Skip to main content

CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology

Abstract

With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.

Introduction

Micro-RNA (miRNA), as a non-coding small RNA composed of 18–25 nucleotides, which is one of the main elements involved in intracellular post-transcriptional regulation [1, 2]. MiRNA are mainly derived from the tissue cells, exosomes, microenvironment and body fluids. The exosomal miRNAs are ubiquitous and important factors that have a systemic and holistic impact on the body [3,4,5,6]. Therefore, circulating exosomal miRNAs provides them with a condition to involve in the connection and regulation between different diseases. Based on numerous studies, the circulating miRNAs have a significant intrinsic correlation with certain diseases, such as CVD [7], diabetes [8], obesity [9] and tumors [10]. The detection of humoral biomarkers for disease prediction, prevention and personalized treatment is a major development in medicine, so the combination of exosome miRNAs and 3PM can help in the diagnosis of different diseases [11,12,13]. Therefore, we need to conform the principles of 3PM to consider the overall impact between different diseases based on the perspective of miRNAs [14], which may be better to improve the outcomes of intervention and treatment.

CVD-related metabolic dysfunction and chronic stress damage caused by adverse factors (such as high cholesterol, oxidized low-density lipoprotein and hyperglycemia in circulation), which further leads to dysfunction of the circulating compositions [15,16,17,18]. Meanwhile, the CVD progression can lead to changes of miRNAs expression profile in the internal environment of blood, thereby affecting the function of other tissues and organs [15, 16]. CVD and tumor are generally considered to be two chronic diseases with the aging process of tissues and organs, both of which could be linked through the blood circulation system and have close material exchange via the peripheral environment for all times [19,20,21,22] (Fig. 1). Based on this particularity, the detection of biomarkers is particularly important in the prediction and prevention of systemic diseases. The mechanism of the CVD-related diseases impact on tumors belongs to the field of reverse Cardio-Oncology, which can help us understand and recognize the systemic and holistic effects of CVD on distant cancers via circulation [23,24,25,26].

Fig. 1
figure 1

Effects of Cardio-miRNA on tumors via circulation. The Cardio-miRNAs derived from plasma exosomes from obese or aging populations can influence adaptive survival or progression of tumor cells via circulation

Tumor is a relatively heterogeneous tissue in the body that is affected by the distribution or density of blood circulation, which is characterized by frequent material exchange with the environment in the blood. For example, the regulation of tumor microenvironment, tumor immune infiltration and metabolic reprogramming can be affected by cardiovascular disease-related miRNAs (Cardio-miRNAs) [27,28,29]. Meanwhile, the appreciable effects of exosomes-miRNAs on tumor lesions via the circulatory system is a necessary condition for the adaptive survival and progression of tumor cells [29]. Based on these facts, Cardio-miRNA may adversely affect the treatment of tumors and act as a factor to promote tumor miRNAs (Onco-miRNAs), which may lead to poor prognosis of patients with concomitant tumors [30] (Fig. 2 and Table 1).

Fig. 2
figure 2

Cardio-/Onco-miRNA is involved in regulating four signaling pathways for adaptive survival of tumor cells. A Cardio-miRNAs that regulating the PTEN/PI3K/AKT signaling pathway; B cardio-miRNAs that regulating the Wnt/β-Catein signaling pathway; C cardio-miRNAs that regulating the NF-κB signaling pathway; D cardio-miRNAs that regulating the apoptosis signaling pathway

Table 1 Regulation of tumor malignancy corresponding to Cardio-miRNAs

The cellular regulatory processes and mechanisms between miRNAs and CVD have been well studied, but the role of miRNAs as a systemic influence in the synthesis of cross-talk between different diseases is still less. Especially, some typical biomarkers reflected by changes of expression profile for Cardio-miRNAs in circulation. We sorted out the relevant mechanism of Cardio/Onco-miRNAs involved in CVD phenotype on tumor regulation according to the objective background of reverse Cardio-Oncology. These mechanisms will be key to revealing the systemic or holistic effects of CVD on tumors, which is also an important value for the application of precision medicine in the diagnosis and treatment of systemic diseases. These mechanisms might serve as evidence to supplement the importance of predictable diagnosis and personalized treatment between CVD and tumors, and it also provides a reference for developing systemic principles of improve individual outcomes.

