Cell culture
All cells were cultured in RPMI 1640 medium (Sigma Aldrich, St Louis, MI, USA) with 10% fetal bovine serum (FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and maintained at 37 °C under 5% CO2. PTX-resistant OVCAR-3 (OV_PTX) cells were generated in the laboratory and kindly provided by Dr. GX Xu (Fudan University, China) [23]. OV_PTX cells were derived from parental OVCAR-3 (OV) cells by treating cells with the PTX (Sichuan Taiji Pharm, China) regimen through a gradually increasing PTX dose in RPMI 1640 medium with 10% FBS.
Proliferation assay
Cell proliferation was measured by Cell Counting Kit-8 (CCK-8, Dojindo Molecular Technologies Inc., Shanghai, China). OV and OV_PTX cells were plated in 96-well plates with a density of 5 × 103 cells per well and incubated for 24 h. PTX was added with increasing concentrations from 0.001–10 μmol/mL to cells, which were then incubated for 48 h. The cells were then incubated with 10 μL of CCK-8 per well for 1 h at 37 °C. Absorbance was measured at a wavelength of 450 nm using a Bio-Tek ELX808IU absorbance microplate reader (Bio-Tek Instruments Inc., USA).
Xenograft models
Female BALB/c nude mice (Jiesijie Laboratory Animal Company, Shanghai, China; age, 4–5 weeks; weight, 12–15 g) were used under approved animal care. In vivo experiments were performed in accordance with the guidelines formulated by the Ethics Review Committee of China Animal Experimental System and were approved by the ethics committee of Shanghai Municipal Public Health Clinical Center (No. 2020-A019-01). Twenty nude mice were randomly divided into the OV group and OV_PTX group (n = 10 in each group). Briefly, 5 × 106 OV or OV_PTX cells/mouse were suspended in serum-free medium, and 0.1 mL of the cell suspension was injected subcutaneously in the right anterior limb. Mice were monitored daily and weighted every two days. Tumor size was measured with a caliper every two days for the greatest longitudinal diameter (length) and greatest transverse diameter (width). Volume was calculated using the modified elliptical formula (length × width2)/2 [24]. Tumors were allowed to grow for 19 days after injection until a diameter of approximately 1.0 cm was measured, which were suitable for in vivo 1H-MRS. One mouse in the OV_PTX group died before imaging.
In vivo 1H-MRS
Mice with OV or OV_PTX tumors were anesthetized with isoflurane (1.5–2%) in oxygen (1 L/min) and imaged in the prone position in a 7.0 T Biospec small-animal MRI scanner (Bruker Corporation, Billerica, MA, USA). The imaging protocol included the following sequences:
-
1.
T2-weighted rapid acquisition relaxation enhance: time of echo, 35 ms; time of repetition, 2500 ms; slice thickness, 0.4 mm; field of view, 20 × 20 mm; matrix, 256 × 256; and number of averaged scans, 8.
-
2.
Single voxel point-resolved spectroscopy 1H-MRS: time of echo, 16 ms; time of repetition, 2500 ms; voxel size, 1.5 × 1.5 × 1.5 mm; number of averaged scans, 128; and scan time, 5 min 20 s.
The tumors were scanned on the transverse, coronal and sagittal planes using the T2 rapid acquisition relaxation enhance sequence for the three-dimensional positioning of 1H-MRS. Metabolite spectral fitting was performed using LCModel Version 6.3-0I, with a basis set provided by the LCModel software for a 7.0 T Bruker MRI scanner with time of echo = 16 ms [25]. Relative metabolite concentrations and their uncertainties were estimated by fitting the spectrum to a linear combination of basis spectra of each individual metabolite. The unsuppressed water spectrum was used to normalize the initial fit to generate a first estimate of metabolite concentration by scaling the relative areas and chemical shifts across the two sets of spectra. The spectral range for the analysis was set to 0.2–4.0 ppm to contain most peaks of interest: alanine (Ala), aspartate (Asp), creatine (Cr), phosphocreatine (PCr), glycerophosphocholine (GPC), phosphocholine (PC), inositol (Ins), lactate (Lac), taurine (Tau), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), macromolecules (MM) 09, lipid (Lip) 09, Lip 13a, Lip 13b, MM12, MM14, MM20, Lip 20. The numbers after MM and Lip indicated the approximate chemical shift in ppm of the peaks; e.g., MM 14 for the macromolecule peak near 1.4 ppm. Only metabolite concentrations quantified with Cramèr-Rao lower bounds below 20% on average were included in further analysis [26]. With software (Fire Voxel, CAI2R, New York University, NY, USA), the region of interest was manually delineated slice-by-slice along the contour of the tumor on the transverse T2-weighted images (T2WIs) (M.X.L. and L.J., with 5 and 7 years of experience in gynecological imaging, respectively). Then, the volume of interest was postprocessed automatically for tumor anatomic measurement.
