Dracham CB, Shankar A, Madan R. Radiation induced secondary malignancies: a review article. Radiat Oncol J. 2018;36:85–94. https://doi.org/10.3857/roj.2018.00290.
Article
PubMed
PubMed Central
Google Scholar
Darby S, McGale P, Peto R, Granath F, Hall P, Ekbom A. Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. Br Med J. 2003;326:256–7. https://doi.org/10.1136/bmj.326.7383.256.
Article
Google Scholar
Desai MY, Jellis CL, Kotecha R, Johnston DR, Griffin BP. Radiation-associated cardiac disease: a practical approach to diagnosis and management. JACC Cardiovasc Imaging. 2018;11:1132–49. https://doi.org/10.1016/j.jcmg.2018.04.028.
Article
PubMed
Google Scholar
Denham JW, Hauer-Jensen M. The radiotherapeutic injury—a complex “wound.” Radiother Oncol. 2002;63:129–45. https://doi.org/10.1016/S0167-8140(02)00060-9.
Article
PubMed
Google Scholar
Shimizu Y, Kodama K, Nishi N, Kasagi F, Suyama A, Soda M, et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ. 2010;340:193. https://doi.org/10.1136/bmj.b5349.
Article
Google Scholar
Shimizu Y, Pierce DA, Preston DL, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, part II. Noncancer mortality: 1950–1990. Radiat Res. 1999;152:374–89. https://doi.org/10.2307/3580222.
Article
PubMed
CAS
Google Scholar
Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 2003;160:381–407. https://doi.org/10.1667/RR3049.
Article
PubMed
CAS
Google Scholar
Kashcheev VV, Chekin SY, Karpenko SV, Maksioutov MA, Menyaylo AN, Tumanov KA, et al. Radiation risk of cardiovascular diseases in the cohort of russian emergency workers of the chernobyl accident. Health Phys. 2017;113:23–9. https://doi.org/10.1097/HP.0000000000000670.
Article
PubMed
CAS
Google Scholar
Sardaro A, Petruzzelli MF, D’Errico MP, Grimaldi L, Pili G, Portaluri M. Radiation-induced cardiac damage in early left breast cancer patients: risk factors, biological mechanisms, radiobiology, and dosimetric constraints. Radiother Oncol. 2012;103:133–42. https://doi.org/10.1016/j.radonc.2012.02.008.
Article
PubMed
Google Scholar
Heidenreich PA, Schnittger I, Strauss HW, Vagelos RH, Lee BK, Mariscal CS, et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. J Clin Oncol. 2007;25:43–9. https://doi.org/10.1200/JCO.2006.07.0805.
Article
PubMed
Google Scholar
Cella L, Oh JH, Deasy JO, Palma G, Liuzzi R, D’Avino V, et al. Predicting radiation-induced valvular heart damage. Acta Oncol (Madr). 2015;54:1796–804. https://doi.org/10.3109/0284186X.2015.1016624.
Article
CAS
Google Scholar
Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12:447–53. https://doi.org/10.1200/JCO.1994.12.3.447.
Article
PubMed
CAS
Google Scholar
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi Z, Xiaocheng W, et al. Oxidative stress in radiation-induced cardiotoxicity. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/3579143.
Article
PubMed
PubMed Central
Google Scholar
De Moor JS, Mariotto AB, Parry C, Alfano CM, Padgett L, Kent EE, et al. Cancer survivors in the united states: prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol Biomarkers Prev. 2013;22:561–70. https://doi.org/10.1158/1055-9965.EPI-12-1356.
Article
PubMed
PubMed Central
Google Scholar
Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66:309–25. https://doi.org/10.3322/caac.21341.
Article
PubMed
Google Scholar
Gujral DM, Lloyd G, Bhattacharyya S. Radiation-induced valvular heart disease. Heart. 2016;102:269–76. https://doi.org/10.1136/heartjnl-2015-308765.
Article
PubMed
CAS
Google Scholar
Stewart FA, Seemann I, Hoving S, Russell NS. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol. 2013;25:617–24. https://doi.org/10.1016/j.clon.2013.06.012.
