Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
Article
Google Scholar
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ, Estève J, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023–75. https://doi.org/10.1016/s0140-6736(17)33326-3.
Article
Google Scholar
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. https://doi.org/10.3322/caac.21332.
Article
Google Scholar
Yang J, Liu X, Cao S, Dong X, Rao S, Cai K. Understanding esophageal cancer: the challenges and opportunities for the next decade. Front Oncol. 2020;10:1727. https://doi.org/10.3389/fonc.2020.01727.
Article
Google Scholar
Zeng RJ, Zheng CW, Gu JE, Zhang HX, Xie L, Xu LY, Li EM. RAC1 inhibition reverses cisplatin resistance in esophageal squamous cell carcinoma and induces downregulation of glycolytic enzymes. Mol Oncol. 2019;13:2010–30. https://doi.org/10.1002/1878-0261.12548.
Article
CAS
Google Scholar
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869–83. https://doi.org/10.1038/onc.2011.384.
Article
CAS
Google Scholar
Lobo J, Jerónimo C, Henrique R. Cisplatin resistance in testicular germ cell tumors: current challenges from various perspectives. Cancers. 2020. https://doi.org/10.3390/cancers12061601.
Article
Google Scholar
Skowron MA, Oing C, Bremmer F, Ströbel P, Murray MJ, Coleman N, Amatruda JF, Honecker F, Bokemeyer C, Albers P, Nettersheim D. The developmental origin of cancers defines basic principles of cisplatin resistance. Cancer Lett. 2021;519:199–210. https://doi.org/10.1016/j.canlet.2021.07.037.
Article
CAS
Google Scholar
Wang D, Plukker JTM, Coppes RP. Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin Cancer Biol. 2017;44:60–6. https://doi.org/10.1016/j.semcancer.2017.03.010.
Article
CAS
Google Scholar
Yu L, Fan Z, Fang S, Yang J, Gao T, Simões BM, Eyre R, Guo W, Clarke RB. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling. Oncotarget. 2016;7:33055–68. https://doi.org/10.18632/oncotarget.8849.
Article
Google Scholar
Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, et al. Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 2018;28:69-86.e66. https://doi.org/10.1016/j.cmet.2018.06.006.
Article
CAS
Google Scholar
McIntosh K, Balch C, Tiwari AK. Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells. Expert Opin Drug Metab Toxicol. 2016;12:633–44. https://doi.org/10.1080/17425255.2016.1179280.
Article
CAS
Google Scholar
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 2020;60(166):180. https://doi.org/10.1016/j.semcancer.2019.07.022.
Article
CAS
Google Scholar
Tonigold M, Rossmann A, Meinold M, Bette M, Märken M, Henkenius K, Bretz AC, Giel G, Cai C, Rodepeter FR, et al. A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53(mut) exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol. 2014;140:1689–704. https://doi.org/10.1007/s00432-014-1727-y.
Article
CAS
Google Scholar
Zhang L, Guo X, Zhang D, Fan Y, Qin L, Dong S, Zhang L, carcinogenesis ZLJM. Upregulated miR-132 in Lgr5 + gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol Carcinogene. 2017. https://doi.org/10.1002/mc.22656.
Article
Google Scholar
Li N, Babaei-Jadidi R, Lorenzi F, Spencer-Dene B, Clarke P, Domingo E, Tulchinsky E, Vries RGJ, Kerr D, Pan Y, et al. An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance. Oncogenesis. 2019;8:13. https://doi.org/10.1038/s41389-019-0125-3.
Article
CAS
Google Scholar
Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. https://doi.org/10.3389/fimmu.2020.583084.
Article
CAS
Google Scholar
Shi Y, Guryanova OA, Zhou W, Liu C, Huang Z, Fang X, Wang X, Chen C, Wu Q, He Z, et al. Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aah6816.
Article
Google Scholar
Chen Y, Tan W, Wang C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. Onco Targets Ther. 2018;11:3817–26. https://doi.org/10.2147/ott.S168317.
Article
Google Scholar
Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Chen YZ, Li SG, Zou H, Pang LJ, Liu CX, et al. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma. Oncotarget. 2017;8:21526–38. https://doi.org/10.18632/oncotarget.15630.
Article
Google Scholar
Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Yang L, Chen YZ, Liu CX, Li SG, Cui XB, et al. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Exp Mol Pathol. 2017;102:15–21. https://doi.org/10.1016/j.yexmp.2016.12.001.
Article
CAS
Google Scholar
Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:8. https://doi.org/10.1038/s41392-020-00436-9.
Article
CAS
Google Scholar
Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98-w102. https://doi.org/10.1093/nar/gkx247.
Article
CAS
Google Scholar
Nowak M, Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells. 2020. https://doi.org/10.3390/cells9051299.
Article
Google Scholar
Ruffell B, Coussens LM. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015;27:462–72. https://doi.org/10.1016/j.ccell.2015.02.015.
