Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16(6):355–67. https://doi.org/10.1038/s41579-018-0001-8.
Article
CAS
Google Scholar
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev. 2017;41(6):854–79. https://doi.org/10.1093/femsre/fux037.
Article
CAS
Google Scholar
Lane JR, Tata M, Briles DE, Orihuela CJ. A jack of all trades: the role of pneumococcal surface protein A in the pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/fcimb.2022.826264.
Article
Google Scholar
GBD 2016 Lower Respiratory Infections Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191.
Article
Google Scholar
Cherazard R, Epstein M, Doan T-L, Salim T, Bharti S, Smith MA. Antimicrobial resistant Streptococcus pneumoniae: prevalence, mechanisms, and clinical implications. Am J Ther. 2017;24(3):361–9. https://doi.org/10.1097/MJT.0000000000000551.
Article
Google Scholar
Aceil J, Avci FY. Pneumococcal surface proteins as virulence factors, immunogens, and conserved vaccine targets. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/fcimb.2022.832254.
Article
Google Scholar
Akbari E, Negahdari B, Faraji F, Behdani M, Kazemi-Lomedasht F, Habibi-Anbouhi M. Protective responses of an engineered PspA recombinant antigen against Streptococcus pneumoniae. Biotechnol Rep. 2019;24:1–7. https://doi.org/10.1016/j.btre.2019.e00385.
Article
Google Scholar
Feldman C, Anderson R. Current and new generation pneumococcal vaccines. J Infect. 2014;69(4):309–25. https://doi.org/10.1016/j.jinf.2014.06.006.
Article
Google Scholar
Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel protein-based pneumococcal vaccines: assessing the use of distinct protein fragments instead of full-length proteins as vaccine antigens. Vaccines. 2019;7(1):9–27. https://doi.org/10.3390/vaccines7010009.
Article
CAS
Google Scholar
Yuki Y, Uchida Y, Sawada S-I, Nakahashi-Ouchida R, Sugiura K, Mori H, et al. Characterization and specification of a trivalent protein-based pneumococcal vaccine formulation using an adjuvant-free nanogel nasal delivery system. Mol Pharmaceutics. 2021;18(4):1582–92. https://doi.org/10.1021/acs.molpharmaceut.0c01003.
Article
CAS
Google Scholar
Datta A, Kapre K, Andi-Lolo I, Kapre S. Multi-valent pneumococcal conjugate vaccine for global health: From problem to platform to production. Hum Vaccin Immunother. 2022. https://doi.org/10.1080/21645515.2022.2117949.
Article
Google Scholar
Converso T, Assoni L, André G, Darrieux M, Leite LCDC. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccin. 2020;19(1):57–70. https://doi.org/10.1080/14760584.2020.1711055.
Article
CAS
Google Scholar
Oliveira GS, Oliveira MLS, Miyaji EN, Rodrigues TC. Pneumococcal vaccines: past findings, present work, and future strategies. Vaccines. 2021;9(11):1338–54. https://doi.org/10.3390/vaccines9111338.
Article
CAS
Google Scholar
Zhang Y, Guo X, Guo M, Chen X, Li B, Yu J, et al. Combined prime-boost immunization with systemic and mucosal pneumococcal vaccines based on Pneumococcal surface protein A to enhance protection against lethal pneumococcal infections. Immunol Res. 2019;67(4):398–407. https://doi.org/10.1007/s12026-019-09107-6.
Article
CAS
Google Scholar
Silva PH, Vazquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, et al. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol. 2022. https://doi.org/10.3389/2Ffcimb.2022.949469.
Article
Google Scholar
Converso TR, Goulart C, Rodriguez D, Darrieux M, Leite L. Rational selection of broadly cross-reactive family 2 PspA molecules for inclusion in chimeric pneumococcal vaccines. Microb Pathog. 2017;109:233–8. https://doi.org/10.1016/j.micpath.2017.06.004.
Article
CAS
Google Scholar
Sempere J, Llamosí M, del Río MI, López Ruiz B, Domenech M, González-Camacho F. Pneumococcal choline-binding proteins involved in virulence as vaccine candidates. Vaccines. 2021;9(2):181–200. https://doi.org/10.3390/vaccines9020181.
