Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.
Article
CAS
Google Scholar
Beesley SJ, Weber G, Sarge T, Nikravan S, Grissom CK, Lanspa MJ, et al. Septic cardiomyopathy. Crit Care Med. 2018;46(4):625–34.
Article
Google Scholar
Lanspa MJ, Cirulis MM, Wiley BM, Olsen TD, Wilson EL, Beesley SJ, et al. Right ventricular dysfunction in early sepsis and septic shock. Chest. 2021;159(3):1055–63.
Article
Google Scholar
Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016;4:22.
Article
Google Scholar
Liu YC, Yu MM, Shou ST, Chai YF. Sepsis-induced cardiomyopathy: mechanisms and treatments. Front Immunol. 2017;8:1021.
Article
Google Scholar
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424–34.
Article
Google Scholar
Martin L, Derwall M, Al Zoubi S, Zechendorf E, Reuter DA, Thiemermann C, et al. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest. 2019;155(2):427–37.
Article
Google Scholar
Chen J, Lai J, Yang L, Ruan G, Chaugai S, Ning Q, et al. Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1. Br J Pharmacol. 2016;173(3):545–61.
Article
CAS
Google Scholar
Zhang J, Wang M, Ye J, Liu J, Xu Y, Wang Z, et al. The anti-inflammatory mediator Resolvin E1 protects mice against lipopolysaccharide-induced heart injury. Front Pharmacol. 2020;11:203.
Article
CAS
Google Scholar
Peng S, Xu J, Ruan W, Li S, Xiao F. PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell Longev. 2017;2017:8326749.
Article
Google Scholar
Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules (Basel, Switzerland). 2021;26(22):6949.
Article
CAS
Google Scholar
Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta. 2019;1865(4):759–73.
Article
CAS
Google Scholar
Qi Z, Wang R, Liao R, Xue S, Wang Y. Neferine ameliorates sepsis-induced myocardial dysfunction through anti-apoptotic and antioxidative effects by regulating the PI3K/AKT/mTOR signaling pathway. Front Pharmacol. 2021;12: 706251.
Article
CAS
Google Scholar
Almeida LF, Tofteng SS, Madsen K, Jensen BL. Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin Sci. 2020;134(6):641–56.
Article
CAS
Google Scholar
Ning L, Rong J, Zhang Z, Xu Y. Therapeutic approaches targeting renin-angiotensin system in sepsis and its complications. Pharmacol Res. 2021;167: 105409.
Article
CAS
Google Scholar
Tsai HJ, Liao MH, Shih CC, Ka SM, Tsao CM, Wu CC. Angiotensin-(1–7) attenuates organ injury and mortality in rats with polymicrobial sepsis. Critical Care (London, England). 2018;22(1):269.
Article
Google Scholar
Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019;316(5):H958–70.
Article
Google Scholar
Simões ESAC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1–7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res. 2016;107:154–62.
Article
Google Scholar
Molitor M, Rudi WS, Garlapati V, Finger S, Schüler R, Kossmann S, et al. Nox2+ myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin II receptor type 1. Cardiovasc Res. 2021;117(1):162–77.
Article
CAS
Google Scholar
Cai SM, Yang RQ, Li Y, Ning ZW, Zhang LL, Zhou GS, et al. Angiotensin-(1–7) improves liver fibrosis by regulating the NLRP3 inflammasome via redox balance modulation. Antioxid Redox Signal. 2016;24(14):795–812.
Article
CAS
Google Scholar
Meng Y, Pan M, Zheng B, Chen Y, Li W, Yang Q, et al. Autophagy attenuates angiotensin II-induced pulmonary fibrosis by inhibiting redox imbalance-mediated NOD-like receptor family pyrin domain containing 3 inflammasome activation. Antioxid Redox Signal. 2019;30(4):520–41.