The outness of cardio-miRNAs affecting tumor progression via crosstalk

Clinical or basic studies associated with reverse Cardio-Oncology have shown that CVD (e.g. hypertension, heart failure (HF), arteriosclerosis (AS) and myocardial infarction (MI) etc.) can influence distant tumor development by secreting circulating factors, such as the noncoding RNA, cytokines and proteins [23, 26, 31]. The Cardio-miRNAs of cardiovascular dysfunction (e.g., pro-inflammatory and cellular senescence) is an important inducing factor for cardiovascular diseases. [32,33,34] In addition to heart, the function and key role of blood vessels is manifested by vascular endothelial cells [35,36,37]. Since the blood vessels are structures that interact directly with tumors, the vascular endothelial cells are involved in secreting exosome miRNAs when under the condition of the stress of various factors. This mechanism is also an important way for self-regulation of CVD via paracrine [33], which will affects distal disease progression (such as cancer or tumorigenesis) [30, 38]. However, CVD and cancer share many common risk factors and disease mechanisms, and evidence from some clinical studies suggests that CVD is strongly associated with an increased risk of tumorigenesis [such as, colorectal cancer, liver cancer, lung cancer, melanoma, kidney cancer, lymphoma and breast cancer etc. HR (95% CI) > 1.2, P < 0.05] [39,40,41,42,43]. We need to focus on the predictive value of clinical detection of circulating factors in CVD and tumor progression, then develop effective tumor treatment based on the perspective of protecting cardiovascular function.

Evidence from experiments have shown that HF can promote the malignant progression of distal colorectal cancer via circulation [44]. In addition, studies have confirmed that miRNA are important mediators of CVD affecting distant tumor progression from the circulation system [45, 46]. Ye Yuan et al. found that exosome miR-22-3p secreted by cardiomyocytes after myocardial infarction (MI) can promote the malignant progression of distal lung cancer and osteosarcoma, and the main mechanism is the tolerance of tumor cells to ferroptosis [45]. According to these effects of CVD phenotype on tumor, when tumor cells acquire the systemic regulation of relevant signaling pathway from circulating exosome Cardio-miRNAs, it can impact on the malignant process of tumors (Fig. 1) [28]. Therefore, clarifying the physiological regulatory mechanism of tumor cells involved in Cardio-miRNAs is an important basis for the treatment of CVD-associated tumors.

The cardio-miRNAs regulate adaptive survival of tumor cells via four major pathways

Based on the reported contribution of related miRNAs to the regulatory mechanism of malignancy process of tumor cells, combining with the fact that exosome-derived cardio-miRNAs can regulate tumors via circulation, we have deeply analyzed and summarized the different signaling pathways involved in Cardio-miRNAs. The aim is to predict and evaluate the impact on adaptive survival of tumor cells based on the regulatory mechanisms of different pathways and related Cardio-miRNAs as markers. Different expression levels of circulating cardio-miRNAs predict the progression of concomitant tumors and can be used to develop personalized treatment options.

PTEN/PI3K/AKT pathway in tumor

PTEN (Phosphatase and Tensin Homolog), as a tumor suppressor, which has been found inactive in different types of tumor cells. Therefore, the function of PTEN has considered to be one of the important factors affecting the human tumorigenesis [47]. In normal cells, the tumor inhibitory effect of PTEN is mainly achieved by inhibiting the activity of the PI3K/AKT signaling pathway [48]. Meanwhile, the PTEN/PI3K/AKT pathway is involved in regulating important pathways for tumor cell cycle, proliferation and malignant progression, and the expression level and functional activity of PTEN are key to the adaptive survival of tumor cells [49]. Various non-coding RNAs, such as miRNA, lncRNA and cirRNA. etc., have been reported to be involved in the post-transcriptional regulation of PTEN [48]. Exosomes, as a main carrier for miRNAs, is one of the main ways in which the external environment affects tumor cells [50]. MiRNAs affect the function of various organs in the body via blood circulation [4, 51, 52]. Aging and obesity are major factors contributing to the prevalence and high incidence of cardiovascular disease in the population [9, 53]. Therefore, the upregulation of Cardio-miRNAs from circulation may become an important factor affecting middle-aged and elderly or obese tumor patients [30].

