Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature. 2004;432:332–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mesker WE, Junggeburt JM, Szuhai K, de Heer P, Morreau H, Tanke HJ, et al. The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell Oncol. 2007;29:387–98.
PubMed
PubMed Central
Google Scholar
Ishiguro K, Yoshida T, Yagishita H, Numata Y, Okayasu T. Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut. 2006;55:695–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–9.
Article
CAS
PubMed
Google Scholar
De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19:614–8.
Article
Google Scholar
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng H, Feldman I, Rauscher FJ. Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol. 2002;320:629–44.
Article
CAS
PubMed
Google Scholar
Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, Kim J, et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 2006;16:669–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brattas PL, Jonsson ME, Fasching L, Nelander Wahlestedt J, Shahsavani M, Falk R, et al. TRIM28 controls a gene regulatory network based on endogenous retroviruses in human neural progenitor cells. Cell Rep. 2017;18:1–11.
Article
PubMed
Google Scholar
Czerwinska P, Shah PK, Tomczak K, Klimczak M, Mazurek S, Sozanska B, et al. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget. 2017;8:863–82.
Article
PubMed
Google Scholar
Miles DC, de Vries NA, Gisler S, Lieftink C, Akhtar W, Gogola E, et al. TRIM28 is an epigenetic barrier to induced pluripotent stem cell reprogramming. Stem Cells. 2017;35:147–57.
Article
CAS
PubMed
Google Scholar
Venkov CD, Link AJ, Jennings JL, Plieth D, Inoue T, Nagai K, et al. A proximal activator of transcription in epithelial–mesenchymal transition. J Clin Invest. 2007;117:482–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Munoz-Antonia T, Cress WD. Trim28 contributes to EMT via regulation of E-cadherin and N-cadherin in lung cancer cell lines. PLoS ONE. 2014;9:e101040.
Article
PubMed
PubMed Central
Google Scholar
Santos J, Gil J. TRIM28/KAP1 regulates senescence. Immunol Lett. 2014;162:281–9.
Article
CAS
PubMed
Google Scholar
Kijanka G, Hector S, Kay EW, Murray F, Cummins R, Murphy D, et al. Human IgG antibody profiles differentiate between symptomatic patients with and without colorectal cancer. Gut. 2010;59:69–78.
Article
CAS
PubMed
Google Scholar
Fitzgerald S, Sheehan KM, O’Grady A, Kenny D, O’Kennedy R, Kay EW, et al. Relationship between epithelial and stromal TRIM28 expression predicts survival in colorectal cancer patients. J Gastroenterol Hepatol. 2013;28:967–74.
Article
CAS
PubMed
Google Scholar
Qi ZX, Cai JJ, Chen LC, Yue Q, Gong Y, Yao Y, et al. TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol. 2016;126:19–26.
Article
CAS
PubMed
Google Scholar
Wei C, Cheng J, Zhou B, Zhu L, Khan MA, He T, et al. Tripartite motif containing 28 (TRIM28) promotes breast cancer metastasis by stabilizing TWIST1 protein. Sci Rep. 2016;6:29822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017;543(7646):550.
Article
CAS
PubMed
Google Scholar
Kay EW, Barry CW, Whelan D, O’Grady A, Leader MB. Inter-observer variation of p53 immunohistochemistry—an assessment of a practical problem and comparison with other studies. Br J Biomed Sci. 1996;53:101–7.
CAS
PubMed
Google Scholar
Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. Laser capture microdissection. Science. 1996;274:998–1001.
Article
CAS
PubMed
Google Scholar
Espina V, Heiby M, Pierobon M, Liotta LA. Laser capture microdissection technology. Expert Rev Mol Diagn. 2007;7:647–57.
Article
CAS
PubMed
Google Scholar
Fitzgerald S, Sheehan KM, Espina V, O’Grady A, Cummins R, Kenny D, et al. High CerS5 expression levels associate with reduced patient survival and transition from apoptotic to autophagy signalling pathways in colorectal cancer. J Pathol. 2015;1:54–65.
CAS
Google Scholar
Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA, et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics. 2003;3:2085–90.
Article
CAS
PubMed
Google Scholar
Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics. 2005;4:346–55.
Article
CAS
PubMed
Google Scholar
Espina V, Wulfkuhle JD, Calvert VS, Petricoin EF, Liotta LA. Reverse phase protein microarrays for monitoring biological responses, in cancer genomics and proteomics: methods and protocols. Totowa: Humana Press; 2007. p. 321–36.
Google Scholar
Mueller C, Liotta LA, Espina LA. Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol. 2010;4:461–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gulmann C, Sheehan KM, Kay EW, Liotta LA, Petricoin EF 3rd. Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer. J Pathol. 2006;208:595–606.
Article
CAS
PubMed
Google Scholar
Chiechi A, Mueller C, Boehm KM, Romano A, Benassi MS, Picci P, et al. Improved data normalization methods for reverse phase protein microarray analysis of complex biological samples. Biotechniques. 2012;0:1–7. https://doi.org/10.2144/000113926.