Article
CAS
Google Scholar
Ning ZW, Luo XY, Wang GZ, Li Y, Pan MX, Yang RQ, et al. MicroRNA-21 mediates angiotensin II-induced liver fibrosis by activating NLRP3 inflammasome/IL-1β axis via targeting Smad7 and Spry1. Antioxid Redox Signal. 2017;27(1):1–20.
Article
CAS
Google Scholar
Passos-Silva DG, Verano-Braga T, Santos RA. Angiotensin-(1–7): beyond the cardio-renal actions. Clin Sci. 2013;124(7):443–56.
Article
CAS
Google Scholar
Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1–7) and Mas: new players of the renin-angiotensin system. J Endocrinol. 2013;216(2):R1-r17.
Article
CAS
Google Scholar
Santos RA, SimoeseSilva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Nat Acad Sci USA. 2003;100(14):8258–63.
Article
CAS
Google Scholar
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98(1):505–53.
Article
CAS
Google Scholar
You Y, Huang Y, Wang D, Li Y, Wang G, Jin S, et al. Angiotensin (1–7) inhibits arecoline-induced migration and collagen synthesis in human oral myofibroblasts via inhibiting NLRP3 inflammasome activation. J Cell Physiol. 2019;234(4):4668–80.
Article
CAS
Google Scholar
Pan M, Zheng Z, Chen Y, Sun N, Zheng B, Yang Q, et al. Angiotensin-(1–7) attenuated cigarette smoking-related pulmonary fibrosis via improving the impaired autophagy caused by nicotinamide adenine dinucleotide phosphate reduced oxidase 4-dependent reactive oxygen species. Am J Respir Cell Mol Biol. 2018;59(3):306–19.
Article
CAS
Google Scholar
Xu DF, Liu YJ, Mao YF, Wang Y, Xu CF, Zhu XY, et al. Elevated angiotensin II induces platelet apoptosis through promoting oxidative stress in an AT1R-dependent manner during sepsis. J Cell Mol Med. 2021;25(8):4124–35.
Article
CAS
Google Scholar
Pregernig A, Müller M, Held U, Beck-Schimmer B. Prediction of mortality in adult patients with sepsis using six biomarkers: a systematic review and meta-analysis. Ann Intensive Care. 2019;9(1):125.
Article
Google Scholar
Hsieh MS, How CK, Hsieh VC, Chen PC. Preadmission antihypertensive drug use and sepsis outcome: impact of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Shock (Augusta, Ga). 2020;53(4):407–15.
Article
CAS
Google Scholar
Hsu WT, Galm BP, Schrank G, Hsu TC, Lee SH, Park JY, et al. Effect of renin-angiotensin-aldosterone system inhibitors on short-term mortality after sepsis: a population-based cohort study. Hypertension. 2020;75(2):483–91.
Article
CAS
Google Scholar
Lee HW, Suh JK, Jang E, Lee SM. Effect of angiotensin converting enzyme inhibitor and angiotensin II receptor blocker on the patients with sepsis. Korean J Intern Med. 2021;36(2):371–81.
Article
CAS
Google Scholar
Kim J, Kim YA, Hwangbo B, Kim MJ, Cho H, Hwangbo Y, et al. Effect of antihypertensive medications on sepsis-related outcomes: a population-based cohort study. Crit Care Med. 2019;47(5):e386–93.
Article
CAS
Google Scholar
Kostakoglu U, Topcu A, Atak M, Tumkaya L, Mercantepe T, Uydu HA. The protective effects of angiotensin-converting enzyme inhibitor against cecal ligation and puncture-induced sepsis via oxidative stress and inflammation. Life Sci. 2020;241: 117051.
Article
CAS
Google Scholar
Hagiwara S, Iwasaka H, Matumoto S, Hidaka S, Noguchi T. Effects of an angiotensin-converting enzyme inhibitor on the inflammatory response in in vivo and in vitro models. Crit Care Med. 2009;37(2):626–33.
Article
CAS
Google Scholar
Li Y, Zeng Z, Cao Y, Liu Y, Ping F, Liang M, et al. Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways. Sci Rep. 2016;6:27911.
