Friedenstein AJ, Chailakhjan RK, Lalykin KS. The development of fibroblast colonies in marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.
CAS
PubMed
Google Scholar
Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–74.
CAS
PubMed
Google Scholar
Prockop D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276(5309):71–4.
Article
CAS
PubMed
Google Scholar
Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.
Article
CAS
PubMed
Google Scholar
Afanasyev BV, Elstner EE, Zander ARAJ. friedenstein, founder of the mesenchymal stem cell concept. Cell Ther Transplant. 2009;1(3):35–8.
Google Scholar
Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12:126–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Owen M. Marrow stromal stem cells. J Cell Sci. 1988;10:63–76.
Article
CAS
Google Scholar
Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.
Article
CAS
PubMed
Google Scholar
Mizukami A, Swiech K. Mesenchymal stromal cells: from discovery to manufacturing and commercialization. Stem Cells Int. 2018. https://doi.org/10.1155/2018/4083921.
Article
PubMed
PubMed Central
Google Scholar
Lazarus HM, Haynesworth SE, Gerson SL, Rosenthal NS, Caplan AI. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant. 1995;16(4):557–64.
CAS
PubMed
Google Scholar
Lotfinejad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B. Immunomodulatory nature and site specific mesenchymal stem cells: a hope in cell therapy. Adv Pharm Bull. 2014;4(1):5–13.
Google Scholar
Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28(3):585–96.
CAS
PubMed
Google Scholar
Abazari A, Hawkins BJ, Clarke DM, Mathew AJ. Biopreservation best practices: a cornerstone in the supply chain of cell-based therapies—MSC model case study. Cell Gene Ther Insights. 2017;3(10):853–71.
Article
Google Scholar
Woods EJ, Thirumala S, Badhe-Buchanan SS, Clarke D, Mathew AJ. Off the shelf cellular therapeutics: factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy. 2016;18(6):697–711.
Article
PubMed
Google Scholar
Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell. 2014;14:141–5.
Article
CAS
PubMed
Google Scholar
Coopman K. Large-scale compatible methods for the preservation of human embryonic stem cells: current perspectives. Biotechnol Prog. 2011;27(6):1511–21.
Article
CAS
PubMed
Google Scholar
Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71:181–97.
Article
CAS
PubMed
Google Scholar
Gramlich OW, Burand AJ, Brown AJ, Deutsch RJ, Kuehn MH, Ankrum JA. Cryopreserved mesenchymal stromal cells maintain potency in a retinal ischemia/reperfusion injury model: toward an off-the-shelf therapy. Sci Rep. 2016;6:26463.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haack-Sorensen M, Bindslev L, Mortensen S, Friis T, Kastrup J. The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy. 2007;9(4):328–37.
Article
CAS
PubMed
Google Scholar
Chinnadurai R, Garcia MA, Sakurai Y, Lam WA, Kirk AD, Galipeau J, et al. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Rep. 2014;3(1):60–72.
Article
CAS
Google Scholar
Moll G, Geißler S, Catar R, Ignatowicz L, Hoogduijn MJ, Strunk D, et al. Cryopreserved or fresh mesenchymal stromal cells: only a matter of taste or key to unleash the full clinical potential of MSC therapy? Advances in experimental medicine and biology. Cham: Springer; 2016. p. 77–98.
Google Scholar
Galipeau J, Krampera M. The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria. Cytotherapy. 2015;17(2):125–7.
Article
PubMed
Google Scholar
Trento C, Bernardo ME, Nagler A, et al. Manufacturing mesenchymal stromal cells for the treatment of graft-versus-host disease: a survey among centers affiliated with the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2018;24(11):2365–70.
Article
PubMed
PubMed Central
Google Scholar
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The role of dissolved oxygen levels on human mesenchymal stem cell culture success, regulatory compliance, and therapeutic potential. Stem Cells Dev. 2018;27(19):1303–21.
Article
PubMed
Google Scholar
Verdanova M, Pytlik R, Kalbacova MH. Evaluation of sericin as a fetal bovine serum-replacing cryoprotectant during freezing of human mesenchymal stromal cells and human osteoblast-like cells. Biopreserv Biobank. 2014;12(2):99–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumura K, Hayashi F, Nagashima T, Hyon SH. Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed. 2013;24(12):1484–97.
Article
CAS
PubMed
Google Scholar
Naaldijk Y, Staude M, Fedorova V, Stolzing A. Effect of different freezing rates during cryopreservation of rat mesenchymal stem cells using combinations of hydroxyethyl starch and dimethylsulfoxide. BMC Biotechnol. 2012;12(1):49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Xu X, Ma X, Martin-Rendon E, Watt S, Cui Z. Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. Biotechnol Prog. 2010;26(6):1635–43.