Based on the results of the clinical research and public database (TCGA), we have summarized 9 Cardio-miRNAs that are reported targeting at PTEN (Fig. 2A, Table 1), such as miR-19a (GC, HCC, RCC) [54,55,56], miR-21 (UC, HCC, NSCLC, CRC, GBM, ccRCC, RCC, PC) [57,58,59,60,61,62], miR-25 (BC, HCC) [63, 64], miR-92a/b (HCC, OC, GBM) [65,66,67], miR-106b (BC, CRC) [68, 69], miR-130b (BC, NSCLC, OS, RCC) [70,71,72,73], miR-146b (TC) [74], miR-210 (NSCLC) [75] (Fig. 3). In tumor cells, these miRNAs attenuate the inhibitory effect on the PI3K–AKT signaling pathway by directly targeting PTEN. Therefore, PTEN can be regarded as multiple circulating Cardio-miRNA targets and has a wide range of effects on the development of different tumor types, which reflects the role in cross-disease linkage of cardio-miRNAs.

Fig. 3
figure 3

Cardio-miRNAs regulate tumor cells adaptive progression through the PTEN/PI3K/AKT signaling pathway. Bold black indicates key node protein factors involved in the pathway; Bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes Cardio-miRNAs, which may be upregulated in tumor cells; solid arrows indicate promotion or activation; Line segment indicate inhibition)

In addition, there are several other miRNAs indirectly involved in regulating and activating PI3K–AKT signaling axis. For example, miR-27a, by targeting PHLPP2, attenuates the inhibition of PDK1/AKT pathway, thereby promoting the malignancy of GC cells [76]. Similarly, miR-25 attenuates the inhibitory effect on the BTG2/AKT pathway and promotes the proliferation of TNBC cells by targeting BTG2 [77]. In GC cells, miR-92b indirectly attenuates the activation inhibition of PI3K–AKT signaling pathway by targeting Dab2IP, and ultimately promotes tumor progression [78]. MiR146b attenuates the activity inhibition of the PI3K–AKT pathway by targeting TRAF6 and TRIM2, respectively, and promotes the course of RCC patients [79, 80]. The M2 macrophage-derived exosome miR-155 eliminates transduction inhibition of IGF1R by targeting HuR (Human antigen R), after which activating the PI3K–AKT pathway and promoting the development of ccRCC [81]. MiR-106b from hepatoma cells activates the AKT/ERK pathway via targeting GPM6A, resulting in upregulation of DYNC1I1 expression and ultimately promoting HCC cell proliferation [82]. In summary, among the various Cardio-miRNAs associated with the PTEN/PI3K/AKT pathway, the one that directly target PTEN may be important factors resulting in the poor prognosis of concomitant tumors.

Wnt/β-catenin pathway in tumor

Wnt is a ligand protein containing 19 glycoprotein families in mammalian cells [83], which is involved in regulating cell proliferation, adhesion, migration and differentiation through β-catenin-dependent or non-dependent forms [84]. Based on the proliferation pattern and adaptive survival phenotype of tumor cells, it also reflects the abnormal regulatory mechanism of the Wnt/β-Catenin pathway [84]. β-catenin is an adaptor protein that coordinates signal transduction in the Wnt signaling pathway, and it is capable of nuclear translocation to participate in the transcription of EMT-related genes in tumor cells [85]. There are important noncoding RNAs for post-transcriptional regulation of Wnt/β-Catenin pathway, among which miRNAs are ones that involved in regulating malignant progression or adaptive survival of tumors during the Wnt/β-Catenin signal transduction of tumor cells [86,87,88,89].

