van Dijk SM, Hallensleben NDL, van Santvoort HC, et al. Acute pancreatitis: recent advances through randomized trials. Gut. 2017;66(11):2024–32. https://doi.org/10.1136/gutjnl-2016-313595.
Article
CAS
PubMed
Google Scholar
Lugea A, Waldron RT, Mareninova OA, et al. Human pancreatic acinar cells: proteomic characterization, physiologic responses, and organellar disorders in ex vivo pancreatitis. Am J Pathol. 2017;187(12):2726–43. https://doi.org/10.1016/j.ajpath.2017.08.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gukovskaya AS, Pandol SJ, Gukovsky I. New insights into the pathways initiating and driving pancreatitis. Curr Opin Gastroenterol. 2016;32(5):429–35. https://doi.org/10.1097/MOG.0000000000000301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lankisch PG, Apte M, Banks PA. Acute pancreatitis [published correction appears in Lancet. 2015;386(10008):2058]. Lancet. 2015;386(9988):85–96. https://doi.org/10.1016/S0140-6736(14)60649-8.
Article
PubMed
Google Scholar
van Santvoort HC, Bakker OJ, Bollen TL, et al. A conservative and minimally invasive approach to necrotizing pancreatitis improves outcome. Gastroenterology. 2011;141(4):1254–63. https://doi.org/10.1053/j.gastro.2011.06.073.
Article
PubMed
Google Scholar
Bang JY, Wilcox CM, Arnoletti JP, et al. Superiority of endoscopic interventions over minimally invasive surgery for infected necrotizing pancreatitis: meta-analysis of randomized trials. Dig Endosc. 2020;32(3):298–308. https://doi.org/10.1111/den.13470.
Article
PubMed
Google Scholar
Schepers NJ, Bakker OJ, Besselink MG, et al. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis. Gut. 2019;68(6):1044–51. https://doi.org/10.1136/gutjnl-2017-314657.
Article
CAS
PubMed
Google Scholar
Pagliari D, Brizi MG, Saviano A, et al. Clinical assessment and management of severe acute pancreatitis: a multi-disciplinary approach in the XXI century. Eur Rev Med Pharmacol Sci. 2019;23(2):771–87. https://doi.org/10.26355/eurrev_201901_16892.
Article
CAS
PubMed
Google Scholar
Wei JW, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37(1):3–9. https://doi.org/10.3892/or.2016.5236.
Article
PubMed
Google Scholar
Miao B, Qi WJ, Zhang SW, et al. miR-148a suppresses autophagy by down-regulation of IL-6/STAT3 signaling in cerulein-induced acute pancreatitis. Pancreatology. 2019;19(4):557–65. https://doi.org/10.1016/j.pan.2019.04.014.
Article
CAS
PubMed
Google Scholar
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–65. https://doi.org/10.1002/jcp.27486.
Article
CAS
PubMed
Google Scholar
Pham H, Rodriguez CE, Donald GW, et al. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem Biophys Res Commun. 2013;439(1):6–11. https://doi.org/10.1016/j.bbrc.2013.08.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Jiang W, Gan Y, et al. The application of exosomal microRNAs in the treatment of pancreatic cancer and its research progress. Pancreas. 2021;50(1):12–6. https://doi.org/10.1097/MPA.0000000000001713.
Article
PubMed
Google Scholar
Yeung YT, Aziz F, Guerrero-Castilla A, et al. Signaling pathways in inflammation and anti-inflammatory therapies. Curr Pharm Des. 2018;24(14):1449–84. https://doi.org/10.2174/1381612824666180327165604.
Article
CAS
PubMed
Google Scholar
Melisi D, Garcia-Carbonero R, Macarulla T, et al. TGFβ receptor inhibitor galunisertib is linked to inflammation- and remodeling-related proteins in patients with pancreatic cancer. Cancer Chemother Pharmacol. 2019;83(5):975–91. https://doi.org/10.1007/s00280-019-03807-4.
Article
CAS
PubMed
Google Scholar
Hunter P. The inflammation theory of disease. The growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment. EMBO Rep. 2012;13(11):968–70. https://doi.org/10.1038/embor.2012.142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang S, Yan W, Wang SE, et al. Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proc Natl Acad Sci USA. 2019;116(25):12416–21. https://doi.org/10.1073/pnas.1811040116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar M, Sahu SK, Kumar R, et al. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell Host Microbe. 2015;17(3):345–56. https://doi.org/10.1016/j.chom.2015.01.007.