Article
CAS
Google Scholar
Roberts S, Williams CM, Salmon SL, Bonin JL, Metzger DW, Furuya Y. Evaluation of pneumococcal surface protein A as a vaccine antigen against secondary Streptococcus pneumoniae challenge during Influenza A infection. Vaccines. 2019;7(4):146–55. https://doi.org/10.3390/vaccines7040146.
Article
CAS
Google Scholar
Jedrzejas MJ, Hollingshead SK, Lebowitz J, Chantalat L, Briles DE, Lamani E. Production and characterization of the functional fragment of pneumococcal surface protein A. Arch Biochem Biophys. 2000;373(1):116–25. https://doi.org/10.1006/abbi.1999.1544.
Article
CAS
Google Scholar
Chang B, Kinjo Y, Morita M, Tamura K, Watanabe H, Tanabe Y, et al. Distribution and variation of serotypes and pneumococcal surface protein A clades of Streptococcus pneumoniae Strains isolated from adult patients with invasive pneumococcal disease in Japan. Front Cell Infect Microbiol. 2021;11:192–200. https://doi.org/10.3389/fcimb.2021.617573.
Article
CAS
Google Scholar
Mukerji R, Hendrickson C, Genschmer KR, Park S-S, Bouchet V, Goldstein R, et al. The diversity of the proline-rich domain of pneumococcal surface protein A (PspA): potential relevance to a broad-spectrum vaccine. Vaccine. 2018;36(45):6834–43. https://doi.org/10.1016/j.vaccine.2018.08.045.
Article
CAS
Google Scholar
Darrieux M, Miyaji EN, Ferreira D, Lopes L, Lopes APY, Ren B, et al. Fusion proteins containing family 1 and family 2 PspA fragments elicit protection against Streptococcus pneumoniae that correlates with antibody-mediated enhancement of complement deposition. Infect Immun. 2007;75(12):5930–8. https://doi.org/10.1128/IAI.00940-07.
Article
CAS
Google Scholar
Melin M, Coan P, Hollingshead S. Development of cross-reactive antibodies to the proline-rich region of pneumococcal surface protein A in children. Vaccine. 2012;30(50):7157–60. https://doi.org/10.1016/j.vaccine.2012.10.004.
Article
CAS
Google Scholar
Scott NR, Mann B, Tuomanen EI, Orihuela CJ. Multi-valent protein hybrid pneumococcal vaccines: a strategy for the next generation of vaccines. Vaccines. 2021;9(3):209–25. https://doi.org/10.3390/vaccines9030209.
Article
CAS
Google Scholar
Piao Z, Akeda Y, Takeuchi D, Ishii KJ, Ubukata K, Briles DE, et al. Protective properties of a fusion pneumococcal surface protein A (PspA) vaccine against pneumococcal challenge by five different PspA clades in mice. Vaccine. 2014;32(43):5607–13. https://doi.org/10.1016/j.vaccine.2014.07.108.
Article
CAS
Google Scholar
Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, et al. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Inform Med Unlocked. 2021;24:100578. https://doi.org/10.1016/j.imu.2021.100578.
Article
Google Scholar
Adar Y, Singer Y, Levi R, Tzehoval E, Perk S, Banet-Noach C, et al. A universal epitope-based influenza vaccine and its efficacy against H5N1. Vaccine. 2009;27(15):2099–107. https://doi.org/10.1016/j.vaccine.2009.02.011.
Article
CAS
Google Scholar
Khan M, Khan S, Ali A, Akbar H, Sayaf AM, Khan A, et al. Immunoinformatics approaches to explore Helicobacter pylori proteome (Virulence Factors) to design B and T cell multi-epitope subunit vaccine. Sci Rep. 2019;9(1):1–13. https://doi.org/10.1038/s41598-019-49354-z.
Article
CAS
Google Scholar
Rahman M, Puspo JA, Adib AA, Hossain ME, Alam MM, Sultana S, et al. An immunoinformatics prediction of novel multi-epitope vaccines candidate against surface antigens of Nipah Virus. Int J Pept Res Ther. 2022;28(4):1–25. https://doi.org/10.1007/s10989-022-10431-z.
Article
CAS
Google Scholar
Rodrigues RR, Ferreira MRA, Kremer FS, Donassolo RA, Júnior CM, Alves MLF, et al. Recombinant vaccine design against Clostridium spp. toxins using immunoinformatics tools. In: Thomas S, editor., et al., Vaccine Design. New York: Springer; 2022. p. 457–70.