Among the Cardio-miRNAs, 6 miRNAs were associated with AMI, CAD, HF, HCM, CHD, CAV, MI/R, RCVS and ACS, and were upregulated in circulation (Table 1) [90,91,92,93,94,95,96,97,98,99,100,101,102]. These Cardio-miRNAs can promote the progression of tumor cell malignancy by targeting relevant proteins in the Wnt/β-Catenin pathway (Fig. 2B, Table 1). To be specific, miR-19a can affect the competitive binding of SMAD2 to β-Catenin and promote the EMT process of GC cells via targeting SMAD2 [103]. MiR-27a can promote the malignant metastasis of TNBC cells by targeting GSK-3β to cause more release of β-Catenin and nuclear transposition [104]. MiR-92a and miR-133a targeted DKK1 and DYGB, respectively, which attenuate the inhibitory effect of these two proteins in the process of Wnt signal transduction, thereby promoting the progression and cell metastasis of OC [105, 106]. MiR-130b can target at down regulating the level of PTEN, following by an attenuation of the inhibition in PI3K/AKT/GSK-3β/β-Catenin pathway, and ultimately resulting in the malignant metastasis of NSCLC [73] (Fig. 4). To summarize, Cardio-miRNAs from circulation are involved in the signal transduction of the Wnt/β-Catenin pathway by targeting other cytokines, thereby promoting malignant metastasis or progression of tumors.

Fig. 4
figure 4

Cardio-miRNAs regulate tumor cells adaptive progression through the Wnt/β-Catein signaling pathway. Bold white indicates key node protein factors involved in the pathway; Bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes Cardio-miRNAs, which may be upregulated in tumor cells; solid black arrows indicate promotion or activation; Line segment indicate inhibition; dashed arrows indicate multi-step transfers; White corner arrows indicate gene transcription expression)

NF-κB pathway in tumor

The NF-κB pathway is one of the most important pathways involved in the regulation of cell physiology and pathometabolism, which includes inflammatory response, apoptosis, differentiation, immune response and cell migration [107, 108]. However, in most cases, NF-κB pathway is related to regulating cellular pro-inflammatory responses and survival, such as the adaptive survival regulation of tumor cells. This typical mechanism was proved by the association between low-level pro-inflammatory response and energy metabolism in tumor cells [109, 110]. In most tumor cells, the NF-κB pathway is highly activated and it mediates the malignant proliferation or survival of cells via nuclear metastasis, and ultimately promotes the metastasis and angiogenesis of tumor [108, 111,112,113]. Therefore, the post-transcriptional regulation of NF-κB signaling pathway by tumor cells is a key process for the adaptive survival of tumor cells [113, 114].

Circulation in patients with cardiovascular diseases, such as ICM, CAD, ASO, HF, AMI, ACS, PH, DCM, provides a way for the transmission of inflammatory response [91, 94, 97, 101, 115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130], and the cardio-miRNAs spread through this way may adversely affect the treatment of concomitant tumors during circulating process (Fig. 2C, Table 1). For example, miR-16, miR-150 and miR-423 indirectly activated the NF-κB signaling pathway by targeting LDH-A, FOXO4 and TNIP2, respectively, and promoted the progression of NSCLC and BC [131,132,133]. MiR-21, as a typical noncoding RNA targeting at PTEN, indirectly activates NF-κB signaling in CRC cells via the PI3K–AKT pathway, and ultimately promotes the proliferation of tumor cells [60]. Therefore, it can be speculated that multiple Cardio-miRNA can target PTEN/PI3K/AKT pathway, which may indirectly activate the NF-κB signaling pathway for multi tumor cell types. In addition, miR-155 promotes tumor progression by targeting PPP2CA and indirectly activating the NF-κB signaling pathway via AKT in CRC cells [134]. In the upstream of the NF-κB pathway, miR-146a activates the NF-κB/p65 axis by targeting ligands IRAK1 and TRAF6, ultimately promotes the proliferation of NSCLC cells [135]. As a bidirectional regulator, miR-210 promotes EMT and cell metastasis of PRAD via indirectly activating the NF-κB pathway after targeting SOCS1 and TNIP1 [130] (Fig. 5). In summary, Cardio-miRNAs that targeting PTEN/PI3K/AKT and NF-κB pathway may be typical Onco-miRNAs that promote the progression of different types of tumors. Thus, these Cardio-miRNAs became the keys to the adaptive survival of tumor cells via the cross-combination of these two pathways.

