Frankell AM, Jammula S, Li X, Contino G, Killcoyne S, Abbas S, Perner J, Bower L, Devonshire G, Ococks E, et al. The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic. Nat Genet. 2019;51:506–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lordick F, Janjigian YY. Clinical impact of tumour biology in the management of gastroesophageal cancer. Nat Rev Clin Oncol. 2016;13:348–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krause BJ, Herrmann K, Wieder H, Zum Buschenfelde CM. 18F-FDG PET and 18F-FDG PET/CT for assessing response to therapy in esophageal cancer. J Nucl Med. 2009;50:89S-96S.
Article
CAS
PubMed
Google Scholar
de Geus-Oei L, Krieken JHJM, Aliredjo RP, Krabbe PFM, Frielink C, Verhagen AFT, Boerman OC, Oyen WJG. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer. 2007;55:79–87.
Article
PubMed
Google Scholar
Hofheinz F, Li Y, Steffen IG, Lin Q, Lili C, Hua W, van den Hoff J, Zschaeck S. Confirmation of the prognostic value of pretherapeutic tumor SUR and MTV in patients with esophageal squamous cell carcinoma. Eur J Nucl Med Mol. 2019;I(46):1485–94.
Article
CAS
Google Scholar
Lim CH, Park YJ, Shin M, Cho YS, Choi JY, Lee KH, Hyun SH. Tumor SUVs on 18F-FDG PET/CT and Aggressive Pathological Features in Esophageal Squamous Cell Carcinoma. Clin Nucl Med. 2020;45:8.
Article
Google Scholar
Antunovic L, Gallivanone F, Sollini M, Sagona A, Invento A, Manfrinato G, Kirienko M, Tinterri C, Chiti A, Castiglioni I. [18F]FDG PET/CT features for the molecular characterization of primary breast tumors. Eur J Nucl Med Mol. 2017;I(44):1945–54.
Article
CAS
Google Scholar
Brenner W, Friedrich RE, Gawad KA, Hagel C, von Deimling A, de Wit M, Buchert R, Clausen M, Mautner VF. Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol. 2006;I(33):428–32.
Article
Google Scholar
Chen R, Zhou X, Liu J, Huang G. Relationship 18 F-FDG PET/CT Findings and HER2 Expression in Gastric Cancer. J Nucl Med. 2016;57:1040–4.
Article
CAS
PubMed
Google Scholar
Zhou L, Yuan L, Gao Y, Liu X, Dai Q, Yang J, Pei Z. Nucleophosmin 1 overexpression correlates with 18F-FDG PET/CT metabolic parameters and improves diagnostic accuracy in patients with lung adenocarcinoma. Eur J Nucl Med Mol. 2021;I(48):904–12.
Article
CAS
Google Scholar
Yang JW, Yuan LL, Gao Y, Liu XS, Wang YJ, Zhou LM, Kui XY, Li XH, Ke CB, Pei ZJ. (18)F-FDG PET/CT metabolic parameters correlate with EIF2S2 expression status in colorectal cancer. J Cancer. 2021;12:5838–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Yuan L, Gao Y, Zhou L, Yang J, Pei Z. Overexpression of METTL3 associated with the metabolic status on 18F-FDG PET/CT in patients with Esophageal Carcinoma. J Cancer. 2020;11:4851–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weis F, Giudice E, Churcher M, Jin L, Hilcenko C, Wong CC, Traynor D, Kay RR, Warren AJ. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol. 2015;22:914–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brina D, Grosso S, Miluzio A, Biffo S. Translational control by 80S formation and 60S availability: The central role of eIF6, a rate limiting factor in cell cycle progression and tumorigenesis. Cell Cycle. 2014;10:3441–6.
Article
CAS
Google Scholar
Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S. Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature. 2008;455:684–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miluzio A, Beugnet A, Grosso S, Brina D, Mancino M, Campaner S, Amati B, de Marco A, Biffo S. Impairment of Cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. Cancer Cell. 2011;19:765–75.
Article
CAS
PubMed
Google Scholar
Gantenbein N, Bernhart E, Anders I, Golob-Schwarzl N, Krassnig S, Wodlej C, Brcic L, Lindenmann J, Fink-Neuboeck N, Gollowitsch F, et al. Influence of eukaryotic translation initiation factor 6 on non-small cell lung cancer development and progression. Eur J Cancer. 2018;101:165–80.