Article
CAS
Google Scholar
Maraldo MV, Giusti F, Vogelius IR, Lundemann M, van der Kaaij MAE, Ramadan S, et al. Cardiovascular disease after treatment for Hodgkin’s lymphoma: an analysis of nine collaborative EORTC-LYSA trials. Lancet Haematol. 2015;2:e492-502. https://doi.org/10.1016/S2352-3026(15)00153-2.
Article
PubMed
Google Scholar
Kuo AH, Ancukiewicz M, Kozak KR, Yock TI, Padera TP. Cardiac and inflammatory biomarkers do not correlate with volume of heart or lung receiving radiation. Radiat Oncol. 2015. https://doi.org/10.1186/s13014-014-0324-1.
Article
PubMed
PubMed Central
Google Scholar
Dicarlo AL, Tamarat R, Rios CI, Benderitter M, Czarniecki CW, Allio TC, et al. Cellular therapies for treatment of radiation injury: report from a NIH/NIAID and IRSN workshop. Radiat Res. 2017;188:e54-75. https://doi.org/10.1667/RR14810.1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Slezak J, Kura B, Babal P, Barancik M, Ferko M, Frimmel K, et al. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol. 2017;95:1190–203. https://doi.org/10.1139/cjpp-2017-0121.
Article
PubMed
CAS
Google Scholar
Azimzadeh O, Azizova T, Merl-Pham J, Subramanian V, Bakshi MV, Moseeva M, et al. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers. Oncotarget. 2017;8:9067–78. https://doi.org/10.18632/oncotarget.10424.
Article
PubMed
Google Scholar
Zhang Y, Luo G, Zhang Y, Zhang M, Zhou J, Gao W, et al. Critical effects of long non-coding RNA on fibrosis diseases. Exp Mol Med. 2018;50:428. https://doi.org/10.1038/emm.2017.223.
Article
CAS
Google Scholar
Vliegenthart ADB, Shaffer JM, Clarke JI, Peeters LEJ, Caporali A, Bateman DN, et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci Rep. 2015. https://doi.org/10.1038/srep15501.
Article
PubMed
PubMed Central
Google Scholar
Matkovich SJ, Edwards JR, Grossenheider TC, De Guzman SC, Dorn GW. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA. 2014;111:12264–9. https://doi.org/10.1073/pnas.1410622111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J. 2015;36:353–68. https://doi.org/10.1093/eurheartj/ehu180.
Article
PubMed
CAS
Google Scholar
Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129:1009–21. https://doi.org/10.1161/CIRCULATIONAHA.113.003863.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sallam T, Sandhu J, Tontonoz P. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res. 2018;122:155–66. https://doi.org/10.1161/CIRCRESAHA.117.311802.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR, et al. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics. 2014. https://doi.org/10.1186/1471-2164-15-460.
Article
PubMed
PubMed Central
Google Scholar
Lin F, Gong X, Yu P, Yue A, Meng Q, Zheng L, et al. Distinct circulating expression profiles of long noncoding RNAs in heart failure patients with ischemic and nonischemic dilated cardiomyopathy. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.01116.
Article
PubMed
PubMed Central
Google Scholar
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39:2704–16. https://doi.org/10.1093/eurheartj/ehx165.
Article
PubMed
CAS
Google Scholar
Papait R, Kunderfranco P, Stirparo GG, Latronico MVG, Condorelli G. Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res. 2013;6:876–83. https://doi.org/10.1007/s12265-013-9488-6.
Article
PubMed
PubMed Central
Google Scholar
Metheetrairut C, Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 2013;23:12–9. https://doi.org/10.1016/j.gde.2013.01.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wojciechowska A, Braniewska A, Kozar-Kamińska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med. 2017;26:865–74. https://doi.org/10.17219/acem/62915.
Article
PubMed
Google Scholar
Wang K, Long B, Li N, Li L, Liu CY, Dong YH, et al. MicroRNA-2861 regulates programmed necrosis in cardiomyocyte by impairing adenine nucleotide translocase 1 expression. Free Radic Biol Med. 2016;91:58–67. https://doi.org/10.1016/j.freeradbiomed.2015.11.031.
