Martel-Pelletier J, Pelletier J-P. Is osteoarthritis a disease involving only cartilage or other articular tissues? Eklem Hastalik Cerrahisi. 2010;21:2–14.
PubMed
Google Scholar
Herrero-Beaumont G, Roman-Blas JA. Osteoarthritis: osteoporotic OA: a reasonable target for bone-acting agents. Nat Rev Rheumatol. 2013;9:448–50.
Article
CAS
PubMed
Google Scholar
Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P, Christiansen C, Attur M, Henriksen K, Goldring SR, Kraus V. The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis. 2014;73:336–48.
Article
CAS
PubMed
Google Scholar
Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol. 2015;27:420–6.
Article
PubMed
Google Scholar
Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the progression of joint space narrowing osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis. 1993;52:557–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huebner JL, Bay-Jensen AC, Huffman KM, He Y, Leeming DJ, McDaniel GE, Karsdal MA, Kraus VB. Alpha C-telopeptide of type I collagen is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis. Arthritis Rheumatol. 2014;66:2440–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roemer FW, Neogi T, Nevitt MC, Felson DT, Zhu Y, Zhang Y, Lynch JA, Javaid MK, Crema MD, Torner J, Lewis CE, Guermazi A. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthritis Cartilage. 2010;18:47–53.
Article
CAS
PubMed
Google Scholar
Neogi T, Felson D, Niu J, Lynch J, Nevitt M, Guermazi A, Roemer F, Lewis CE, Wallace B, Zhang Y. Cartilage loss occurs in the same subregions as subchondral bone attrition: a within-knee subregion-matched approach from the multicenter osteoarthritis study. Arthritis Rheum. 2009;61:1539–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neogi T, Nevitt M, Niu J, Sharma L, Roemer F, Guermazi A, Lewis CE, Torner J, Javaid K, Felson D. Subchondral bone attrition may be a reflection of compartment-specific mechanical load: the MOST study. Ann Rheum Dis. 2010;69:841–4.
Article
PubMed
Google Scholar
Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol. 2011;7:43–9.
Article
CAS
PubMed
Google Scholar
Goldring SR. Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4:249–58.
Article
PubMed
PubMed Central
Google Scholar
Reginster JY. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind randomized, placebo-controlled trial. Ann Rheum Dis. 2014;73:e8. https://doi.org/10.1136/annrheumdis-2013-204194.
Article
PubMed
Google Scholar
Spector TD, Conaghan PG, Buckland-Wright JC, Garnero P, Cline GA, Beary JF, Valent DJ, Meyer JM. Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial. Arthritis Res Ther. 2005;7:R625–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manicourt DH, Azria M, Mindeholm L, Thonar EJ, Devogelaer JP. Oral salmon calcitonin reduces Lequesne’s algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum. 2006;54:3205–11.
Article
CAS
PubMed
Google Scholar
Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem. 1996;271:12511–6.
Article
CAS
PubMed
Google Scholar
Hou WS, Li Z, Büttner FH, Bartnik E, Brömme D. Cleavage site specificity of cathepsin K toward cartilage proteoglycans and protease complex formation. Biol Chem. 2003;384:891–7.
Article
CAS
PubMed
Google Scholar
Konttinen YT, Mandelin J, Li TF, Salo J, Lassus J, Liljeström M, Hukkanen M, Takagi M, Virtanen I, Santavirta S. Acidic cysteine endoproteinase cathepsin K in the degradation of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 2002;46:953–60.
Article
CAS
PubMed
Google Scholar
Dejica VM, Mort SM, Laverty S, Percival MD, Antoniou J, Zukor DJ, Poole AR. Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am J Pathol. 2008;173:161–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273:1236–8.
Article
CAS
PubMed
Google Scholar
Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin K-deficient mice. Proc Natl Acad Sci. 1998;95:13453–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jerome C, Missbach M, Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2011;22:3001–11.
Article
CAS
PubMed
Google Scholar
Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong LT. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2012;27:509–23.
Article
CAS
PubMed
Google Scholar
Eastell R, Nagase S, Ohyama M, Small M, Sawyer J, Boonen S, Spector T, Kumayama T, Deacon S. Safety and efficacy of the cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study. J Bone Miner Res. 2011;26:1303–12.
Article
CAS
PubMed
Google Scholar
Eisman JA, Bone HG, Hosking DJ, McClung MR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, DaSilva C, Petrovic R, Santora AC, Ince BA, Lombardi A. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26:242–51.
Article
CAS
PubMed
Google Scholar
Chapurlat R. Cathepsin K inhibitors and antisclerostin antibodies. The next treatments for osteoporosis? Joint Bone Spine. 2016;83:254–6.
Article
CAS
PubMed
Google Scholar
Connor JR, LePage C, Swift BA, Yamashita D, Bendele AM, Maul D, Kumar S. Protective effects of a cathepsin K inhibitor, SB-553484, in the canine partial medial meniscectomy model of osteoarthritis. Osteoarthritis Cartilage. 2009;17:1236–43.