Article
CAS
PubMed
Google Scholar
Liu Y, Xu X, Xuehu M, Liu J, Cui Z. Effect of various freezing solutions on cryopreservation of mesenchymal stem cells from different animal species. Cryo-Letters. 2011;32(5):425–35.
CAS
PubMed
Google Scholar
Heng BC. Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells. Tissue Cell. 2009;41(5):376–80.
Article
CAS
PubMed
Google Scholar
Renzi S, Lombardo T, Dotti S, Dessi SS, De Blasio P, Ferrari M. Mesenchymal stromal cell cryopreservation. Biopreserv Biobank. 2012;10(3):276–81.
Article
CAS
PubMed
Google Scholar
Mitchell A, Rivas KA, Smith R, Watts AE. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5%. Stem Cell Res Ther. 2015;6(1):231.
Article
PubMed
PubMed Central
Google Scholar
Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NAN, Fakharuzi NA, et al. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem. 2012;113(3):3153–64.
Article
CAS
PubMed
Google Scholar
Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E, Beguin Y. Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J Transl Med. 2016;14(1):145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28(1):33–9.
Article
PubMed
Google Scholar
Edamura K, Nakano R, Fujimoto K, Teshima K, Asano K, Tanaka S. Effects of cryopreservation on the cell viability, proliferative capacity and neuronal differentiation potential of canine bone marrow stromal cells. J Vet Med Sci. 2014;76(4):573–7.
Article
CAS
PubMed
Google Scholar
Kumazawa K, Sugimoto T, Yamazaki Y, Takeda A, Uchinuma E. Osteogenic potential, multipotency, and cytogenetic safety of human bone tissue-derived mesenchymal stromal cells (hBT-MSCs) after long-term cryopreservation. Kitasato Med J. 2014;44:95–103.
Google Scholar
Moll G, Alm JJ, Davies LC, Von Bahr L, Heldring N, Stenbeck-Funke L, et al. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells. 2014;32(9):2430–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heino TJ, Alm JJ, Moritz N, Aro HT. Comparison of the osteogenic capacity of minipig and human bone marrow-derived mesenchymal stem cells. J Orthop Res. 2012;30(7):1019–25.
Article
PubMed
Google Scholar
Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, et al. Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation. Cytotherapy. 2015;17:186–98.
Article
PubMed
Google Scholar
Hirose M, Kotobuki N, Machida H, Kitamura S, Ohgushi H, Tateishi T. Osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells after thawing in culture. Mater Sci Eng C. 2004;24(3):355–9.
Article
CAS
Google Scholar
Davies OG, Smith AJ, Cooper PR, Shelton RM, Scheven BA. The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology. 2014;69(2):342–7.
Article
CAS
PubMed
Google Scholar
Bissoyi A, Nayak B, Pramanik K, Sarangi SK. Targeting cryopreservation-induced cell death: a review. Biopreserv Biobank. 2014;12(1):23–34.
Article
CAS
PubMed
Google Scholar
Carvalho KAT, Cury CC, Oliveira L, Cattaned RII, Malvezzi M, Francisco JC, et al. Evaluation of bone marrow mesenchymal stem cell standard cryopreservation procedure efficiency. Transplant Proc. 2008;40:839–41.
Article
CAS
PubMed
Google Scholar
François M, Copland IB, Yuan S, Romieu-Mourez R, Waller EK, Galipeau J. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy. 2012;14(2):147–52.
Article
CAS
PubMed
Google Scholar
Zhu X, Yuan F, Li L, Zheng Y, Xiao Y, Yan F. Evaluation of canine bone marrow-derived mesenchymal stem cells after long-term cryopreservation. Zool Sci. 2013;30(12):1032–7.
Article
Google Scholar
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.
Article
CAS
PubMed
Google Scholar
Tokumoto S, Sotome S, Torigoe I, Omura K, Shinomiya K. Effects of cryopreservation on bone marrow derived mesenchymal cells of a nonhuman primate. J Med Dent Sci. 2008;55:137–43.
PubMed
Google Scholar
Lauterboeck L, Saha D, Chatterjee A, Hofmann N, Glasmacher B. Xeno-Free Cryopreservation of bone marrow-derived multipotent stromal cells from Callithrix jacchus. Biopreserv Biobank. 2016;14:530–8.
Article
CAS
PubMed
Google Scholar
Ginis I, Grinblat B, Shirvan MH. Evaluation of bone marrow-derived mesenchymal stem cells after cryopreservation and hypothermic storage in clinically safe medium. Tissue Eng Part C Methods. 2012;18(6):453–63.