Article
CAS
Google Scholar
Al-Kadi A, El-Daly M, El-Tahawy NFG, Khalifa MMA, Ahmed AF. Angiotensin aldosterone inhibitors improve survival and ameliorate kidney injury induced by sepsis through suppression of inflammation and apoptosis. Fundam Clin Pharmacol. 2022;36(2):286–95.
Article
CAS
Google Scholar
Li Y, Cao Y, Zeng Z, Liang M, Xue Y, Xi C, et al. Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-κB pathways. Sci Rep. 2015;5:8209.
Article
CAS
Google Scholar
Chen QF, Kuang XD, Yuan QF, Hao H, Zhang T, Huang YH, et al. Lipoxin A(4) attenuates LPS-induced acute lung injury via activation of the ACE2-Ang-(1–7)-Mas axis. Innate Immun. 2018;24(5):285–96.
Article
CAS
Google Scholar
Zhu Y, Xu D, Deng F, Yan Y, Li J, Zhang C, et al. Angiotensin (1–7) attenuates sepsis-induced acute kidney injury by regulating the NF-κB Pathway. Front Pharmacol. 2021;12: 601909.
Article
CAS
Google Scholar
Jayaprakash N, Gajic O, Frank RD, Smischney N. Elevated modified shock index in early sepsis is associated with myocardial dysfunction and mortality. J Crit Care. 2018;43:30–5.
Article
Google Scholar
Pan H, Huang W, Wang Z, Ren F, Luo L, Zhou J, et al. The ACE2-Ang-(1–7)-mas axis modulates M1/M2 macrophage polarization to relieve CLP-induced inflammation via TLR4-mediated NF-кb and MAPK pathways. J Inflamm Res. 2021;14:2045–60.
Article
Google Scholar
Ruan W, Ji X, Qin Y, Zhang X, Wan X, Zhu C, et al. Harmine alleviated sepsis-induced cardiac dysfunction by modulating macrophage polarization via the STAT/MAPK/NF-κB pathway. Front Cell Develop Biol. 2021;9: 792257.
Article
Google Scholar
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W, et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 2019;24: 101215.
Article
CAS
Google Scholar
Cai ZL, Shen B, Yuan Y, Liu C, Xie QW, Hu TT, et al. The effect of HMGA1 in LPS-induced myocardial inflammation. Int J Biol Sci. 2020;16(11):1798–810.
Article
CAS
Google Scholar
Flameng W, Borgers M, Daenen W, Stalpaert G. Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man. J Thorac Cardiovasc Surg. 1980;79(3):413–24.
Article
CAS
Google Scholar
Wang L, Xie W, Li G, Hu B, Wu W, Zhan L, et al. Lipocalin 10 as a new prognostic biomarker in sepsis-induced myocardial dysfunction and mortality: a pilot study. Mediators Inflamm. 2021;2021:6616270.
Article
Google Scholar
Chen Y, Zhang F, Ye X, Hu JJ, Yang X, Yao L, et al. Association between gut dysbiosis and sepsis-induced myocardial dysfunction in patients with sepsis or septic shock. Front Cell Infect Microbiol. 2022;12: 857035.
Article
CAS
Google Scholar
Lu NF, Jiang L, Zhu B, Yang DG, Zheng RQ, Shao J, et al. Elevated plasma histone H4 levels are an important risk factor in the development of septic cardiomyopathy. Balkan Med J. 2020;37(2):72–8.
CAS
Google Scholar
Wang B, Chen G, Li J, Zeng Y, Wu Y, Yan X. Neutrophil gelatinase-associated lipocalin predicts myocardial dysfunction and mortality in severe sepsis and septic shock. Int J Cardiol. 2017;227:589–94.
Article
Google Scholar
Li Z, Zhang E, Hu Y, Liu Y, Chen B. High serum sTREM-1 correlates with myocardial dysfunction and predicts prognosis in septic patients. Am J Med Sci. 2016;351(6):555–62.