Article
CAS
Google Scholar
Yue D, Zhang Z, Li J, Chen X, Ping Y, Liu S, Shi X, Li L, Wang L, Huang L, et al. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Exp Cell Res. 2015;336:141–9. https://doi.org/10.1016/j.yexcr.2015.06.007.
Article
CAS
Google Scholar
Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT. TGF-β causes docetaxel resistance in prostate cancer via the induction of Bcl-2 by acetylated KLF5 and protein stabilization. Theranostics. 2020;10:7656–70. https://doi.org/10.7150/thno.44567.
Article
CAS
Google Scholar
Massagué J. TGFbeta in cancer. Cell. 2008;134:215–30. https://doi.org/10.1016/j.cell.2008.07.001.
Article
CAS
Google Scholar
Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, Lee SY, Gu DL, Shih JH, Ho CM, et al. PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol. 2018;20:479–91. https://doi.org/10.1038/s41556-018-0062-y.
Article
CAS
Google Scholar
Pernot S, Evrard S, Khatib AM. The give-and-take interaction between the tumor microenvironment and immune cells regulating tumor progression and repression. Front Immunol. 2022;13:850856. https://doi.org/10.3389/fimmu.2022.850856.
Article
CAS
Google Scholar
Munir MT, Kay MK, Kang MH, Rahman MM, Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F, Rahman SM. Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22126526.
Article
Google Scholar
Ma J, Shayiti F, Ma J, Wei M, Hua T, Zhang R, Su J, Chen P. Tumor-associated macrophage-derived CCL5 promotes chemotherapy resistance and metastasis in prostatic cancer. Cell Biol Int. 2021;45:2054–62. https://doi.org/10.1002/cbin.11630.
Article
CAS
Google Scholar
Long L, Hu Y, Long T, Lu X, Tuo Y, Li Y, Ke Z. Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoelomic metastasis of ovarian cancer. J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2021-003973.
Article
Google Scholar
Li J, Xie Y, Wang X, Li F, Li S, Li M, Peng H, Yang L, Liu C, Pang L, et al. Prognostic impact of tumor-associated macrophage infiltration in esophageal cancer: a meta-analysis. Future Oncol. 2019;15:2303–17. https://doi.org/10.2217/fon-2018-0669.
Article
CAS
Google Scholar
Svensson MC, Svensson M, Nodin B, Borg D, Hedner C, Hjalmarsson C, Leandersson K, Jirström K. High infiltration of CD68+/CD163- macrophages is an adverse prognostic factor after neoadjuvant chemotherapy in esophageal and gastric adenocarcinoma. J Innate Immun. 2022. https://doi.org/10.1159/000524434.
Article
Google Scholar
Yang X, Cai S, Shu Y, Deng X, Zhang Y, He N, Wan L, Chen X, Qu Y, Yu S. Exosomal miR-487a derived from m2 macrophage promotes the progression of gastric cancer. Cell Cycle. 2021;20:434–44. https://doi.org/10.1080/15384101.2021.1878326.
Article
CAS
Google Scholar
Xing Z, Zhang M, Liu J, Liu G, Feng K, Wang X. LINC00337 induces tumor development and chemoresistance to paclitaxel of breast cancer by recruiting M2 tumor-associated macrophages. Mol Immunol. 2021;138:1–9. https://doi.org/10.1016/j.molimm.2021.07.009.
Article
CAS
Google Scholar
Chen Y, Zhang S, Wang Q, Zhang X. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 2017;10:36. https://doi.org/10.1186/s13045-017-0408-0.
Article
CAS
Google Scholar
Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509. https://doi.org/10.1056/NEJMra1314530.
Article
CAS
Google Scholar
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26. https://doi.org/10.1038/nrc3599.
Article
CAS
Google Scholar
Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21:37–50. https://doi.org/10.1038/s41568-020-00308-y.
Article
CAS
Google Scholar
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1:54–67. https://doi.org/10.1158/2159-8274.Cd-10-0028.
Article
CAS
Google Scholar
Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, Zhang J, Qin Y, Qi X, Zhou L, et al. The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res. 2017;23:7375–87. https://doi.org/10.1158/1078-0432.Ccr-17-1283.
Article
CAS
Google Scholar
Yuan X, Li Y, Zhang AZ, Jiang CH, Li FP, Xie YF, Li JF, Liang WH, Zhang HJ, Liu CX, et al. Tumor-associated macrophage polarization promotes the progression of esophageal carcinoma. Aging. 2020;13:2049–72. https://doi.org/10.18632/aging.202201.
Article
Google Scholar
Nakajima S, Mimura K, Saito K, Thar Min AK, Endo E, Yamada L, Kase K, Yamauchi N, Matsumoto T, Nakano H, et al. Neoadjuvant chemotherapy induces IL34 signaling and promotes chemoresistance via tumor-associated macrophage polarization in esophageal squamous cell carcinoma. Mol Cancer Res. 2021;19:1085–95. https://doi.org/10.1158/1541-7786.Mcr-20-0917.