Article
CAS
PubMed
Google Scholar
Ding Y, Wang L, Zhao Q, et al. MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-κB signaling pathway. Int J Mol Med. 2019;43(2):779–90. https://doi.org/10.3892/ijmm.2018.4033.
Article
CAS
PubMed
Google Scholar
Zhou W, Su L, Duan X, et al. MicroRNA-21 down-regulates inflammation and inhibits periodontitis. Mol Immunol. 2018;101:608–14. https://doi.org/10.1016/j.molimm.2018.05.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Y, Hui X, Hoo RLC, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 2019;129(2):834–49. https://doi.org/10.1172/JCI123069.
Article
PubMed
PubMed Central
Google Scholar
Ju M, Liu B, He H, et al. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle. 2018;17(16):2001–18. https://doi.org/10.1080/15384101.2018.1509635.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao XJ, Yu HW, Yang YZ, et al. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway [published correction appears in Redox Biol. 2019 Apr;22:101101]. Redox Biol. 2018;18:124–37. https://doi.org/10.1016/j.redox.2018.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Lin Q. MiRNA-495–3p attenuates TNF-α induced apoptosis and inflammation in human nucleus pulposus cells by targeting IL5RA. Inflammation. 2020;43(5):1797–805. https://doi.org/10.1007/s10753-020-01254-5.
Article
CAS
PubMed
Google Scholar
Liang Y, Xie J, Che D, et al. MiR-124-3p helps to protect against acute respiratory distress syndrome by targeting p65. Biosci Rep. 2020;40(5):BSR20192132. https://doi.org/10.1042/BSR20192132.
Article
PubMed
PubMed Central
Google Scholar
Zhang A, Wang G, Jia L, et al. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-κB signaling pathway. Int J Mol Med. 2019;43(1):358–70. https://doi.org/10.3892/ijmm.2018.3980.
Article
CAS
PubMed
Google Scholar
Kim D, Nguyen QT, Lee J, et al. Anti-inflammatory roles of glucocorticoids are mediated by Foxp3+ regulatory T cells via a miR-342-dependent mechanism. Immunity. 2020;53(3):581-596.e5. https://doi.org/10.1016/j.immuni.2020.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long X, Yao X, Jiang Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflamm. 2020;17(1):89. https://doi.org/10.1186/s12974-020-01761-0.
Article
CAS
Google Scholar
Zheng L, Su J, Zhang Z, et al. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep. 2020;10(1):20750. https://doi.org/10.1038/s41598-020-77448-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai G, Cai G, Zhou H, et al. Mesenchymal stem cell-derived exosome miR-542–3p suppresses inflammation and prevents cerebral infarction. Stem Cell Res Ther. 2021;12(1):2. https://doi.org/10.1186/s13287-020-02030-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai N, Wu D, Liang T, et al. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflamm. 2020;17(1):74. https://doi.org/10.1186/s12974-020-01745-0.
Article
CAS
Google Scholar
Wang Y, Shen S, Li Z, et al. MIR-140–5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis. Inflamm Res. 2020;69(1):63–73. https://doi.org/10.1007/s00011-019-01294-0.
Article
CAS
PubMed
Google Scholar
Shang J, Wang L, Tan L, et al. MiR-27a-3p overexpression mitigates inflammation and apoptosis of lipopolysaccharides-induced alveolar epithelial cells by targeting FOXO3 and suppressing the activation of NAPDH/ROS. Biochem Biophys Res Commun. 2020;533(4):723–31. https://doi.org/10.1016/j.bbrc.2020.07.126.
Article
CAS
PubMed
Google Scholar
Heckler M, Hackert T, Hu K, et al. Severe acute pancreatitis: surgical indications and treatment. Langenbecks Arch Surg. 2021;406(3):521–35. https://doi.org/10.1007/s00423-020-01944-6.
Article
PubMed
Google Scholar
Shen Y, Xue C, You G, et al. miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-κB signaling pathway. Exp Ther Med. 2021;22(2):795. https://doi.org/10.3892/etm.2021.10227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Ning X, Cui W, et al. Transforming growth factor (TGF)-β-induced microRNA-216a promotes acute pancreatitis via Akt and TGF-β pathway in mice. Dig Dis Sci. 2015;60(1):127–35. https://doi.org/10.1007/s10620-014-3261-9.
