Lv J, Xiaoyu L, Zheng LW, Yang XW. Condylar degradation from decreased occlusal loading following masticatory muscle atrophy. Biomed Res Int. 2018;2018:6947612.
Google Scholar
Christman JW, Blackwell TR, Cowan HB, Shepherd VL, Rinaldo JE. Endotoxin induces the expression of macrophage inflammatory protein 1 alpha mRNA by rat alveolar and bone marrow-derived macrophages. Am J Respir Cell Mol Biol. 1992;7:455–61.
CAS
Google Scholar
Chen KM, Ma HP, Ge BF, Liu XY, Ma LP, Bai MH, Wang Y. Icariin enhances the osteogenic differentiation of bone marrow stromal cells but has no effects on the differentiation of newborn calvarial osteoblasts of rats. Pharmazie. 2007;62:785–9.
CAS
Google Scholar
Chiou JT, Wang LJ, Lee YC, Chang LS. Naja atra cardiotoxin 1 Induces the FasL/Fas death pathway in human leukemia cells. Cells. 2021. https://doi.org/10.3390/cells10082073.
Article
Google Scholar
Kitano VJF, Ohyama Y, Hayashida C, Ito J, Okayasu M, Sato T, Ogasawara T, Tsujita M, Kakino A, Shimada J, et al. LDL uptake-dependent phosphatidylethanolamine translocation to the cell surface promotes fusion of osteoclast-like cells. J Cell Sci. 2020. https://doi.org/10.1242/jcs.243840.
Article
Google Scholar
Dou C, Ding N, Luo F, Hou T, Cao Z, Bai Y, Liu C, Xu J, Dong S. Graphene-Based MicroRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci. 2021;8: e2102286.
Google Scholar
Guo R, Hu M, Sun ZY, Xue JW. Effects of simulated weightlessness on rats mandible, lumbar vertebra and femur. Space Med Med Eng. 2005;18:165–9.
Google Scholar
Chatani M, Mantoku A, Takeyama K, Abduweli D, Sugamori Y, Aoki K, Ohya K, Suzuki H, Uchida S, Sakimura T, et al. Microgravity promotes osteoclast activity in medaka fish reared at the international space station. Sci Rep. 2015;5:14172.
CAS
Google Scholar
Wu YL, Zhang CH, Teng Y, Pan Y, Liu NC, Liu PX, Zhu X, Su XL, Lin J. Propionate and butyrate attenuate macrophage pyroptosis and osteoclastogenesis induced by CoCrMo alloy particles. Mil Med Res. 2022;9:46.
CAS
Google Scholar
Jones TW, Petersen N, Howatson G. Optimization of exercise countermeasures for human space flight: operational considerations for concurrent strength and aerobic training. Front Physiol. 2019;10:584.
Google Scholar
Eyal S, Derendorf H. Medications in space in search of a pharmacologist’s guide to the galaxy. Pharm Res. 2019. https://doi.org/10.1007/s11095-019-2679-3.
Article
Google Scholar
Yarmanova EN, Kozlovskaya IB, Khimoroda NN, Fomina EV. Evolution of russian microgravity countermeasures. Aerosp Med Hum Perform. 2015;86:A32–7.
Google Scholar
Zhou M, Gao S, Zhang X, Zhang T, Zhang T, Tian T, Li S, Lin Y, Cai X. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact Mater. 2021;6:1676–88.
CAS
Google Scholar
Tian T, Li Y, Lin Y. Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Res. 2022;10:40.
CAS
Google Scholar
Li S, Liu Y, Tian T, Zhang T, Lin S, Zhou M, Zhang X, Lin Y, Cai X. Bioswitchable delivery of microRNA by framework nucleic acids: application to bone regeneration. Small. 2021;17: e2104359.
Google Scholar
Sato C, Miyakoshi N, Kasukawa Y, Nozaka K, Tsuchie H, Nagahata I, Yuasa Y, Abe K, Saito H, Shoji R, Shimada Y. Teriparatide and exercise improve bone, skeletal muscle, and fat parameters in ovariectomized and tail-suspended rats. J Bone Miner Metab. 2021;39:385–95.
CAS
Google Scholar
Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19:626–42.
CAS
Google Scholar
Collins MT, Stratakis CA. Bone formation, growth, and repair. Horm Metab Res. 2016;48:687–8.
CAS
Google Scholar
Guo L, Hou Y, Song L, Zhu S, Lin F, Bai Y. D-Mannose enhanced immunomodulation of periodontal ligament stem cells via inhibiting IL-6 secretion. Stem Cells Int. 2018;2018:7168231.
Google Scholar
Kong L, Smith W, Hao D. Overview of RAW264.7 for osteoclastogensis study: phenotype and stimuli. J Cell Mol Med. 2019;23:3077–87.
Google Scholar
Song C, Yang X, Lei Y, Zhang Z, Smith W, Yan J, Kong L. Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. J Cell Physiol. 2019;234:11969–75.
CAS
Google Scholar
McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 1940;2021:184.
Google Scholar
Place DE, Malireddi RKS, Kim J, Vogel P, Yamamoto M, Kanneganti TD. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nat Commun. 2021;12:496.
CAS
Google Scholar
Chiu YH, Schwarz E, Li D, Xu Y, Sheu TR, Li J, de Mesy Bentley KL, Feng C, Wang B, Wang JC, et al. Dendritic cell-specific transmembrane protein (DC-STAMP) regulates osteoclast differentiation via the Ca(2+) /NFATc1 axis. J Cell Physiol. 2017;232:2538–49.
CAS
Google Scholar
Miyamoto T. Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med. 2011;60:101–5.
CAS
Google Scholar
Ala-Jaakkola R, Laitila A, Ouwehand AC, Lehtoranta L. Role of D-mannose in urinary tract infections—a narrative review. Nutr J. 2022;21:18.
CAS
Google Scholar
Radulescu D, David C, Turcu FL, Spataru DM, Popescu P, Vacaroiu IA. Combination of cranberry extract and D-mannose - possible enhancer of uropathogen sensitivity to antibiotics in acute therapy of urinary tract infections: results of a pilot study. Exp Ther Med. 2020;20:3399–406.
CAS
Google Scholar