Article
CAS
PubMed
Google Scholar
Ock SA, Rho GJ. Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCS). Cell Transplant. 2011;20(8):1231–9.
Article
PubMed
Google Scholar
Yuan Z, Lourenco SDS, Sage EK, Kolluri KK, Lowdell MW, Janes SM. Cryopreservation of human mesenchymal stromal cells expressing TRAIL for human anti-cancer therapy. Cytotherapy. 2016;18(7):860–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Squillaro T, Peluso G, Galderisi U. clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–48.
Article
PubMed
Google Scholar
Baust JM, Corwin W, Snyder KK, Van Buskirk R, Baust JG. Cryopreservation: evolution of molecular based strategies. Biobanking and cryopreservation of stem cells. Cham: Springer; 2016. p. 13–29.
Chapter
Google Scholar
Chatterjee A, Saha D, Niemann H, Gryshkov O, Glasmacher B, Hofmann N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology. 2017;74:1–7.
Article
CAS
PubMed
Google Scholar
De Wolf C, Van De Bovenkamp M, Hoefnagel M. Regulatory perspective on in vitro potency assays for human mesenchymal stromal cells used in immunotherapy. Cytotherapy. 2017;19:784–97.
Article
CAS
PubMed
Google Scholar
Robb KP, Fitzgerald JC, Barry F, Viswanathan S. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy. 2019;21(3):289–306.
Article
CAS
PubMed
Google Scholar
Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological characterization of multipotent mesenchymal stromal cells-The international society for cellular therapy (ISCT) working proposal. Cytotherapy. 2013;15(9):1054–61.
Article
PubMed
Google Scholar
Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy. 2016;18:151–9.
Article
CAS
PubMed
Google Scholar
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6(12):2173–85.
Article
PubMed
PubMed Central
Google Scholar
Martino M, Morabito F, Messina G, Irrera G, Pucci G, Iacopino P. Fractionated infusions of cryopreserved stem cells may prevent DMSO- induced major cardiac complications in graft recipients. Haematologica. 1996;81(1):59–61.
CAS
PubMed
Google Scholar
Zenhäusern R, Tobler A, Leoncini L, Hess OM, Ferrari P. Fatal cardiac arrhythmia after infusion of dimethyl sulfoxide-cryopreserved hematopoietic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol. 2000;79:523–6.
Article
PubMed
Google Scholar
Stamatovic D, Balint B, Tukic LJ, Elez M, Tarabar O, Ostojic G, et al. Severe neurotoxicity following peripheral blood stem cell transplantation. Bone Marrow Transplant. 2011;46:1110.
Google Scholar
Windrum P, Morris TCM. Severe neurotoxicity because of dimethyl sulphoxide following peripheral blood stem cell transplantation. Bone Marrow Transplant. 2003;31:315.
Article
CAS
PubMed
Google Scholar
Yong KW, Wan Safwani WKZ, Xu F, Wan Abas WAB, Choi JR, Pingguan-Murphy B. Cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv Biobank. 2015;13(4):231–9.
Article
PubMed
Google Scholar
Al-Saqi SH, Saliem M, Quezada HC, Ekblad Å, Jonasson AF, Hovatta O, et al. Defined serum- and xeno-free cryopreservation of mesenchymal stem cells. Cell Tissue Bank. 2015;16(2):181–93.
Article
CAS
PubMed
Google Scholar
Pollock K, Sumstad D, Kadidlo D, McKenna DH, Hubel A. Clinical mesenchymal stromal cell products undergo functional changes in response to freezing. Cytotherapy. 2015;17(1):38–45.
Article
PubMed
Google Scholar
Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Waller EK, et al. Cryopreserved MSCs are susceptible to T-cell mediated apoptosis which is partly rescued by IFNγ licensing Raghavan. Stem Cells. 2016;34(9):2429–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holubova M, Lysak D, Vlas T, Vannucci L, Jindra P. Expanded cryopreserved mesenchymal stromal cells as an optimal source for graft-versus-host disease treatment. Biologicals. 2014;42(3):139–44.
Article
CAS
PubMed
Google Scholar
Bieback K, Kuçi S, Schäfer R. Production and quality testing of multipotent mesenchymal stromal cell therapeutics for clinical use. Transfusion. 2019;59:2164–73.
Article
PubMed
Google Scholar
Stacey GN, Connon CJ, Coopman K, Dickson AJ, Fuller B, Hunt CJ, et al. Preservation and stability of cell therapy products: recommendations from an expert workshop. Regen Med. 2017;12(5):553–64.
Article
CAS
PubMed
Google Scholar
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell. 2005;120(2):237–48.