Article
Google Scholar
Chen XS, Wang SH, Liu CY, Gao YL, Meng XL, Wei W, et al. Losartan attenuates sepsis-induced cardiomyopathy by regulating macrophage polarization via TLR4-mediated NF-κB and MAPK signaling. Pharmacol Res. 2022;185: 106473.
Article
CAS
Google Scholar
Carpenter RM, Young MK, Petri WAO, Lyons GR, Gilchrist C, Carey RM, et al. Repressed Ang 1–7 in COVID-19 is inversely associated with inflammation and coagulation. Sphere. 2022;7(4):e0022022.
Google Scholar
Amezcua-Guerra LM, Del Valle L, González-Pacheco H, Springall R, Márquez-Velasco R, Massó F, et al. The prognostic importance of the angiotensin II/angiotensin-(1–7) ratio in patients with SARS-CoV-2 infection. Ther Adv Respir Dis. 2022;16:17534666221122544.
Article
CAS
Google Scholar
Chen Q, Liu J, Wang W, Liu S, Yang X, Chen M, et al. Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1–7)-Mas axis and inhibiting the MAPK signaling pathway. Biomed Pharmacother. 2019;115:108971.
Article
Google Scholar
Xu JY, Chang W, Sun Q, Peng F, Yang Y. Pulmonary midkine inhibition ameliorates sepsis induced lung injury. J Transl Med. 2021;19(1):91.
Article
CAS
Google Scholar
Chen QF, Hao H, Kuang XD, Hu QD, Huang YH, Zhou XY. BML-111, a lipoxin receptor agonist, protects against acute injury via regulating the renin angiotensin-aldosterone system. Prostaglandins Other Lipid Mediat. 2019;140:9–17.
Article
CAS
Google Scholar
Zeng M, Zhang L, Zhang B, Li B, Kan Y, Yang H, et al. Chinese yam extract and adenosine attenuated LPS-induced cardiac dysfunction by inhibiting RAS and apoptosis via the ER-mediated activation of SHC/Ras/Raf1 pathway. Phytomedicine. 2019;61: 152857.
Article
Google Scholar
Zhou Q, Pan X, Wang L, Wang X, Xiong D. The protective role of neuregulin-1: A potential therapy for sepsis-induced cardiomyopathy. Eur J Pharmacol. 2016;788:234–40.
Article
CAS
Google Scholar
Xie S, Qi X, Wu Q, Wei L, Zhang M, Xing Y, et al. Inhibition of 5-lipoxygenase is associated with downregulation of the leukotriene B4 receptor 1/ Interleukin-12p35 pathway and ameliorates sepsis-induced myocardial injury. Free Radical Biol Med. 2021;166:348–57.
Article
CAS
Google Scholar
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, et al. Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered. 2021;12(2):12544–54.
Article
CAS
Google Scholar
Souza LL, Duchene J, Todiras M, Azevedo LC, Costa-Neto CM, Alenina N, et al. Receptor MAS protects mice against hypothermia and mortality induced by endotoxemia. Shock (Augusta, Ga). 2014;41(4):331–6.
Article
CAS
Google Scholar
Doerschug KC, Delsing AS, Schmidt GA, Ashare A. Renin-angiotensin system activation correlates with microvascular dysfunction in a prospective cohort study of clinical sepsis. Critical care (London, England). 2010;14(1):R24.
Article
Google Scholar
Rahimi O, Kirby J, Varagic J, Westwood B, Tallant EA, Gallagher PE. Angiotensin-(1–7) reduces doxorubicin-induced cardiac dysfunction in male and female Sprague-Dawley rats through antioxidant mechanisms. Am J Physiol Heart Circ Physiol. 2020;318(4):H883–94.
Article
CAS
Google Scholar
Luan YY, Yao YM, Xiao XZ, Sheng ZY. Insights into the apoptotic death of immune cells in sepsis. J Interferon Cytokine Res. 2015;35(1):17–22.