Article
PubMed
CAS
Google Scholar
Jakob P, Landmesser U. Role of microRNAs in stem/progenitor cells and cardiovascular repair. Cardiovasc Res. 2012;93:614–22. https://doi.org/10.1093/cvr/cvr311.
Article
PubMed
CAS
Google Scholar
Zhang X, Mao H, Chen J, Wen S, Li D, Ye M, et al. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway. Biochem Biophys Res Commun. 2013;431:404–8. https://doi.org/10.1016/j.bbrc.2012.12.157.
Article
PubMed
CAS
Google Scholar
Terradas M, Martín M, Repullès J, Huarte M, Genescà A. Distinct sets of lncRNAs are differentially modulated after exposure to high and low doses of X rays. Radiat Res. 2016;186:549–58. https://doi.org/10.1667/RR14377.1.
Article
PubMed
CAS
Google Scholar
Nie J, Peng C, Pei W, Zhu W, Zhang S, Cao H, et al. A novel role of long non-coding RNAs in response to X-ray irradiation. Toxicol Vitr. 2015;30:536–44. https://doi.org/10.1016/j.tiv.2015.09.007.
Article
CAS
Google Scholar
Beer L, Nemec L, Wagner T, Ristl R, Altenburger LM, Ankersmit HJ, et al. Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells. J Radiat Res. 2017;58:201–9. https://doi.org/10.1093/jrr/rrw111.
Article
PubMed
CAS
Google Scholar
Liang X, Zheng S, Cui J, Yu D, Yang G, Zhou L, et al. Alterations of MicroRNA expression in the liver, heart, and testis of mice upon exposure to repeated low-dose radiation. Dose Response. 2018. https://doi.org/10.1177/1559325818799561.
Article
PubMed
PubMed Central
Google Scholar
Palayoor ST, John-Aryankalayil M, Makinde AY, Falduto MT, Magnuson SR, Coleman CN. Differential expression of stress and immune response pathway transcripts and miRNAs in normal human endothelial cells subjected to fractionated or single-dose radiation. Mol Cancer Res. 2014;12:1002–15. https://doi.org/10.1158/1541-7786.MCR-13-0623.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rogers CJ, Lukaszewicz AI, Yamada-Hanff J, Micewicz ED, Ratikan JA, Starbird MA, et al. Identification of miRNA signatures associated with radiation-induced late lung injury in mice. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0232411.
Article
PubMed
PubMed Central
Google Scholar
Aryankalayil MJ, Chopra S, Levin J, Eke I, Makinde A, Das S, et al. Radiation-induced long noncoding RNAs in a mouse model after whole-body irradiation. Radiat Res. 2018;189:251–63. https://doi.org/10.1667/RR14891.1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol. 2016;58:14–25. https://doi.org/10.1016/j.semcdb.2016.01.045.
Article
PubMed
CAS
Google Scholar
Aryankalayil MJ, Chopra S, Makinde A, Eke I, Levin J, Shankavaram U, et al. Microarray analysis of miRNA expression profiles following whole body irradiation in a mouse model. Biomarkers. 2018;23:689–703. https://doi.org/10.1080/1354750X.2018.1479771.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K, et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet. 2016;48:1370–6. https://doi.org/10.1038/ng.3673.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47. https://doi.org/10.1093/nar/gkv007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics. 2007;23:2700–7. https://doi.org/10.1093/bioinformatics/btm412.
Article
PubMed
CAS
Google Scholar
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004. https://doi.org/10.2202/1544-6115.1027.
Article
PubMed
Google Scholar
Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl gene annotation system. Database. 2016. https://doi.org/10.1093/database/baw093.
Article
PubMed
PubMed Central
Google Scholar
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015. https://doi.org/10.7554/eLife.05005.
Article
PubMed
PubMed Central
Google Scholar
Lee WJ, Majumder ZR, Jeoung D, Lee HJ, Kim SH, Bae S, et al. Organ-specific gene expressions in C57BL/6 mice after exposure to low-dose radiation. Radiat Res. 2006;165:562–9. https://doi.org/10.1667/RR3549.1.