Sample collection and histopathology
In order to acquire a true map of in vivo metabolism, tumors were collected as soon as possible after MRI scanning with mice euthanized by excess CO2 exposure. Tumor samples were divided into multiple parts. One part was fixed with 4% paraformaldehyde and then embedded in paraffin and stained using hematoxylin and eosin for histological feature analysis. The other parts of tumor samples were flash-frozen in liquid nitrogen and were used for metabolomics analysis, proteomics analysis and quantitative RT-PCR, respectively.
Metabolomics analysis
Tumor samples (100 mg) were extracted for analysis using by liquid chromatography-mass spectrometry (LC–MS). Pooled quality control samples were also prepared by combining the same volume of each sample and repeatedly injected during the assay to monitor instrumental stability and avoid systematic bias. The acquired LC–MS data was pretreated using XCMS software. Features with < 50% of quality control samples or 80% of test samples were removed, and values for missing peaks were extrapolated with the k‐nearest neighbor algorithm to further improve the data quality. The group datasets were normalized before analysis. The detailed parameters were described in Additional file 1: Supplementary of metabolomics analysis method. Statistical analysis included principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), Student’s t-test and fold change analysis. The P value obtained by Student’s t‐test was then adjusted for multiple tests using a false discovery rate-reducing process (Benjamini-Hochberg) and was used to determine differential metabolites. The following criteria were used to screen the differential metabolites: variable importance in projection (VIP) sores ≥ 1, P value < 0.05, and fold change ≥ 2 or ≤ 0.5. Pathway enrichment analysis of differential metabolites was performed using the Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst 3.0 (Montre al, QC, Canada) databases. Bioinformatic analysis was performed using the OmicStudio tools at https://www.omicstudio.cn/tool.
Proteomics analysis
Samples were lysed in sodium dodecyl sulfate buffer and homogenized. Proteins were digested overnight by trypsin (Promega, Madison, WI, USA), and the resulted peptides were collected as a filtrate. Pooled peptides from all samples were fractionated by reversed-phase chromatography using an Agilent 1260 infinity II HPLC (SCIEX, Framingham, MA, USA). The detailed parameters were described in Additional file 2: Supplementary of proteomics analysis method. Raw data of data-independent acquisition were processed and analyzed by Spectronaut 14.6 (Biognosys AG, Switzerland) with default settings. Data extraction was determined by Spectronaut X based on extensive mass calibration. Precursors which passed the filters were used for quantification.The average top 3 filtered peptides that passed the 1% Q- value cutoff (false discovery rate) were used to calculate the major group quantities. Significantly enriched proteins were selected using Student’s t-test.
Quantitative RT-PCR
Total RNA was extracted from tumors using Trizol reagent and reverse-transcribed into cDNA with 500 ng of total RNA using the PrimeScript RT reagent kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Gene expression assays were performed on an ABI StepOnePlus Real-Time PCR instrument (Thermo Fisher Scientific, Waltham, MA, USA). The following custom designed primers were purchased from GENEWIZ Inc. (Suzhou, China): GPCPD1, GTTTTTGCGATATGTGGAAGCTG (forward) and AGCGATACTGAACTGATACTCCT (reverse); GDE1, GACTGGGCGATTGTGTGATTT (forward) and AGGGTAGGGATCTTTTCATCAGG (reverse); and β-Actin, GCCGTGGTGGTGAAGCTGT (forward) and ACCCACACTGTGCCCATCTA (reverse).
Statistical analysis
Continuous variables with normal distribution were presented as the mean ± standard deviation; nonnormally distributed variables were presented as the median (interquartile range). All statistical analyses were performed with SPSS (version 23.0, SPSS, Inc., Chicago, IL, USA). The data were analyzed using Student’s t-test or Mann–Whitney U test. Receiver operating characteristic curve analysis (MedCalc Software, Mariakerke, Belgium) was used to assess the diagnostic performance and determine a cutoff value for the significant metabolites from 1H-MRS to differentiate the PTX-sensitive and PTX-resistant tumors. The correlation of metabolites between in vivo 1H-MRS and ex vivo metabolomics analysis and the correlations between protein expressions and metabolite levels were analyzed using Spearman correlation tests. Differences with a P < 0.05 were considered statistically significant.