Article
CAS
Google Scholar
Ma X, Xu D, Ai Y, Zhao S, Zhang L, Ming G, et al. Angiotensin-(1–7)/Mas signaling inhibits lipopolysaccharide-Induced ADAM17 shedding activity and apoptosis in alveolar epithelial cells. Pharmacology. 2016;97(1–2):63–71.
Article
CAS
Google Scholar
Gopallawa I, Uhal BD. Angiotensin-(1–7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2. Am J Physiol Lung Cell Mol Physiol. 2016;310(3):L240–8.
Article
Google Scholar
Wang Y, Jasper H, Toan S, Muid D, Chang X, Zhou H. Mitophagy coordinates the mitochondrial unfolded protein response to attenuate inflammation-mediated myocardial injury. Redox Biol. 2021;45: 102049.
Article
CAS
Google Scholar
Forte M, Schirone L, Ameri P, Basso C, Catalucci D, Modica J, et al. The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol. 2021;178(10):2060–76.
Article
CAS
Google Scholar
Chen X, Liu Y, Gao Y, Shou S, Chai Y. The roles of macrophage polarization in the host immune response to sepsis. Int Immunopharmacol. 2021;96: 107791.
Article
CAS
Google Scholar
Zhou C, Gao J, Ji H, Li W, Xing X, Liu D, et al. Benzoylaconine Modulates LPS-Induced Responses Through Inhibition of Toll-Like Receptor-Mediated NF-κB and MAPK Signaling in RAW2647 Cells. Inflammation. 2021;44(5):2018–32.
Article
CAS
Google Scholar
Kim SL, Choi HS, Ko YC, Yun BS, Lee DS. 5-Hydroxymaltol derived from beetroot juice through lactobacillus fermentation suppresses inflammatory effect and oxidant stress via regulating NF-kB, MAPKs Pathway and NRF2/HO-1 Expression. Antioxidants (Basel, Switzerland). 2021;10(8):1324.
CAS
Google Scholar
Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520–9.
Article
Google Scholar
Agarwal D, Dange RB, Raizada MK, Francis J. Angiotensin II causes imbalance between pro- and anti-inflammatory cytokines by modulating GSK-3β in neuronal culture. Br J Pharmacol. 2013;169(4):860–74.
Article
CAS
Google Scholar
Qin B, Wang Q, Lu Y, Li C, Hu H, Zhang J, et al. Losartan ameliorates calcium oxalate-induced elevation of stone-related proteins in renal tubular cells by inhibiting NADPH oxidase and oxidative stress. Oxid Med Cell Longev. 2018;2018:1271864.
Article
Google Scholar
Sousa-Lopes A, de Freitas RA, Carneiro FS, Nunes KP, Allahdadi KJ, Webb RC, et al. Angiotensin (1–7) Inhibits Ang II-mediated ERK1/2 Activation by Stimulating MKP-1 Activation in Vascular Smooth Muscle Cells. Int J Mol Cell Med. 2020;9(1):50–61.
CAS
Google Scholar
Zhang F, Li S, Song J, Liu J, Cui Y, Chen H. Angiotensin-(1–7) regulates angiotensin II-induced matrix metalloproteinase-8 in vascular smooth muscle cells. Atherosclerosis. 2017;261:90–8.
Article
CAS
Google Scholar
Wang Z, Huang W, Ren F, Luo L, Zhou J, Huang D, et al. Characteristics of Ang-(1–7)/Mas-mediated amelioration of joint inflammation and cardiac complications in mice with collagen-induced arthritis. Front Immunol. 2021;12: 655614.
Article
CAS
Google Scholar
Yang G, Chu PL, Rump LC, Le TH, Stegbauer J. ACE2 and the homolog collectrin in the modulation of nitric oxide and oxidative stress in blood pressure homeostasis and vascular injury. Antioxid Redox Signal. 2017;26(12):645–59.
Article
CAS
Google Scholar