PubMed
PubMed Central
Google Scholar
Mueller DC. Reverse phase protein microarray analysis suite. 2013. http://capmm.gmu.edu/rpma-analysis-suite.
Chiechi A, Novello C, Magagnoli G, Petricoin EF 3rd, Deng J, Benassi MS, et al. Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res. 2013;19:2473–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fitzgerald S, Sheehan KM, O’Grady A, Kenny D, O’Kennedy R, Kay EW, et al. Relationship between epithelial and stromal TRIM28 expression predicts survival in colorectal cancer patients. J Gastroenterol Hepatol. 2013;28:967–74.
Article
CAS
PubMed
Google Scholar
Koelink PJ, Sier CFM, Hommes DW, Lamers CBHW, Verspaget HW. Clinical significance of stromal apoptosis in colorectal cancer. Br J Cancer. 2009;101:765–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagglof C, Hammarsten P, Josefsson A, Stattin P, Paulsson J, Bergh A, et al. Stromal PDGFRbeta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival. PLoS ONE. 2010;5:e10747.
Article
PubMed
PubMed Central
Google Scholar
Koelink PJ, Sier CF, Hommes DW, Lamers CB, Verspaget HW. Clinical significance of stromal apoptosis in colorectal cancer. Br J Cancer. 2009;101:765–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogawa E, Takenaka K, Yanagihara K, Kurozumi M, Manabe T, Wada H, et al. Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer. 2004;91:498–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, et al. Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol. 2009;174:2035–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheehan KM, Gulmann C, Eichler GS, Weinstein JN, Barrett HL, Kay EW, et al. Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveals epithelial–mesenchymal transition. Oncogene. 2007;27:323–31.
Article
PubMed
Google Scholar
Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, et al. Identification and characterization of a fibroblast marker: fSP1. J Cell Biol. 1995;130:393–405.
Article
CAS
PubMed
Google Scholar
Yu J-M, Sun W, Hua F, Xie J, Lin H, Zhou D-D, et al. BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells. Cancer Lett. 2015;365:190–200.
Article
CAS
PubMed
Google Scholar
Xiong H, Hong J, Du W, Lin Y-W, Ren L-L, Wang Y-C, et al. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial–mesenchymal transition. J Biol Chem. 2012;287:5819–32.
Article
CAS
PubMed
Google Scholar
Elabd S, Meroni G, Blattner C. TRIMming p53’s anticancer activity. Oncogene. 2016;35(43):5577–84.
Article
CAS
PubMed
Google Scholar
Yue X, Liu J, Feng Z. Tumor suppressor p53 and TRIM family proteins. Cancer Cell Microenviron. 2014;1:4.
Google Scholar
Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, Rauscher FJ, et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005;24:3279–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tovar C, Graves B, Packman K, Filipovic Z, Xia BHM, Tardell C, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Can Res. 2013;73:2587–97.
Article
CAS
Google Scholar
Elsberger B, Fullerton R, Zino S, Jordan F, Mitchell TJ, Brunton VG, et al. Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression. Br J Cancer. 2010;103:899–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nika K, Soldani C, Salek M, Paster W, Gray A, Etzensperger R, et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity. 2010;32:766–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hector S, Chen H, Kijanka G, Murray F, Prehn JH. A reverse-ELISA for the detection of TRIM28/KAP1 serum autoantibodies in colorectal cancer patients. Acta Oncol. 2012;51(3):394–6.
Article
CAS
PubMed
Google Scholar
Satoh M, Chan JY, Ross SJ, Li Y, Yamasaki Y, Yamada H, et al. Autoantibodies to transcription intermediary factor TIF1beta associated with dermatomyositis. Arthritis Res Ther. 2012;14:R79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernet LL, Lewis MA, Rieger KE, Casciola-Rosen L, Fiorentino DF. Ovoid palatal patch in dermatomyositis: a novel finding associated with anti-TIF1gamma (p155) antibodies. JAMA Dermatol. 2016;152:1049–51.
Article
PubMed
PubMed Central
Google Scholar
Sheehan KM, Sheahan K, O’Donoghue DP, et al. THe relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA. 1999;282:1254–7.
Article
CAS
PubMed
Google Scholar
Ristimäki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Can Res. 2002;62:632–5.
Google Scholar
Peng L, Zhou Y, Wang Y, Mou H, Zhao Q. Prognostic significance of COX-2 immunohistochemical expression in colorectal cancer: a meta-analysis of the literature. PLoS ONE. 2013;8:e58891.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kourelis K, Vandoros G, Kourelis T, Papadas T, GoumasG P, Sotiropoulou-Bonikou G. Low COX2 in tumor and upregulation in stroma mark laryngeal squamous cell carcinoma progression. Laryngoscope. 2009;119:1723–9.
Article
CAS
PubMed
Google Scholar