Chapter
Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006;64(3):643–51. https://doi.org/10.1002/prot.21018.
Article
CAS
Google Scholar
Möller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics. 2001;17(7):646–53. https://doi.org/10.1093/bioinformatics/17.7.646.
Article
Google Scholar
Nielsen H, Tsirigos KD, Brunak S, von Heijne G. A brief history of protein sorting prediction. Protein J. 2019;38(3):200–16. https://doi.org/10.1007/s10930-019-09838-3.
Article
CAS
Google Scholar
Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):1–7. https://doi.org/10.1186/1471-2105-8-4.
Article
CAS
Google Scholar
Chen J, Liu H, Yang J, Chou K-C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids. 2007;33(3):423–8. https://doi.org/10.1007/s00726-006-0485-9.
Article
CAS
Google Scholar
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8. https://doi.org/10.1038/nmeth.3213.
Article
CAS
Google Scholar
Lee GR, Heo L, Seok C. Effective protein model structure refinement by loop modeling and overall relaxation. Proteins. 2016;84:293–301. https://doi.org/10.1002/prot.24858.
Article
CAS
Google Scholar
Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(suppl 2):1–4. https://doi.org/10.1093/nar/gkm290.
Article
Google Scholar
Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8(4):477–86. https://doi.org/10.1007/BF00228148.
Article
CAS
Google Scholar
Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9(1):1–8. https://doi.org/10.1186/1471-2105-9-514.
Article
CAS
Google Scholar
Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics. 2010;11(1):1–12. https://doi.org/10.1186/1471-2105-11-568.
Article
CAS
Google Scholar
Reche PA, Glutting J-P, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6):405–19. https://doi.org/10.1007/s00251-004-0709-7.
Article
CAS
Google Scholar
Hattotuwagama CK, Guan P, Doytchinova IA, Zygouri C, Flower DR. Quantitative online prediction of peptide binding to the major histocompatibility complex. J Mol Graph Model. 2004;22(3):195–207. https://doi.org/10.1016/S1093-3263(03)00160-8.
Article
CAS
Google Scholar
van de Garde MD, van Westen E, Poelen MC, Rots NY, van Els CA. Prediction and validation of immunogenic domains of pneumococcal proteins recognized by human CD4+ T cells. Infect Immun. 2019;87(6):1–18. https://doi.org/10.1128/IAI.00098-19.
Article
Google Scholar
Dorosti H, Eslami M, Negahdaripour M, Ghoshoon MB, Gholami A, Heidari R, et al. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J Biomol Struct Dyn. 2019;37(13):3524–35. https://doi.org/10.1080/07391102.2018.1519460.
Article
CAS
Google Scholar
Sanami S, Zandi M, Pourhossein B, Mobini G-R, Safaei M, Abed A, et al. Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. Int J Biol Macromol. 2020;164:871–83. https://doi.org/10.1016/j.ijbiomac.2020.07.117.
Article
CAS
Google Scholar
Ahmadi K, Pouladfar G, Kalani M, Faezi S, Pourmand MR, Hasanzadeh S, et al. Epitope-based immunoinformatics study of a novel Hla-MntC-SACOL0723 fusion protein from Staphylococcus aureus: Induction of multi-pattern immune responses. Mol Immunol. 2019;114:88–99. https://doi.org/10.1016/j.molimm.2019.05.016.
Article
CAS
Google Scholar
Chen C, Li Z, Huang H, Suzek BE, Wu CH, Consortium U. A fast peptide match service for UniProt knowledgebase. Bioinformatics. 2013;29(21):2808–9. https://doi.org/10.1093/bioinformatics/btt484.
Article
CAS
Google Scholar
Chen X, Zaro JL, Shen W-C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357–69. https://doi.org/10.1016/j.addr.2012.09.039.
Article
CAS
Google Scholar
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Consortium OSDD, et al. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE. 2013;8(9):e73957. https://doi.org/10.1371/journal.pone.0073957.
Article
CAS
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. 2005, pp. 571–607. https://doi.org/10.1385/1-59259-890-0:571.
Yu M, Zhu Y, Li Y, Chen Z, Sha T, Li Z, et al. Design of a novel multi-epitope vaccine against Echinococcus granulosus in immunoinformatics. Front Immunol. 2021;12:1–17. https://doi.org/10.3389/2Ffimmu.2021.668492.