Article
PubMed
CAS
Google Scholar
Zeng ZM, Du HY, Xiong L, Zeng XL, Zhang P, Cai J, et al. BRCA1 protects cardiac microvascular endothelial cells against irradiation by regulating p21-mediated cell cycle arrest. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.117342.
Article
PubMed
Google Scholar
Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, et al. GDF 15 is a heart-derived hormone that regulates body growth. EMBO Mol Med. 2017;9:1150–64. https://doi.org/10.15252/emmm.201707604.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park H, Kim CH, Jeong JH, Park M, Kim KS. GDF15 contributes to radiation-induced senescence through the ros-mediated p16 pathway in human endothelial cells. Oncotarget. 2016;7:9634–44. https://doi.org/10.18632/oncotarget.7457.
Article
PubMed
PubMed Central
Google Scholar
Kyung UH, Kim E, Bae CD, Park J. TMAP/CKAP2 is essential for proper chromosome segregation. Cell Cycle. 2009;8:314–24. https://doi.org/10.4161/cc.8.2.7597.
Article
Google Scholar
Zhang S, Wang Y, Chen S, Li J. Silencing of cytoskeleton-associated protein 2 represses cell proliferation and induces cell cycle arrest and cell apoptosis in osteosarcoma cells. Biomed Pharmacother. 2018;106:1396–403. https://doi.org/10.1016/j.biopha.2018.07.104.
Article
PubMed
CAS
Google Scholar
Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, et al. Increased heme levels in the heart lead to exacerbated ischemic injury. J Am Heart Assoc. 2015;4: e002272. https://doi.org/10.1161/JAHA.115.002272.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nie YH, Liu XD, Huang R, Xie DF, Yin WJ, Guan H, et al. Analysis of mRNA expression patterns in peripheral blood cells of 3 patients with cancer after the first fraction of 2 Gy irradiation: an integrated case report and systematic review. Dose Response. 2019. https://doi.org/10.1177/1559325819833474.
Article
PubMed
PubMed Central
Google Scholar
Doğan A. Apelin receptor (Aplnr) signaling promotes fibroblast migration. Tissue Cell. 2019;56:98–106. https://doi.org/10.1016/j.tice.2019.01.003.
Article
PubMed
CAS
Google Scholar
Sawane M, Kidoya H, Muramatsu F, Takakura N, Kajiya K. Apelin attenuates UVB-induced edema and inflammation by promoting vessel function. Am J Pathol. 2011;179:2691–7. https://doi.org/10.1016/j.ajpath.2011.08.024.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li C, He J, Zhong X, Gan H, Xia Y. CX3CL1/CX3CR1 axis contributes to angiotensin II-induced vascular smooth muscle cell proliferation and inflammatory cytokine production. Inflammation. 2018;41:824–34. https://doi.org/10.1007/s10753-018-0736-4.
Article
PubMed
CAS
Google Scholar
Golbus JR, Stitziel NO, Zhao W, Xue C, Farrall M, Mcpherson R, et al. Common and rare genetic variation in CCR2, CCR5, or CX3CR1 and risk of atherosclerotic coronary heart disease and glucometabolic traits. Circ Cardiovasc Genet. 2016;9:250–8. https://doi.org/10.1161/CIRCGENETICS.115.001374.
Article
PubMed
PubMed Central
CAS
Google Scholar
Debo RJ, Lees CJ, Dugan GO, Caudell DL, Michalson KT, Hanbury DB, et al. Late effects of total-body gamma irradiation on cardiac structure and function in male rhesus macaques. Radiat Res. 2016;186:55–64. https://doi.org/10.1667/RR14357.1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farese AM, Cohen MV, Katz BP, Smith CP, Jackson W, Cohen DM, et al. A nonhuman primate model of the hematopoietic acute radiation syndrome plus medical management. Health Phys. 2012;103:367–82. https://doi.org/10.1097/HP.0b013e31825f75a7.