Article
CAS
PubMed
Google Scholar
Flavin RJ, Smyth PC, Finn SP, Laios A, O’Toole SA, Barrett C, Ring M, Denning KM, Li J, Aherne ST, et al. Altered eIF6 and Dicer expression is associated with clinicopathological features in ovarian serous carcinoma patients. Mod Pathol. 2008;21:676–84.
Article
CAS
PubMed
Google Scholar
Lin J, Yu X, Xie L, Wang P, Li T, Xiao Y, Zhou J, Peng S, Huang J, Luo Y, et al. eIF6 Promotes Colorectal Cancer Proliferation and Invasion by Regulating AKT-Related Signaling Pathways. J Biomed Nanotechnol. 2019;15:1556–67.
Article
CAS
PubMed
Google Scholar
Sun L, Liu S, Wang X, Zheng X, Chen Y, Shen H. eIF6 promotes the malignant progression of human hepatocellular carcinoma via the mTOR signaling pathway. J Transl Med. 2021;19:8.
Article
CAS
Google Scholar
Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen PK, Viero G, Tebaldi T, Offenhäuser N, Rozman J, Rathkolb B, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:98.
Article
CAS
Google Scholar
Scagliola A, Miluzio A, Ventura G, Oliveto S, Cordiglieri C, Manfrini N, Cirino D, Ricciardi S, Valenti L, Baselli G, et al. Targeting of eIF6-driven translation induces a metabolic rewiring that reduces NAFLD and the consequent evolution to hepatocellular carcinoma. Nat Commun. 2021;12:8.
Article
CAS
Google Scholar
Li Y, Lu Z, Che Y, Wang J, Sun S, Huang J, Mao S, Lei Y, Chen Z, He J. Immune signature profiling identified predictive and prognostic factors for esophageal squamous cell carcinoma. Oncoimmunology. 2017;6: e1356147.
Article
PubMed
PubMed Central
Google Scholar
Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Baba H. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 2020;111:3132–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manfrini N, Ricciardi S, Miluzio A, Fedeli M, Scagliola A, Gallo S, Adler T, Busch DH, Gailus-Durner V, Fuchs H, et al. Data on the effects of eIF6 downmodulation on the proportions of innate and adaptive immune system cell subpopulations and on thymocyte maturation. Data Brief. 2017;14:653–8.
Article
PubMed
PubMed Central
Google Scholar
Golob-Schwarzl N, Puchas P, Gogg-Kamerer M, Weichert W, Göppert B. New Pancreatic Cancer Biomarkers eIF1, eIF2D, eIF3C and eIF6 Play a Major Role in Translational Control in Ductal Adenocarcinoma. Anticancer Res. 2020;40:3109–18.
Article
CAS
PubMed
Google Scholar
Lau CM, Adams NM, Geary CD, Weizman O, Rapp M, Pritykin Y, Leslie CS, Sun JC. Epigenetic control of innate and adaptive immune memory. Nat Immunol. 2018;19:963–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy—immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13:195–207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarikaya I, Sarikaya A. Assessing PET Parameters in Oncologic 18F-FDG Studies. J Nucl Med Technol. 2020;48:278–82.
Article
PubMed
Google Scholar
Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA, Galbraith SM. Repeatability of 18F-FDG PET in a Multicenter Phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med. 2009;50:1646–54.
Article
CAS
PubMed
Google Scholar
Nagy D, Munkácsy G, Gyrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep-Uk. 2020;11:6047.
Article
CAS
Google Scholar
Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.
Article
PubMed
PubMed Central
Google Scholar
Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95.
Article
CAS
PubMed
Google Scholar
Ru B, Ngar WC, Tong Y, Zhong JY, Zhong S, Wu WC, Chu KC, Yiu WC, Ying LC, Chen I. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;89:20.
Google Scholar
Finch AJ, Hilcenko C, Basse N, Drynan LF, Goyenechea B, Menne TF, Gonzalez FA, Simpson P, D’Santos CS, Arends MJ, et al. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev. 2011;25:917–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Cui Y, Li X, Du B, Li Y. Prognostic Significance of 18F-FDG PET/CT Metabolic Parameters and Tumor Galectin-1 Expression in patients with surgically resected lung adenocarcinoma. Clin Lung Cancer. 2019;20:420–8.
Article
CAS
PubMed
Google Scholar
Toledano MN, Desbordes P, Banjar A, Gardin I, Vera P, Ruminy P, Jardin F, Tilly H, Becker S. Combination of baseline FDG PET/CT total metabolic tumour volume and gene expression profile have a robust predictive value in patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45:680–8.