Article
Google Scholar
Yang Z, Bogdan P, Nazarian S. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Sci Rep. 2021;11(1):1–21. https://doi.org/10.1038/s41598-021-81749-9.
Article
CAS
Google Scholar
Bhattacharya D, Nowotny J, Cao R, Cheng J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res. 2016;44(W1):406–9. https://doi.org/10.1016/S1093-3263(03)00160-8.
Article
CAS
Google Scholar
Shey RA, Ghogomu SM, Esoh KK, Nebangwa ND, Shintouo CM, Nongley NF, et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci Rep. 2019;9(1):1–18. https://doi.org/10.1038/s41598-019-40833-x.
Article
CAS
Google Scholar
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. https://doi.org/10.1016/j.softx.2015.06.001.
Article
Google Scholar
Mafakher L, Rismani E, Rahimi H, Enayatkhani M, Azadmanesh K, Teimoori-Toolabi L. Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. J Biomol Struct Dyn. 2022;40(5):2169–88. https://doi.org/10.1080/07391102.2020.1835718.
Article
CAS
Google Scholar
Murthy VL, Stern LJ. The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Structure. 1997;5(10):1385–96. https://doi.org/10.1016/S0969-2126(97)00288-8.
Article
CAS
Google Scholar
Senkovich O, Cook WJ, Mirza S, Hollingshead SK, Protasevich II, Briles DE, et al. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein a provides insight into microbial defense mechanism. J Mol Biol. 2007;370(4):701–13. https://doi.org/10.1016/2Fj.jmb.2007.04.075.
Article
CAS
Google Scholar
Umar A, Haque A, Alghamdi YS, Mashraqi MM, Rehman A, Shahid F, et al. Development of a candidate multi-epitope subunit vaccine against Klebsiella aerogenes: subtractive proteomics and immuno-informatics approach. Vaccines. 2021;9(11):1373–92. https://doi.org/10.3390/vaccines9111373.
Article
CAS
Google Scholar
Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S. Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformatics. 2006;7(1):1–8.
Article
Google Scholar
Zuker M. Prediction of RNA secondary structure by energy minimization. In: Annette M. Griffin, Hugh G. Griffin eds., Computer analysis of sequence data. Springer; 1994. p. 267–94. https://doi.org/10.1385/0-89603-276-0:267
Jung S-K, McDonald K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformatics. 2011;12(1):1–13. https://doi.org/10.1186/1471-2105-12-340.
Article
CAS
Google Scholar
Malekan M, Siadat SD, Aghasadeghi M, Shahrokhi N, Afrough P, Behrouzi A, et al. Evaluation of protective immunity responses against pneumococcal PhtD and its C-terminal in combination with outer-membrane vesicles as adjuvants. J Med Microbiol. 2020;69(3):465–77. https://doi.org/10.1099/jmm.0.001103.
Article
CAS
Google Scholar
Afrough P, Bouzari S, Mousavi SF, Karam MRA, Vaziri F, Fateh A, et al. Evaluation of immunological responses to recombinant Porin A protein (rPoA) from native strains of Neisseria meningitidis serogroups A and B using OMV as an adjuvant in BALB/c mice. Microb Pathog. 2017;112:209–14. https://doi.org/10.1016/j.micpath.2017.09.038.
Article
CAS
Google Scholar
Colichio GB, Oliveira GS, Rodrigues TC, Oliveira MLS, Miyaji EN. Efficacy of a protein vaccine and a conjugate vaccine against co-colonization with vaccine-type and non-vaccine type pneumococci in mice. Pathogens. 2020;9(4):278–91. https://doi.org/10.3390/pathogens9040278.
Article
CAS
Google Scholar
Khan N, Jan AT. Towards identifying protective B-cell epitopes: the PspA story. Front Microbiol. 2017;8:742–50. https://doi.org/10.3389/fmicb.2017.00742.
Article
Google Scholar
McDaniel LS, Ralph BA, McDaniel DO, Briles DE. Localization of protection-eliciting epitopes on PspA of Streptococcus pneumoniae between amino acid residues 192 and 260. Microb Pathog. 1994;17(5):323–37.