Article
PubMed
CAS
Google Scholar
Plett PA, Sampson CH, Chua HL, Joshi M, Booth C, Gough A, et al. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 2012;103:343–55. https://doi.org/10.1097/HP.0b013e3182667309.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, et al. Ionizing radiation biomarkers in epidemiological studies—an update. Mutat Res Mutat Res. 2017;771:59–84. https://doi.org/10.1016/j.mrrev.2017.01.001.
Article
CAS
Google Scholar
Coleman CN, Eke I, Makinde AY, Chopra S, Demaria S, Formenti SC, et al. Radiation-induced adaptive response: new potential for cancer treatment. Clin Cancer Res. 2020. https://doi.org/10.1158/1078-0432.ccr-20-0572.
Article
PubMed
PubMed Central
Google Scholar
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair. 2016;42:63–71. https://doi.org/10.1016/j.dnarep.2016.04.008.
Article
PubMed
CAS
Google Scholar
Tsuchihara K, Lapin V, Bakal C, Okada H, Brown L, Hirota-Tsuchihara M, et al. Ckap2 regulates aneuploidy, cell cycling, and cell death in a p53-dependent manner. Cancer Res. 2005;65:6685–91. https://doi.org/10.1158/0008-5472.CAN-04-4223.
Article
PubMed
CAS
Google Scholar
Sándor N, Schilling-Tóth B, Kis E, Benedek A, Lumniczky K, Sáfrány G, et al. Growth Differentiation Factor-15 (GDF-15) is a potential marker of radiation response and radiation sensitivity. Mutat Res Toxicol Environ Mutagen. 2015;793:142–9. https://doi.org/10.1016/j.mrgentox.2015.06.009.
Article
CAS
Google Scholar
Rai R, Ghosh AK, Eren M, Mackie AR, Levine DC, Kim SY, et al. Downregulation of the apelinergic axis accelerates aging, whereas its systemic restoration improves the mammalian healthspan. Cell Rep. 2017;21:1471–80. https://doi.org/10.1016/j.celrep.2017.10.057.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shyamasundar S, Ong C, Yung LYL, Dheen ST, Bay BH. miR-128 regulates genes associated with inflammation and fibrosis of rat kidney cells in vitro. Anat Rec. 2018;301:913–21. https://doi.org/10.1002/ar.23763.
Article
CAS
Google Scholar
Principe DR, Diaz AM, Torres C, Mangan RJ, DeCant B, McKinney R, et al. TGFβ engages MEK/ERK to differentially regulate benign and malignant pancreas cell function. Oncogene. 2017;36:4336–48. https://doi.org/10.1038/onc.2016.500.
Article
PubMed
PubMed Central
CAS
Google Scholar
Butz H, Likó I, Czirják S, Igaz P, Khan MM, Zivkovic V, et al. Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J Clin Endocrinol Metab. 2010. https://doi.org/10.1210/jc.2010-0581.
Article
PubMed
Google Scholar
Perez-Añorve IX, Gonzalez-De la Rosa CH, Soto-Reyes E, Beltran-Anaya FO, Del Moral-Hernandez O, Salgado-Albarran M, et al. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol. 2019;13:1249–67. https://doi.org/10.1002/1878-0261.12483.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 2019;9:1673–85. https://doi.org/10.1158/2159-8290.CD-19-0338.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ, et al. The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep. 2019;9:6539. https://doi.org/10.1038/s41598-019-42990-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu XL, Jiang YH, Feng JG, Su D, Chen PC, Mao WM. MicroRNA-17, MicroRNA-18a, and MicroRNA-19a are prognostic indicators in esophageal squamous cell carcinoma. Ann Thorac Surg. 2014;97:1037–45. https://doi.org/10.1016/j.athoracsur.2013.10.042.
Article
PubMed
Google Scholar
Li L, Shi B, Chen J, Li C, Wang S, Wang Z, et al. An E2F1/MiR-17-92 negative feedback loop mediates proliferation of mouse palatal mesenchymal cells. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-05479-7.
Article
PubMed
PubMed Central
Google Scholar
Sharma S, Munger K. Expression of the long noncoding RNA dino in human papillomavirus-positive cervical cancer cells reactivates the dormant TP53 tumor suppressor through ATM/CHK2 signaling. MBio. 2020;11:1–15. https://doi.org/10.1128/mBio.01190-20.