Fig. 5
figure 5

Cardio-miRNAs regulate tumor cells adaptive progression through the NF-κB signaling pathway. Bold black indicates key node protein factors involved in the pathway; bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes Cardio-miRNAs, which may be upregulated in tumor cells; solid black arrows indicate promotion or activation; line segment indicate inhibition; dashed arrows indicate multi-step transfers or activation; white corner arrows indicate gene transcription expression)

Apoptosis pathway in tumor

Apoptosis is also one of the most important ways for cells to regulate self-physiology and metabolism, and the function is to maintain the tissues in a physiological state and to remove damaged cells, such as cells with DNA damage and high oncogenes expression [136,137,138]. In order to achieve adaptive proliferation or survival, tumor cells need to implement inhibition of various signaling pathways involved in apoptosis [139]. Therefore, compared with normal cells, apoptosis signaling activity is deregulated during tumorigenesis, which can be achieved by miRNAs targeting at genes that take parts in pro-apoptotic pathway [140]. In general, miRNAs involved in apoptosis regulation significantly affect the expression levels of pro/anti-apoptotic genes, such as oncogenes, endoplasmic reticulum (ER) stress, and apoptosis-related genes from mitochondrial extramembrane [141].

Studies have reported that the up or down regulation of some Cardio-miRNAs in circulation can correspondingly target at pro-/ anti-apoptotic proteins [90,91,92,93,94, 97, 101, 116, 117, 126, 142,143,144,145,146,147,148,149,150,151] (Fig. 2D, Table 1). For example, miR-19a and miR-19b can target Bim on mitochondria in UC and CRC cells, respectively, and promote tumor cell survival and progression [152, 153]. MiR-21 and miR-25 attenuate the transduction process of apoptosis signaling via targeting exogenous apoptosis-inducing receptors FASL/TRAIL in PRAD and CCA cells, respectively, and ultimately result in chemotherapy resistance of tumor [154, 155]. In addition, miR-21 and miR-126 target p53 in RCC and BALL cells respectively. Besides, miR-106b targeted p21, which ultimately deregulated the activity of p53/p21-cyclinE2-Bax/Casp3 signaling pathway and resulted in chemotherapy resistance or poor prognosis [69, 156,157,158]. When the expression level of miR-133a is downregulated in circulation, it may attenuate the targeted regulation of Bcl-xL/Mcl-1 and enhance the proliferative activity of OS cells [159] (Fig. 6). To sum up, changes in the expression level of some Cardio-miRNAs may affect the therapeutic effect of patients with concomitant tumors via targeting the genes related to the apoptotic pathway.

Fig. 6
figure 6

Cardio-miRNAs regulate tumor cells adaptive progression through the apoptosis signaling pathway. Bold black indicates key node protein factors involved in the pathway; Bold red letters indicate Cardio-miRNAs. (The red bold represents circulation-derived exosomes Cardio-miRNAs, which may be upregulated in tumor cells; solid black arrows indicate promotion or activation; Line segment indicate inhibition; Dashed arrows indicate multi-step activation)

Other cardio-miRNAs in tumor

In addition to the 4 typical regulatory pathways mentioned above, there are also some Cardio-miRNAs that indirectly promote the malignancy progression of tumor cells. We mainly take 3 targets from different pathway as examples to demonstrate the regulatory effect of these Cardio-miRNAs on tumors (Fig. 7, Table 1). MiR-16 and miR-27a regulate the activity of the TGF-β signaling pathway by targeting TFAP2A and SMAD2/SMAD4 respectively, which promote tumor EMT and cell cycle [160, 161]. Furthermore, miR-423 attenuates the inhibition of the TGF-β pathway by targeting GREM2 and results in chemotherapy resistance of patients with PRAD [162]. Meanwhile, TGF-β can promote the expression of miR-208 in HCC cells, which attenuates the inhibitory effect on IFITM1 activity by targeting ARID2, and ultimately promote tumor progression [163] (Fig. 7A). Due to its dual properties and pleiotropy for tumor cells, the TGF-β pathway is a potential target that needs precise control. The mutation, deletion, amplification, methylation of TGF-β and changes of miRNA levels have been proved to have significant effects on TGF-β signaling activity for different cancer types. Therefore, post-transcriptional survival regulation of TGF-β mediated cancer pathways, which provides important molecular perspectives for treatment or research [164, 165].