Article
CAS
PubMed
Google Scholar
Lee SH, Ha S, An HJ, Lee JS, Han W, Im S, Ryu HS, Kim WH, Chang JM, Cho N, et al. Association between partial-volume corrected SUVmax and Oncotype DX recurrence score in early-stage, ER-positive/HER2-negative invasive breast cancer. Eur J Nucl Med Mol. 2016;I(43):1574–84.
Article
CAS
Google Scholar
Golob-Schwarzl N, Wodlej C, Kleinegger F, Gogg-Kamerer M, Birkl-Toeglhofer AM, Petzold J, Aigelsreiter A, Thalhammer M, Park YN, Haybaeck J. Eukaryotic translation initiation factor 6 overexpression plays a major role in the translational control of gallbladder cancer. J Cancer Res Clin. 2019;145:2699–711.
Article
CAS
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miluzio A, Oliveto S, Pesce E, Mutti L, Murer B, Grosso S, Ricciardi S, Brina D, Biffo S. Expression and activity of eIF6 trigger malignant pleural mesothelioma growth in vivo. Oncotarget. 2015;6:37471–85.
Article
PubMed
PubMed Central
Google Scholar
Miluzio A, Ricciardi S, Manfrini N, Alfieri R, Oliveto S, Brina D, Biffo S. Translational control by mTOR-independent routes: how eIF6 organizes metabolism. Biochem Soc T. 2016;44:1667–73.
Article
CAS
Google Scholar
Goense L, Ruurda JP, Carter BW, Fang P, Ho L, Meijer GJ, van Hillegersberg R, Hofstetter WL, Lin SH. Prediction and diagnosis of interval metastasis after neoadjuvant chemoradiotherapy for oesophageal cancer using 18F-FDG PET/CT. Eur J Nucl Med Mol. 2018;I(45):1742–51.
Article
Google Scholar
Patel N, Foley KG, Powell AG, Wheat JR, Chan D, Fielding P, Roberts SA, Lewis WG. Propensity score analysis of 18-FDG PET/CT-enhanced staging in patients undergoing surgery for esophageal cancer. Eur J Nucl Med Mol. 2019;I(46):801–9.
Article
CAS
Google Scholar
Mitchell KG, Amini B, Wang Y, Carter BW, Godoy MCB, Parra ER, Behrens C, Villalobos P, Reuben A, Lee JJ, et al. 18F-fluorodeoxyglucose positron emission tomography correlates with tumor immunometabolic phenotypes in resected lung cancer. Cancer Immunol Immunother. 2020;69:1519–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen R, Zhou X, Liu J, Huang G. Relationship between the expression of PD-1/PD-L1 and 18F-FDG uptake in bladder cancer. Eur J Nucl Med Mol. 2019;I(46):848–54.
Article
CAS
Google Scholar
Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB, Abu-Akeel M, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 2018;33:843–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19:1180–91.
Article
CAS
PubMed
Google Scholar
Das A, Sudhaman S, Morgenstern D, Coblentz A, Chung J, Stone SC, Alsafwani N, Liu ZA, Karsaneh OAA, Soleimani S, et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med. 2022;28:125–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin JH, Jeong J, Maher SE, Lee H, Lim J, Bothwell ALM. Colon cancer cells acquire immune regulatory molecules from tumor-infiltrating lymphocytes by trogocytosis. Proc Natl Acad Sci. 2021;118: e2110241118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Masugi Y, Nishihara R, Yang J, Mima K, Da Silva A, Shi Y, Inamura K, Cao Y, Song M, Nowak JA, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2017;66:1463–73.
Article
CAS
PubMed
Google Scholar
Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, Fan J, Zhou W, Qiu S, Zhang Y, et al. Tumor-induced generation of splenic erythroblast-like ter-cells promotes tumor progression. Cell. 2018;173:634–48.
Article
CAS
PubMed
Google Scholar
Tu L, Guan R, Yang H, Zhou Y, Hong W, Ma L, Zhao G, Yu M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int J Cancer. 2020;147:423–39.
Article
CAS
PubMed
Google Scholar
Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ. Anti-TIM3 Antibody Promotes T Cell IFN-γ–mediated antitumor immunity and suppresses established tumors. Cancer Res. 2011;71:3540–51.
Article
CAS
PubMed
Google Scholar
Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Molecular Therapy - Oncolytics. 2021;22:129–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabatos CA, Chakravarti S, Cha E, Schubart A, Sánchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK. Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol. 2003;4:1102–10.
Article
CAS
PubMed
Google Scholar