Article
Google Scholar
Shasha D, Harrison LB. Anemia treatment and the radiation oncologist: optimizing patient outcomes. Oncology. 2001;15:1486–91.
PubMed
CAS
Google Scholar
Rowinska Z, Koeppel TA, Sanati M, Schelzig H, Jankowski J, Weber C, et al. Role of the CX3C chemokine receptor CX3CR1 in the pathogenesis of atherosclerosis after aortic transplantation. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0170644.
Article
PubMed
PubMed Central
Google Scholar
Krigsfeld GS, Sanzari JK, Kennedy AR. The effects of proton radiation on the prothrombin and partial thromboplastin times of irradiated ferrets. Int J Radiat Biol. 2012;88:327–34. https://doi.org/10.3109/09553002.2012.652727.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng M, Normolle D, Pan CC, Dawson LA, Amarnath S, Ensminger WD, et al. Dosimetric analysis of radiation-induced gastric bleeding. Int J Radiat Oncol Biol Phys. 2012. https://doi.org/10.1016/j.ijrobp.2012.02.029.
Article
PubMed
PubMed Central
Google Scholar
Jackson IL, Gurung G, Poirier Y, Gopalakrishnan M, Cohen EP, Shea-Donohue T, et al. A New Zealand white rabbit model of thrombocytopenia and coagulopathy following total body irradiation across the dose range to induce the hematopoietic-subsyndrome of acute radiation syndrome. Int J Radiat Biol. 2019. https://doi.org/10.1080/09553002.2019.1668981.
Article
Google Scholar
Cannon MV, van Gilst WH, de Boer RA. Emerging role of liver X receptors in cardiac pathophysiology and heart failure. Basic Res Cardiol. 2016;111:1–17. https://doi.org/10.1007/s00395-015-0520-7.
Article
CAS
Google Scholar
Munetsuna E, Hojo Y, Hattori M, Ishii H, Kawato S, Ishida A, et al. Retinoic acid stimulates 17β-estradiol and testosterone synthesis in rat hippocampal slice cultures. Endocrinology. 2009;150:4260–9. https://doi.org/10.1210/en.2008-1644.
Article
PubMed
CAS
Google Scholar
Francelle L, Galvan L, Gaillard MC, Petit F, Bernay B, Guillermier M, et al. The striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin invivo. Neurobiol Aging. 2015;36:1601.e7-16. https://doi.org/10.1016/j.neurobiolaging.2014.11.014.
Article
CAS
Google Scholar
Zhao Y, Cao F, Yu X, Chen C, Meng J, Zhong R, et al. Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation. RNA Biol. 2018;15:404–12. https://doi.org/10.1080/15476286.2018.1431494.
Article
PubMed
PubMed Central
Google Scholar
Yu X, Zhang Y, Li T, Ma Z, Jia H, Chen Q, et al. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. Nat Commun. 2017. https://doi.org/10.1038/ncomms14016.
Article
PubMed
PubMed Central
Google Scholar
Megeney LA, Kablar B, Perry RLS, Ying C, May L, Rudnicki MA. Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci USA. 1999;96:220–5. https://doi.org/10.1073/pnas.96.1.220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu YH, Hu ZY, Li MH, Li B, Wang ZM, Chen SL. Cardiac hypertrophy is positively regulated by long non-coding RNA PVT1. Int J Clin Exp Pathol. 2015;8:2582–9.
PubMed
PubMed Central
Google Scholar
Wu D, Li Y, Zhang H, Hu X. Knockdown of Lncrna PVT1 enhances radiosensitivity in non-small cell lung cancer by sponging miR-195. Cell Physiol Biochem. 2017;42:2453–66. https://doi.org/10.1159/000480209.
Article
PubMed
CAS
Google Scholar
He Y, Jing Y, Wei F, Tang Y, Yang L, Luo J, et al. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 2018. https://doi.org/10.1038/s41419-018-0265-y.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Zhao J, Guo X, She J, Liu Y. Long non-coding RNA PVT1, A molecular sponge for miR-149, contributes aberrant metabolic dysfunction and inflammation in IL-1β-simulated osteoarthritic chondrocytes. 2018. Biosci Rep. https://doi.org/10.1042/BSR20180576.