Fig. 7
figure 7

Regulation of tumor cells adaptive progression by other cardio-miRNAs. A Cardio-miRNA regulates the TGF-β signaling pathway; B cardio-miRNA regulates the AKT signaling pathway; C cardio-miRNA regulates the AP-1 signaling pathway. (The red bold represents circulation-derived exosomes Cardio-miRNAs, which may be upregulated in tumor cells; the arrows/segments corresponding to solid/dashed lines of the same color represent the same pathway)

The level of miR-19b is upregulated by the activation of the EGFR/AKT pathway, which inhibits the apoptosis pathway in NSCLC cells via targeting Bcl2L11 and PPP2R5E, thereby promoting the proliferation of tumor cells [153]. MiR-423 indirectly attenuates the inhibition of AKT via targeting ING-4 and CREBZF, and it promotes chemotherapy resistance in GBM and BC respectively [166, 167] (Fig. 7B). MiR-30d and miR-130b attenuate the inhibition of AP-1 via targeting MYDT1 and ARHGAP1 respectively, which promote the progression of PRAD and ES [168, 169] (Fig. 7C). These reported Cardio-miRNAs can indirectly promote the malignant progression of tumors through the cross-targeting of some other pathways, which reflects the diversity of regulatory mechanisms of Cardio-miRNAs. The regulatory mechanisms involved in this minority Cardio-miRNAs only supplement the four major pathways mentioned above. In fact, there are some other regulatory mechanisms that need to be further improved according to the latest studies reports in the future.

Perspectives and challenges

The cellular regulatory processes and mechanisms between miRNAs and CVD have been well studied [170,171,172]. However, the role of miRNAs as a systemic influence in the synthesis of crosstalk between different diseases is still less. Especially, some typical biomarkers reflected by changes of expression profile for Cardio-miRNAs in circulation, which may become an important factor that diseases associated with age [26, 30, 173]. Therefore, Cardio-miRNAs may be keys to potential targets that treating chronic complications and malignant progression of tumor [30, 174]. We should also pay more attention to these adverse effects that reverse Cardio-Oncology in the clinical treatment of cancer based on the principles of precision medicine. In this way, a holistic approach to multiple diseases, classification and multi-level diagnosis is carried out to evaluate the regulatory mechanism of reverse cardio-oncology [12,13,14]. Such as miR-21 is a representation that targets multiple signaling pathways, including PTEN/PI3K/AKT, NF-κB and apoptosis signaling pathways etc., and it also exhibits typical characteristics of Onco-miRNAs (Fig. 2) [175,176,177]. We should predict and evaluate the possible adverse consequences of miR-21 due to underlying metabolic disease, work life and diet according to the 3PM principle. In addition, it cannot be ignored that the upregulation of Cardio-miRNA expression levels may be as a phenotype of the toxic stress damage of chemotherapy drugs on the cardiovascular system during tumor treatment [173]. Particularly, chemotherapy for middle-aged and elderly tumor patients should reduce cardiovascular damage at the same time, because it may be a disadvantage for tumor treatment [178]. Based on the special phenotypes of CVD, we need take a systematic and holistic approach to consider CVD as an important risk factor for tumor malignancy.

However, the adverse effects of Cardio-miRNAs may be a persistent problem for concomitant tumors of aged and obese patients [99]. In middle-aged and older patients, a systemic treatment (3PM) may be more benefit to improving outcomes for concomitant tumors. For example, statins protect cardiovascular by lowering blood lipids or cholesterol, and a combination of drugs can be taken into consideration to treat tumor patients with arteriosclerosis and coronary heart disease. In addition, cardiotoxic chemotherapy drugs (such as anthracyclines), which are often used in chemotherapy for a variety of clinical tumors, and they can be considered to combined with cardioprotective drugs for tumor treatment, which is more likely to achieve a good prognosis (Table 2) [179,180,181,182]. Furthermore, molecular therapy has gradually become an important method for tumor treatment, such as the use of inhibitors (reverse complementary mimics) targeting Cardio-miRNAs to reduce their adverse effects during treatment process. However, experimental studies are needed to ensure its safety and efficacy before it can be applied clinically [183].