Article
CAS
PubMed
Google Scholar
Mason EF, Rathmell JC. Cell metabolism: An essential link between cell growth and apoptosis. Biochim et Biophys Acta Mol Cell Res. 2011;1813:645–54.
Article
CAS
Google Scholar
Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 2017;18(10):2087.
Article
PubMed Central
CAS
Google Scholar
Ward MR, Abadeh A, Connelly KA. Concise review: rational use of mesenchymal stem cells in the treatment of ischemic heart disease. Stem Cells Transl Med. 2018;7(7):543–50.
Article
PubMed
PubMed Central
Google Scholar
Baust JG, Snyder KK, Van Buskirk R, Baust JM. Integrating molecular control to improve cryopreservation outcome. Biopreserv Biobank. 2017;15(2):134–41.
Article
PubMed
Google Scholar
Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.
Article
PubMed
PubMed Central
Google Scholar
González DA, Pando RH, Lim MÁG, Fraustro SA, Garcia AT. Therapeutic strategies of secretome of mesenchymal stem cell. Stromal cells-structure, function, and therapeutic implications. London: IntechOpen; 2018.
Google Scholar
Merino-González C, Zuñiga FA, Escudero C, Ormazabal V, Reyes C, Nova-Lamperti E, et al. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol. 2016;7:24.
Article
PubMed
PubMed Central
Google Scholar
Gallina C, Turinetto V, Giachino C. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells Int. 2015;2015:765846. https://doi.org/10.1155/2015/765846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem cells in wound healing: the future of regenerative medicine? A mini-review. Gerontology. 2016;62:216–25.
Article
CAS
PubMed
Google Scholar
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18:1852.
Article
PubMed Central
CAS
Google Scholar
Konala VBR, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy. 2016;18:13–24.
Article
CAS
PubMed
Google Scholar
Tolar J, Le Blanc K, Keating A, Blazar BR. Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells. 2010;28:1446–55.
Article
PubMed
PubMed Central
Google Scholar
Bruno S, Deregibus MC, Camussi G. The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation. Immunol Lett. 2015;168:154–8.
Article
CAS
PubMed
Google Scholar
Chinnadurai R, Rajan D, Qayed M, Arafat D, Garcia M, Liu Y, et al. Potency analysis of mesenchymal stromal cells using a combinatorial assay matrix approach. Cell Rep. 2018;22(9):2504–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fung M, Yuan Y, Atkins H, Shi Q, Bubela T. Responsible translation of stem cell research: an assessment of clinical trial registration and publications. Stem Cell Rep. 2017;8:1190–201.
Article
Google Scholar
Daley GQ. The promise and perils of stem cell therapeutics. Cell Stem Cell. 2012;10(6):740–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.
Article
CAS
PubMed
Google Scholar
Marks PW, Witten CM, Califf RM. Clarifying stem-cell therapy’s benefits and risks. N Engl J Med. 2017;376(11):1007–9.
Article
PubMed
Google Scholar
Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem. 1997;64:278–94.
Article
CAS
PubMed
Google Scholar
Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, et al. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng. 2005;11:663–73.
Article
CAS
PubMed
Google Scholar
Xiang Y, Zheng Q, Jia B, Huang G, Xie C, Pan J, et al. Ex vivo expansion, adipogenesis and neurogenesis of cryopreserved human bone marrow mesenchymal stem cells. Cell Biol Int. 2007;31:444–50.
Article
CAS
PubMed
Google Scholar
Zhao ZG, Li WM, Chen ZC, You Y, Zou P. hematopoeisis capacity immunomodulatory effect andex vivo expasion poetntial of mesenhcymal stem cells are not impaired by cryopreservation. Cancer Invest. 2008;26(4):391–400.
Article
CAS
PubMed
Google Scholar
Doan CC, Truong NH, Vu NB, Nguyen TT, Nguyen HM, Nguyen KG, et al. Isolation, culture and cryopreservation of human bone marrow-derived mesenchymal stem cells. Int J Plant Anim Environ Sci. 2012;2(2):83–90.
CAS
Google Scholar
Li H, Yan F, Lei L, Li Y, Xiao Y. Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs. Cells Tissues Organs. 2009;190(2):94–101.
Article
PubMed
Google Scholar
Nitsch S, Chatterjee A, Hofmann N, Glasmacher B. Impact of cryopreservation on histone modifications of mesenchymal stem cells. Biomedizinische Technik. 2014;59:S294–7.
Google Scholar
Romanek J, Opiela J, Lipiński D, Smorąg Z. Effect of high hydrostatic pressure applied before cryopreservation on the survival rate and quality of porcine mesenchymal stem cells after thawing. Anim Biotechnol. 2018;29(4):283–92.
Article
CAS
PubMed
Google Scholar