Article
CAS
PubMed
Google Scholar
Hayami T, Zhuo Y, Wesolowski GA, Pickarski M, Duong LT. Inhibition of cathepsin K reduces cartilage degeneration in the anterior cruciate ligament transection rabbit and murine models of osteoarthritis. Bone. 2012;50:1250–9.
Article
CAS
PubMed
Google Scholar
Lindström E, Rizoska B, Henderson I, Terelius Y, Jerling M, Edenius C, Grabowska U. Nonclinical and clinical pharmacological characterization of the potent and selective cathepsin K inhibitor MIV-711 (Manuscript).
Conaghan PG, Bowes MA, Kingsbury SR, Brett A, Guillard G, Jansson Å, Wadell C, Bethell R, Öhd J. MIV-711, a novel cathepsin K inhibitor demonstrates evidence of osteoarthritis structure modification: results from a 6 month randomized double-blind placebo-controlled Phase IIA trial. In: American College of Rheumatology annual meeting. 2017 (Abstract Number 14L).
Grabowska U, Lindstrom E, Jerling M, Edenius C. MIV-711, a highly selective cathepsin K inhibitor: safety, pharmacokinetics and pharmacodynamics of multiple oral doses in healthy postmenopausal women. Bone Abstracts. 2014;3:6.
Google Scholar
Sah RL, Yang AS, Chen AC, Hant JJ, Halili RB, Yoshioka M, Amiel D, Coutts RD. Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J Orthop Res. 1997;15:197–203.
Article
CAS
PubMed
Google Scholar
Calvo E, Palacios I, Delgado E, Ruiz-Cabello J, Hernandez P, Sanchez-Pernaute O, Egido J, Herrero-Beaumont G. High-resolution MRI detects cartilage swelling at the early stages of experimental osteoarthritis. Osteoarthritis Cartilage. 2001;9:463–72.
Article
CAS
PubMed
Google Scholar
Batiste DL, Kirkley A, Laverty S, Thain LMF, Spouge AR, Holdsworth DW. Ex vivo characterization of articular and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthritis Cartilage. 2004;12:986–96.
Article
PubMed
Google Scholar
Sniekers YH, Intema F, Lafeber FP, van Osch GJ, van Leeuwen JP, Weinans H, Mastbergen SC. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord. 2008;9:20. https://doi.org/10.1186/1471-2474-9-20.
Article
PubMed
PubMed Central
Google Scholar
Intema F, Sniekers YH, Weinans H, Vianen ME, Yocum SA, Zuurmond AM, DeGroot J, Lafeber FP, Mastbergen SC. Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J Bone Miner Res. 2010;25:1650–7.
Article
PubMed
Google Scholar
Stok KS, Besler BA, Steiner TH, Escudero AVV, Zulliger MA, Wilke M, Atal K, Quintin A, Koller B, Müller R, Nesic D. Three-dimensional quantitative morphometric analysis (QMA) for in situ joint and tissue assessment of osteoarthritis in a preclinical rabbit disease model. PLoS ONE. 2016;11:e0147564.
Article
PubMed
PubMed Central
Google Scholar
Van der Kraan PM, van der Berg WB. Osteophytes: relevance and biology. Osteoarthritis Cartilage. 2007;15:237–44.
Article
PubMed
Google Scholar
Myers SL, Brandt KD, Burr DB, O’Connor BL, Albrecht M. Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J Rheumatol. 1999;26:2645–53.
CAS
PubMed
Google Scholar
Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, Duong LT. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degradation and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004;50:1193–206.
Article
CAS
PubMed
Google Scholar
Kuroki K, Cook CR, Cook JL. Subchondral bone changes in three different canine models of osteoarthritis. Osteoarthritis Cartilage. 2011;19:1142–9.
Article
CAS
PubMed
Google Scholar
Huang CC, Lee CC, Wang CJ, Wang FS, Huang HY, Ng SH, Tseng CY, Ko SF. Effect of age-related cartilage turnover on serum C-telopeptide of collagen type II and osteocalcin levels in growing rabbits with and without surgically induced osteoarthritis. Biomed Res Int. 2014. https://doi.org/10.1155/2014/284784.
Google Scholar
Settle S, Vickery L, Nemirovsky O, Vidmar T, Bendele A, Messing D, Ruminski P, Schnute M, Sunyer T. Cartilage degeneration biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis. Arthritis Rheum. 2010;62:3006–15.
Article
CAS
PubMed
Google Scholar
Kafienah W, Brömme D, Buttle DJ, Croucher LJ, Hollander AP. Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J. 1998;331:727–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennypacker BL, Duong LT, Cusick TE, Masarachia PJ, Gentile MA, Gauthier JY, Black WC, Scott BB, Samadfam R, Smith SY, Kimmel DB. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011;26:252–62.
Article
CAS
PubMed
Google Scholar
Garnero P, Delmas PD. An immunoassay for type I collagen alpha I helicoidal peptide 620–633, a new marker of bone resorption in osteoporosis. Bone. 2003;32:20–6.
Article
CAS
PubMed
Google Scholar
Kleiman RJ, Ehlers MD. Data gaps limit the translational potential of preclinical research. Sci Transl Med. 2016;8:32ps1. https://doi.org/10.1126/scitranslmed.aac9888.
Article
Google Scholar