Article
CAS
Google Scholar
Dong N, Shi X, Wang S, Gao Y, Kuang Z, Xie Q, Li Y, Deng H, Wu Y, Li M, Li JL. M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. Br J Cancer. 2019;121:22–33. https://doi.org/10.1038/s41416-019-0482-x.
Article
Google Scholar
Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, Li Y, Zhang X, Cui W, Jia X. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer. 2020;19:41. https://doi.org/10.1186/s12943-020-01165-x.
Article
CAS
Google Scholar
Yang T, Deng Z, Xu L, Li X, Yang T, Qian Y, Lu Y, Tian L, Yao W, Wang J. Macrophages-aPKC(ɩ)-CCL5 feedback loop modulates the progression and chemoresistance in cholangiocarcinoma. J Exp Clin Cancer Res. 2022;41:23. https://doi.org/10.1186/s13046-021-02235-8.
Article
CAS
Google Scholar
Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13:788–99. https://doi.org/10.1038/nrc3603.
Article
CAS
Google Scholar
Zhang Y, Wu L, Li Z, Zhang W, Luo F, Chu Y, Chen G. Glycocalyx-mimicking nanoparticles improve anti-PD-L1 cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromol. 2018;19:2098–108. https://doi.org/10.1021/acs.biomac.8b00305.
Article
CAS
Google Scholar
Talukdar J, Kataki K, Ali E, Choudhury BN, Baruah MN, Bhattacharyya M, Bhattacharjee S, Medhi S. Altered expression of TGF-β1 and TGF-βR2 in tissue samples compared to blood is associated with food habits and survival in esophageal squamous cell carcinoma. Curr Probl Cancer. 2021;45:100617. https://doi.org/10.1016/j.currproblcancer.2020.100617.
Article
Google Scholar
Sun W, Ma Y, Chen P, Wang D. MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway. Mol Med Rep. 2015;11:3854–9. https://doi.org/10.3892/mmr.2015.3181.
Article
CAS
Google Scholar
Kumar U, Hu Y, Masrour N, Castellanos-Uribe M, Harrod A, May ST, Ali S, Speirs V, Coombes RC, Yagüe E. MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells. Biochem Pharmacol. 2021;192:114692. https://doi.org/10.1016/j.bcp.2021.114692.
Article
CAS
Google Scholar
Floor S, van Staveren WC, Larsimont D, Dumont JE, Maenhaut C. Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene. 2011;30:4609–21. https://doi.org/10.1038/onc.2011.184.
Article
CAS
Google Scholar
Elshamy WM, Duhé RJ. Overview: cellular plasticity, cancer stem cells and metastasis. Cancer Lett. 2013;341:2–8. https://doi.org/10.1016/j.canlet.2013.06.020.
Article
CAS
Google Scholar
Chen Y, Wen H, Zhou C, Su Q, Lin Y, Xie Y, Huang Y, Qiu Q, Lin J, Huang X, et al. TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res. 2019;378:41–50. https://doi.org/10.1016/j.yexcr.2019.03.005.
Article
CAS
Google Scholar
Wei R, Zhu WW, Yu GY, Wang X, Gao C, Zhou X, Lin ZF, Shao WQ, Wang SH, Lu M, Qin LX. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int J Cancer. 2021;148:1233–44. https://doi.org/10.1002/ijc.33371.
Article
CAS
Google Scholar
Liu J, Li C, Zhang L, Liu K, Jiang X, Wang X, Yang L, Liang W, Liu K, Hu J, Li F. Association of tumour-associated macrophages with cancer cell EMT, invasion, and metastasis of Kazakh oesophageal squamous cell cancer. Diagn Pathol. 2019;14:55. https://doi.org/10.1186/s13000-019-0834-0.
Article
CAS
Google Scholar
Qi YJ, Jiao YL, Chen P, Kong JY, Gu BL, Liu K, Feng DD, Zhu YF, Ruan HJ, Lan ZJ, et al. Porphyromonas gingivalis promotes progression of esophageal squamous cell cancer via TGFβ-dependent Smad/YAP/TAZ signaling. PLoS Biol. 2020;18:e3000825. https://doi.org/10.1371/journal.pbio.3000825.
Article
CAS
Google Scholar
Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA damage in stem cells. Mol Cell. 2017;66:306–19. https://doi.org/10.1016/j.molcel.2017.04.006.
Article
CAS
Google Scholar
Tedesco S, De Majo F, Kim J, Trenti A, Trevisi L, Fadini GP, Bolego C, Zandstra PW, Cignarella A, Vitiello L. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front Pharmacol. 2018;9:71. https://doi.org/10.3389/fphar.2018.00071.
Article
CAS
Google Scholar
Shiratori H, Feinweber C, Luckhardt S, Linke B, Resch E, Geisslinger G, Weigert A, Parnham MJ. THP-1 and human peripheral blood mononuclear cell-derived macrophages differ in their capacity to polarize in vitro. Mol Immunol. 2017;88:58–68. https://doi.org/10.1016/j.molimm.2017.05.027.
Article
CAS
Google Scholar