Article
CAS
PubMed
Google Scholar
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. https://doi.org/10.1101/cshperspect.a001651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins ND. The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 2012;12(2):121–32. https://doi.org/10.1038/nrc3204.
Article
CAS
PubMed
Google Scholar
Jin HZ, Yang XJ, Zhao KL, et al. Apocynin alleviates lung injury by suppressing NLRP3 inflammasome activation and NF-κB signaling in acute pancreatitis. Int Immunopharmacol. 2019;75:105821. https://doi.org/10.1016/j.intimp.2019.105821.
Article
CAS
PubMed
Google Scholar
Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66(4):1151–64. https://doi.org/10.1002/hep.29270.
Article
CAS
PubMed
Google Scholar
Wu Y, Tang Y, Xie S, et al. Chimeric peptide supramolecular nanoparticles for plectin-1 targeted miRNA-9 delivery in pancreatic cancer. Theranostics. 2020;10(3):1151–65. https://doi.org/10.7150/thno.38327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Chen Y, Pan L, et al. Dachengqi decoction attenuates inflammatory response via inhibiting HMGB1 mediated NF-κB and P38 MAPK signaling pathways in severe acute pancreatitis. Cell Physiol Biochem. 2015;37(4):1379–89. https://doi.org/10.1159/000430403.
Article
CAS
PubMed
Google Scholar
Zhao Y, Wang H, Lu M, et al. Pancreatic acinar cells employ miRNAs as mediators of intercellular communication to participate in the regulation of pancreatitis-associated macrophage activation. Mediat Inflamm. 2016;2016:6340457. https://doi.org/10.1155/2016/6340457.
Article
CAS
Google Scholar
Wildi S, Kleeff J, Mayerle J, et al. Suppression of transforming growth factor beta signalling aborts caerulein induced pancreatitis and eliminates restricted stimulation at high caerulein concentrations. Gut. 2007;56(5):685–92. https://doi.org/10.1136/gut.2006.105833.
Article
CAS
PubMed
Google Scholar
Shiga A, Nozaki H, Yokoseki A, et al. Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1. Hum Mol Genet. 2011;20(9):1800–10. https://doi.org/10.1093/hmg/ddr063.
Article
CAS
PubMed
Google Scholar
Rani R, Smulian AG, Greaves DR, et al. TGF-β limits IL-33 production and promotes the resolution of colitis through regulation of macrophage function. Eur J Immunol. 2011;41(7):2000–9. https://doi.org/10.1002/eji.201041135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang H, Tao X, Xia S, et al. Emodin alleviates sodium taurocholate-induced pancreatic acinar cell injury via MicroRNA-30a-5p-mediated inhibition of high-temperature requirement A/transforming growth factor beta 1 inflammatory signaling. Front Immunol. 2017;8:1488. https://doi.org/10.3389/fimmu.2017.01488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang R, Lotze MT, Zeh HJ, et al. Cell death and DAMPs in acute pancreatitis. Mol Med. 2014;20(1):466–77. https://doi.org/10.2119/molmed.2014.00117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoque R, Malik AF, Gorelick F, et al. Sterile inflammatory response in acute pancreatitis. Pancreas. 2012;41(3):353–7. https://doi.org/10.1097/MPA.0b013e3182321500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkatesha SH, Dudics S, Weingartner E, et al. Altered Th17/Treg balance and dysregulated IL-1β response influence susceptibility/resistance to experimental autoimmune arthritis. Int J Immunopathol Pharmacol. 2015;28(3):318–28. https://doi.org/10.1177/0394632015595757.
Article
CAS
PubMed
Google Scholar
Wang D, Tang M, Zong P, et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol. 2018;9:686. https://doi.org/10.3389/fphys.2018.00686.
Article
PubMed
PubMed Central
Google Scholar
Song M, Wang Y, Zhou P, et al. MicroRNA-361–5p aggravates acute pancreatitis by promoting interleukin-17A secretion via impairment of nuclear factor IA-dependent Hes1 downregulation. J Med Chem. 2021;64(22):16541–52. https://doi.org/10.1021/acs.jmedchem.1c01110.
Article
CAS
PubMed
Google Scholar
Dey S, Udari LM, RiveraHernandez P, et al. Loss of miR-29a/b1 promotes inflammation and fibrosis in acute pancreatitis. JCI Insight. 2021;6(19):e149539. https://doi.org/10.1172/jci.insight.149539.