Article
CAS
Google Scholar
Singh R, Singh S, Sharma PK, Singh UP, Briles DE, Hollingshead SK, et al. Helper T cell epitope-mapping reveals MHC-peptide binding affinities that correlate with T helper cell responses to pneumococcal surface protein A. PLoS ONE. 2010;5(2):1–16. https://doi.org/10.1371/journal.pone.0009432.
Article
CAS
Google Scholar
Daniels CC, Coan P, King J, Hale J, Benton KA, Briles DE, et al. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect Immun. 2010;78(5):2163–72. https://doi.org/10.1128/IAI.01199-09.
Article
CAS
Google Scholar
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43(W1):W174–81. https://doi.org/10.1093/nar/2Fgkv342.
Article
CAS
Google Scholar
Gorai S, Das NC, Gupta PSS, Panda SK, Rana MK, Mukherjee S. Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infect Genet Evol. 2022;98:105237. https://doi.org/10.1016/j.meegid.2022.105237.
Article
CAS
Google Scholar
Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM, et al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep. 2020;10(1):1–24. https://doi.org/10.1038/s41598-020-67749-1.
Article
CAS
Google Scholar
Damas MSF, Mazur FG, de Melo Freire CC, da Cunha AF, da Silva Pranchevicius M-C. A systematic immuno-informatic approach to design a multiepitope-based vaccine against emerging multiple drug resistant. research, development and clinical trials for peptides-based vaccines. Front Immunol. 2022. 10.3389%2Ffimmu.2022.768569.
Farhani I, Nezafat N, Mahmoodi S. Designing a novel multi-epitope peptide vaccine against pathogenic Shigella spp. based immunoinformatics approaches. Int J Pept Res Ther. 2019;25(2):541–53. https://doi.org/10.1007/s10989-018-9698-5.
Article
CAS
Google Scholar
Wang L, Zhao Y, Li Z, Guo Y, Jones LL, Kranz DM, et al. Crystal structure of a complete ternary complex of TCR, superantigen and peptide-MHC. Nat Struct Mol Biol. 2007;14(2):169–71. https://doi.org/10.1038/nsmb1193.
Article
CAS
Google Scholar
Basu A. In silico epitope-based vaccine prediction against fungal infection aspergillosis. Challenges. 2022;13(2):29. https://doi.org/10.3390/challe13020029.
Article
Google Scholar
Darrieux M, Moreno AT, Ferreira DM, Pimenta FC, de Andrade ALS, Lopes AP, et al. Recognition of pneumococcal isolates by antisera raised against PspA fragments from different clades. J Med Microbiol. 2008;57(3):273–8. https://doi.org/10.1099/jmm.0.47661-0.
Article
CAS
Google Scholar
Moreno AT, Oliveira MLS, Ferreira DM, Ho PL, Darrieux M, Leite LC, et al. Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin Vaccine Immunol. 2010;17(3):439–46. https://doi.org/10.1128/CVI.00430-09.
Article
CAS
Google Scholar
Goulart C, Darrieux M, Rodriguez D, Pimenta FC, Brandileone MCC, de Andrade ALS, et al. Selection of family 1 PspA molecules capable of inducing broad-ranging cross-reactivity by complement deposition and opsonophagocytosis by murine peritoneal cells. Vaccine. 2011;29(8):1634–42. https://doi.org/10.1016/j.vaccine.2010.12.074.
Article
CAS
Google Scholar
Toh ZQ, Higgins RA, Mazarakis N, Abbott E, Nathanielsz J, Balloch A, et al. Evaluating functional immunity following encapsulated bacterial infection and vaccination. Vaccines. 2021;9(6):677–85. https://doi.org/10.3390/vaccines9060677.
Article
CAS
Google Scholar
Gottlieb T, Ben-Yedidia T. Epitope-based approaches to a universal influenza vaccine. J Autoimmun. 2014;54:15–20. https://doi.org/10.1016/j.jaut.2014.07.005.
Article
CAS
Google Scholar
Hasanzadeh S, Habibi M, Shokrgozar MA, Ahangari Cohan R, Ahmadi K, Asadi Karam MR, et al. In silico analysis and in vivo assessment of a novel epitope-based vaccine candidate against uropathogenic Escherichia coli. Sci Rep. 2020;10(1):1–16. https://doi.org/10.1038/s41598-020-73179-w.
Article
CAS
Google Scholar