Article
PubMed
PubMed Central
Google Scholar
Zheng C, Xiao Y, Li Y, He D. Knockdown of long non-coding RNA PVT1 inhibits the proliferation of raji cells through cell cycle regulation. Oncol Lett. 2019;18:1225–34. https://doi.org/10.3892/ol.2019.10450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiong X, Yuan J, Zhang N, Zheng Y, Liu J, Yang M. Silencing of lncRNA PVT1 by miR-214 inhibits the oncogenic GDF15 signaling and suppresses hepatocarcinogenesis. Biochem Biophys Res Commun. 2020;521:478–84. https://doi.org/10.1016/j.bbrc.2019.10.137.
Article
PubMed
CAS
Google Scholar
Creemers EE, Van Rooij E. Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circ Res. 2016;118:108–18. https://doi.org/10.1161/CIRCRESAHA.115.305242.
Article
PubMed
CAS
Google Scholar
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4. https://doi.org/10.1038/nature07511.
Article
PubMed
CAS
Google Scholar
Lang N, Wang C, Zhao J, Shi F, Wu T, Cao H. Long non-coding RNA BCYRN1 promotes glycolysis and tumor progression by regulating the miR-149/PKM2 axis in non-small-cell lung cancer. Mol Med Rep. 2020;21:1509–16. https://doi.org/10.3892/mmr.2020.10944.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kong Q, Qiu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018;495:1594–600. https://doi.org/10.1016/j.bbrc.2017.12.013.
Article
PubMed
CAS
Google Scholar
Quan J, Pan X, He T, Lin C, Lai Y, Chen P, et al. Tumor suppressor miR-211-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma. Exp Ther Med. 2018;15:4019–28. https://doi.org/10.3892/etm.2018.5908.
Article
PubMed
PubMed Central
Google Scholar
Xia ZY, Hoo Y, Xie PL, Tang SY, Luo XH, Liao EY, et al. Runx2/miR-3960/miR-2861 positive feedback loop is responsible for osteogenic transdifferentiation of vascular smooth muscle cells. Biomed Res Int. 2015;2015: 624037. https://doi.org/10.1155/2015/624037.
Article
PubMed
PubMed Central
CAS
Google Scholar
Filopei J, Frishman W. Radiation-induced heart disease. Cardiol Rev. 2012;20:184–8. https://doi.org/10.1097/CRD.0b013e3182431c23.
Article
PubMed
Google Scholar
Shen L, Li C, Zhang H, Qiu S, Fu T, Xu Y. Downregulation of miR-146a Contributes to cardiac dysfunction induced by the tyrosine kinase inhibitor sunitinib. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.00914.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Song C, Zhou X, Han X, Li J, Wang Z, et al. Mitochondria associated microRNA expression profiling of heart failure. Biomed Res Int. 2017. https://doi.org/10.1155/2017/4042509.
Article
PubMed
PubMed Central
Google Scholar
Liang Y, Hou L, Li L, Li L, Zhu L, Wang Y, et al. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene. 2020;39:469–85. https://doi.org/10.1038/s41388-019-1035-8.
Article
PubMed
CAS
Google Scholar
Zheng S, Guo S, Sun G, Shi Y, Wei Z, Tang Y, et al. Gain of metabolic benefit with ablation of miR-149-3p from subcutaneous adipose tissue in diet-induced obese mice. Mol Ther. 2019;18:194–203. https://doi.org/10.1016/j.omtn.2019.07.024.
Article
CAS
Google Scholar
Pettersen IKN, Tusubira D, Ashrafi H, Dyrstad SE, Hansen L, Liu XZ, et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion. 2019;49:97–110. https://doi.org/10.1016/j.mito.2019.07.009.