Article
PubMed
PubMed Central
Google Scholar
Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1–2):11–42. https://doi.org/10.1016/j.cell.2018.09.048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kocaturk NM, Akkoc Y, Kig C, et al. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–37. https://doi.org/10.1016/j.ejps.2019.04.011.
Article
CAS
PubMed
Google Scholar
Biczo G, Vegh ET, Shalbueva N, et al. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology. 2018;154(3):689–703. https://doi.org/10.1053/j.gastro.2017.10.012.
Article
CAS
PubMed
Google Scholar
Mei Q, Zeng Y, Huang C, et al. Rapamycin alleviates hypertriglyceridemia-related acute pancreatitis via restoring autophagy flux and inhibiting endoplasmic reticulum stress. Inflammation. 2020;43(4):1510–23. https://doi.org/10.1007/s10753-020-01228-7.
Article
CAS
PubMed
Google Scholar
Wan J, Yang X, Ren Y, et al. Inhibition of miR-155 reduces impaired autophagy and improves prognosis in an experimental pancreatitis mouse model. Cell Death Dis. 2019;10(4):303. https://doi.org/10.1038/s41419-019-1545-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H, Tian J, Li J. MiR-92b-3p ameliorates inflammation and autophagy by targeting TRAF3 and suppressing MKK3-p38 pathway in caerulein-induced AR42J cells. Int Immunopharmacol. 2020;88:106691. https://doi.org/10.1016/j.intimp.2020.106691.
Article
CAS
PubMed
Google Scholar
Villatoro E, Mulla M, Larvin M. Antibiotic therapy for prophylaxis against infection of pancreatic necrosis in acute pancreatitis. Cochrane Database Syst Rev. 2010;2010(5):CD002941. https://doi.org/10.1002/14651858.CD002941.pub3.
Article
PubMed Central
Google Scholar
Garg PK, Meena D, Babu D, et al. Endoscopic versus laparoscopic drainage of pseudocyst and walled-off necrosis following acute pancreatitis: a randomized trial. Surg Endosc. 2020;34(3):1157–66. https://doi.org/10.1007/s00464-019-06866-z.
Article
PubMed
Google Scholar
Mareninova OA, Sung KF, Hong P, et al. Cell death in pancreatitis: caspases protect from necrotizing pancreatitis. J Biol Chem. 2006;281(6):3370–81. https://doi.org/10.1074/jbc.M511276200.
Article
CAS
PubMed
Google Scholar
Ma X, Conklin DJ, Li F, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun. 2015;6:7151. https://doi.org/10.1038/ncomms8151.
Article
PubMed
Google Scholar
Hu MX, Zhang HW, Fu Q, et al. Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis. J Huazhong Univ Sci Technolog Med Sci. 2016;36(2):221–5. https://doi.org/10.1007/s11596-016-1570-2.
Article
CAS
PubMed
Google Scholar
Zhen J, Chen W, Liu Y, et al. Baicalin protects against acute pancreatitis involving JNK signaling pathway via regulating miR-15a. Am J Chin Med. 2021;49(1):147–61. https://doi.org/10.1142/S0192415X21500087.
Article
CAS
PubMed
Google Scholar
Lippi G, Valentino M, Cervellin G. Laboratory diagnosis of acute pancreatitis: in search of the Holy Grail. Crit Rev Clin Lab Sci. 2012;49(1):18–31. https://doi.org/10.3109/10408363.2012.658354.
Article
CAS
PubMed
Google Scholar
Liu P, Xia L, Zhang WL, et al. Identification of serum microRNAs as diagnostic and prognostic biomarkers for acute pancreatitis. Pancreatology. 2014;14(3):159–66. https://doi.org/10.1016/j.pan.2014.03.019.
Article
CAS
PubMed
Google Scholar
Baillargeon JD, Orav J, Ramagopal V, et al. Hemoconcentration as an early risk factor for necrotizing pancreatitis. Am J Gastroenterol. 1998;93(11):2130–4. https://doi.org/10.1111/j.1572-0241.1998.00608.x.
Article
CAS
PubMed
Google Scholar
Mao EQ, Fei J, Peng YB, et al. Rapid hemodilution is associated with increased sepsis and mortality among patients with severe acute pancreatitis. Chin Med J. 2010;123(13):1639–44.
CAS
PubMed
Google Scholar
Kuśnierz-Cabala B, Nowak E, Sporek M, et al. Serum levels of unique miR-551–5p and endothelial-specific miR-126a-5p allow discrimination of patients in the early phase of acute pancreatitis. Pancreatology. 2015;15(4):344–51. https://doi.org/10.1016/j.pan.2015.05.475.
Article
CAS
PubMed
Google Scholar
An F, Zhan Q, Xia M, et al. From moderately severe to severe hypertriglyceridemia induced acute pancreatitis: circulating miRNAs play role as potential biomarkers. PLoS ONE. 2014;9(11):e111058. https://doi.org/10.1371/journal.pone.0111058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu XG, Kang X, Zhan LB, et al. Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury. World J Gastroenterol. 2017;23(41):7440–9. https://doi.org/10.3748/wjg.v23.i41.7440.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li XY, Wang YF, Li N. Circulating microRNA-146a and microRNA-146b exhibit potential to serve as markers for acute pancreatitis management and prognosis. Eur Rev Med Pharmacol Sci. 2020;24(24):12770–80. https://doi.org/10.26355/eurrev_202012_24177.
Article
PubMed
Google Scholar
Hu Y, Yu Y. Dysregulation of miR-192-5p in acute pancreatitis patients with nonalcoholic fatty liver and its functional role in acute pancreatitis progression. Biosci Rep. 2020;40(5):BSR20194345. https://doi.org/10.1042/BSR20194345.
Article
PubMed
PubMed Central
Google Scholar
Shan Y, Kong W, Zhu A, et al. Increased levels of miR-372 correlate with disease progression in patients with hyperlipidemic acute pancreatitis. Exp Ther Med. 2020;19(6):3845–50. https://doi.org/10.3892/etm.2020.8609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao M, Bian E, Li H, et al. Up-regulation of circulating miR-29a in patients with acute pancreatitis and is positively correlated with disease severity and poor prognosis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018;34(10):931–6.
PubMed
Google Scholar
Lu P, Wang F, Wu J, et al. Elevated serum miR-7, miR-9, miR-122, and miR-141 are noninvasive biomarkers of acute pancreatitis. Dis Markers. 2017;2017:7293459. https://doi.org/10.1155/2017/7293459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu L, Han D, Yu D, et al. Circulating blood miR-155 and miR-21 promote the development of acute pancreatitis and can be used to assess the risk stratification of pancreatitis. J Healthc Eng. 2021;2021:2064162. https://doi.org/10.1155/2021/2064162.
Article
PubMed
PubMed Central
Google Scholar
Shi N, Deng L, Chen W, et al. Is microRNA-127 a novel biomarker for acute pancreatitis with lung injury? Dis Markers. 2017;2017:1204295. https://doi.org/10.1155/2017/1204295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XX, Deng LH, Chen WW, et al. Circulating microRNA 216 as a marker for the early identification of severe acute pancreatitis. Am J Med Sci. 2017;353(2):178–86. https://doi.org/10.1016/j.amjms.2016.12.007.
Article
PubMed
Google Scholar
Hines OJ, Pandol SJ. Management of severe acute pancreatitis. BMJ. 2019;367:l6227. https://doi.org/10.1136/bmj.l6227.
Article
PubMed
Google Scholar
Wang Q, Liu S, Han Z. miR-339–3p regulated acute pancreatitis induced by caerulein through targeting TNF receptor-associated factor 3 in AR42J cells. Open Life Sci. 2020;15(1):912–22. https://doi.org/10.1515/biol-2020-0084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge W, Goga A, He Y, et al. miR-802 suppresses acinar-to-ductal reprogramming during early pancreatitis and pancreatic carcinogenesis. Gastroenterology. 2022;162(1):269–84. https://doi.org/10.1053/j.gastro.2021.09.029.
Article
CAS
PubMed
Google Scholar
Zhu SF, Chen WW, Xiang J, et al. Pharmacokinetic and pharmacodynamic comparison of Chinese herbal ointment Liu-he-Dan and micron Liu-he-Dan ointment in rats with acute pancreatitis. Evid Based Complement Alternat Med. 2014;2014:389576. https://doi.org/10.1155/2014/389576.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Guo Y, Li GL. Current status of standardization of traditional Chinese medicine in China. Evid Based Complement Alternat Med. 2016;2016:9123103. https://doi.org/10.1155/2016/9123103.
Article
PubMed
PubMed Central
Google Scholar
Qiong W, Yiping W, Jinlin Y, et al. Chinese medicinal herbs for acute pancreatitis. Cochrane Database Syst Rev. 2005;1:CD003631. https://doi.org/10.1002/14651858.CD003631.pub2.