Article
PubMed
CAS
Google Scholar
Paredes F, Sheldon K, Lassègue B, Williams HC, Faidley EA, Benavides GA, et al. Poldip2 is an oxygen-sensitive protein that controls PDH and αKGDH lipoylation and activation to support metabolic adaptation in hypoxia and cancer. Proc Natl Acad Sci USA. 2018;115:1789–94. https://doi.org/10.1073/pnas.1720693115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang C, Yuan Y, Wu J, Zhao Y, Gao X, Chen Y, et al. Plin5 deficiency exacerbates pressure overload-induced cardiac hypertrophy and heart failure by enhancing myocardial fatty acid oxidation and oxidative stress. Free Radic Biol Med. 2019;141:372–82. https://doi.org/10.1016/j.freeradbiomed.2019.07.006.
Article
PubMed
CAS
Google Scholar
Ellis JM, Bowman CE, Wolfgang MJ. Metabolic and tissue-specific regulation of Acyl-CoA metabolism. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0116587.
Article
PubMed
PubMed Central
Google Scholar
Franklin MP, Sathyanarayan A, Mashek DG. Acyl-CoA thioesterase 1 (ACOT1) regulates PPARα to couple fatty acid flux with oxidative capacity during fasting. Diabetes. 2017;66:2112–23. https://doi.org/10.2337/db16-1519.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xia C, Dong R, Chen C, Wang H, Wang DW. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality. Biochem Biophys Res Commun. 2015;468:533–40. https://doi.org/10.1016/j.bbrc.2015.10.078.
Article
PubMed
CAS
Google Scholar
Chung KW, Lee EK, Lee MK, Oh GT, Yu BP, Chung HY. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis during aging. J Am Soc Nephrol. 2018;29:1223–37. https://doi.org/10.1681/ASN.2017070802.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu CY, Satapati S, Gui W, Max Wynn R, Sharma G, Lou M, et al. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. J Biol Chem. 2018;293:9604–13. https://doi.org/10.1074/jbc.RA118.002838.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sung MM, Das SK, Levasseur J, Byrne NJ, Fung D, Kim TT, et al. Resveratrol treatment of mice with pressure-overload-induced heart failure improves diastolic function and cardiac energy metabolism. Circ Heart Fail. 2015;8:128–37. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001677.
Article
PubMed
CAS
Google Scholar
Chopra S, Moroni M, Martello S, Bylicky M, May J, Hritzo B, et al. Gene expression profiles from heart, lung and liver samples of total-body-irradiated minipigs: implications for predicting radiation-induced tissue toxicity. Radiat Res. 2020;194:411–30. https://doi.org/10.1667/RADE-20-00123.1.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C, et al. Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J. 2012;33:2360–9. https://doi.org/10.1093/eurheartj/ehr389.
Article
PubMed
CAS
Google Scholar
Goidescu CM, Vida-Simiti LA. The apelin-APJ system in the evolution of heart failure. Clujul Med. 2015;88:3–8. https://doi.org/10.15386/cjmed-380.
Article
PubMed
PubMed Central
Google Scholar
Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, et al. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS ONE. 2012;7: e48619. https://doi.org/10.1371/journal.pone.0048619.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 2002;10:995–1005. https://doi.org/10.1016/S1097-2765(02)00706-2.
Article
PubMed
CAS
Google Scholar
Drevytska T, Gonchar E, Okhai I, Lynnyk O, Mankovska I, Klionsky D, et al. The protective effect of Hif3a RNA interference and HIF-prolyl hydroxylase inhibition on cardiomyocytes under anoxia-reoxygenation. Life Sci. 2018;202:131–9. https://doi.org/10.1016/j.lfs.2018.04.021.
Article
PubMed
CAS
Google Scholar
Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: The Rancho Bernardo Study. J Clin Endocrinol Metab. 2004;89:114–20. https://doi.org/10.1210/jc.2003-030967.
Article
PubMed
CAS
Google Scholar
Filiano AN, Fathallah-Shaykh HM, Fiveash J, Gage J, Cantor A, Kharbanda S, et al. Gene expression analysis in radiotherapy patients and C57BL/6 mice as a measure of exposure to ionizing radiation. Radiat Res. 2011. https://doi.org/10.1667/RR2419.1.
Article
PubMed
Google Scholar