Article
Google Scholar
Liu MW, Wei R, Su MX, et al. Effects of Panax notoginseng saponins on severe acute pancreatitis through the regulation of mTOR/Akt and caspase-3 signaling pathway by upregulating miR-181b expression in rats. BMC Complement Altern Med. 2018;18(1):51. https://doi.org/10.1186/s12906-018-2118-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng B, Zhao L, Zang X, et al. Quercetin inhibits caerulein-induced acute pancreatitis through regulating miR-216b by targeting MAP2K6 and NEAT1. Inflammopharmacology. 2021;29(2):549–59. https://doi.org/10.1007/s10787-020-00767-7.
Article
CAS
PubMed
Google Scholar
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32(3):252–60. https://doi.org/10.1038/nbt.2816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784. https://doi.org/10.3390/cells8080784.
Article
CAS
PubMed Central
Google Scholar
Qian D, Song G, Ma Z, et al. MicroRNA-9 modified bone marrow-derived mesenchymal stem cells (BMSCs) repair severe acute pancreatitis (SAP) via inducing angiogenesis in rats. Stem Cell Res Ther. 2018;9(1):282. https://doi.org/10.1186/s13287-018-1022-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qian D, Wei G, Xu C, et al. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci Rep. 2017;7(1):581. https://doi.org/10.1038/s41598-017-00629-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li HY, He HC, Song JF, et al. Bone marrow-derived mesenchymal stem cells repair severe acute pancreatitis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Cell Signal. 2020;66:109436. https://doi.org/10.1016/j.cellsig.2019.109436.
Article
CAS
PubMed
Google Scholar
Wu XM, Ji KQ, Wang HY, et al. MicroRNA-339-3p alleviates inflammation and edema and suppresses pulmonary microvascular endothelial cell apoptosis in mice with severe acute pancreatitis-associated acute lung injury by regulating Anxa3 via the Akt/mTOR signaling pathway [retracted in: J Cell Biochem. 2021 Nov;122 Suppl 1:S107]. J Cell Biochem. 2018;119(8):6704–14. https://doi.org/10.1002/jcb.26859.
Article
CAS
PubMed
Google Scholar
He RQ, Li XJ, Liang L, et al. The suppressive role of miR-542–5p in NSCLC: the evidence from clinical data and in vivo validation using a chick chorioallantoic membrane model. BMC Cancer. 2017;17(1):655. https://doi.org/10.1186/s12885-017-3646-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu XM, Ji KQ, Wang HY, et al. microRNA-542–5p protects against acute lung injury in mice with severe acute pancreatitis by suppressing the mitogen-activated protein kinase signaling pathway through the negative regulation of P21-activated kinase 1 [retracted in: J Cell Biochem. 2021 Nov;122 Suppl 1:S117]. J Cell Biochem. 2019;120(1):290–304. https://doi.org/10.1002/jcb.27356.
Article
CAS
PubMed
Google Scholar
Wang T, Jiang L, Wei X, et al. MiR-21–3p aggravates injury in rats with acute hemorrhagic necrotizing pancreatitis by activating TRP signaling pathway. Biomed Pharmacother. 2018;107:1744–53. https://doi.org/10.1016/j.biopha.2018.08.164.
Article
CAS
PubMed
Google Scholar
Yan Z, Zang B, Gong X, et al. MiR-214–3p exacerbates kidney damages and inflammation induced by hyperlipidemic pancreatitis complicated with acute renal injury. Life Sci. 2020;241:117118. https://doi.org/10.1016/j.lfs.2019.117118.
Article
CAS
PubMed
Google Scholar
Rivkin M, Simerzin A, Zorde-Khvalevsky E, et al. Inflammation-induced expression and secretion of microRNA 122 leads to reduced blood levels of kidney-derived erythropoietin and anemia. Gastroenterology. 2016;151(5):999–1010. https://doi.org/10.1053/j.gastro.2016.07.031.
Article
CAS
PubMed
Google Scholar
Han YY, Wang CY, Yang L, et al. Significance of microRNA 216a, 324–5p and 29a expression in peripheral blood in patients with acute pancreatitis and their correlation with liver injury. Zhonghua Yi Xue Za Zhi. 2020;100(27):2126–31. https://doi.org/10.3760/cma.j.cn112137-20200103-00016.
Article
CAS
PubMed
Google Scholar