Table 2 Potential drugs for joint pharmacologic prevention of cardiovascular disease and cancer (Masoudkabir et al. [181])

Conclusions

Our review concludes that CVD and tumors can be linked through miRNAs, and these miRNAs may have a dual role (Cardio-/Onco-miRNAs). However, with aging, the dysfunctions of cardiovascular system may appear and changes of systematic phenotypes of circulating miRNAs showed the adverse effects of Cardio-miRNAs for middle-aged and elderly or obese tumor patients. This connection and regulatory mechanism may further demonstrate the necessity and foresight of the 3PM principles between diagnosing and treating for different diseases. Furthermore, the dual properties of Cardio-/Onco-miRNAs suggest that CVD is systemic and holistic problem or risk factor affect distant tumor cells via the circulation, which may be a potential target for treatment and intervention. Therefore, based on the perspective of CVD phenotyping in oncologic disorders, we need a systemic evaluation, prediction and diagnosis of the patients with concomitant tumors, which may provide a reference for avoiding poor prognosis.

Availability of data and materials

All datasets generated and analyzed during the current study are available from the corresponding author on request.

Abbreviations

AMI:

Acute myocardial infarction

MI:

Myocardial infarction

ASO:

Atherosclerosis obliterans

CAD:

Coronary artery disease

ACS:

Acute coronary syndrome

HF:

Heart failure

AS:

Atherosclerosis

PH:

Pulmonary hypertension

DCM:

Dilated cardiomyopathy

ACAS:

Asymptomatic carotid artery stenosis

MI/R:

Myocardial ischemia/reperfusion

RCVS:

Reversible cerebral vasoconstriction syndrome

SCAD:

Spontaneous coronary artery dissection

ICM:

Ischemic dilated cardiomyopathy

HCM:

Hypertrophic cardiomyopathy

CHD:

Coronary heart disease

CAV:

Cardiac allograft vasculopathy

IHD:

Ischemic heart disease

SA:

Stable angina

UA:

Unstable angina

CAM:

Cardiomyopathy

LC:

Lung cancer

AB:

Ameloblastoma

BALL:

B cell precursor acute lymphoblastic leukemia

CCA:

Cholangiocarcinoma

CRC:

Colorectal cancer

PRADC:

Prostate cancer

GC:

Gastric cancer

UC:

Urothelial carcinomas

HCC:

Hepatocellular carcinoma

NSCLC:

Non-small cell lung cancer

GBM:

Glioblastoma

BC:

Brest cancer

TNBC:

Triple-negative breast cancer

RBM:

Retinoblastoma

RCC:

Renal cell carcinoma

ccRCC:

Clear cell renal cell carcinoma

SCLC:

Small cell lung cancer

BC:

Bladder cancer

ES:

Ewing sarcoma

OS:

Osteosarcoma

OC:

Ovarian cancer

MM:

Malignant melanoma

TC:

Thyroid cancer

PC:

Pancreatic cancer

HCM:

Hypertrophic cardiomyopathy

References

  1. Bartel DP. Metazoan microRNAs. Cell. 2018;173:20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mattick JS, Rinn JL. Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol. 2015;22:5–7.

    Article  CAS  PubMed  Google Scholar 

  3. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med. 2020;72: 100825.

    Article  CAS  PubMed  Google Scholar 

  5. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 2021;22:425–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. J Am Coll Cardiol. 2016;68:2577–84.

    Article  CAS  PubMed  Google Scholar 

  8. Li H, Fan J, Zhao Y, Zhang X, Dai B, Zhan J, Yin Z, Nie X, Fu XD, Chen C, Wang DW. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res. 2019;125:1106–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nat Rev Endocrinol. 2019;15:731–43.

    Article  CAS  PubMed  Google Scholar 

  10. He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y, Wang X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci. 2020;16:2628–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerner C, Costigliola V, Golubnitschaja O. Multiomic patterns in body fluids: technological challenge with a great potential to implement the advanced paradigm of 3p medicine. Mass Spectrom Rev. 2020;39:442–51.

    Article  CAS  PubMed  Google Scholar 

  12. Crigna AT, Samec M, Koklesova L, Liskova A, Giordano FA, Kubatka P, Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring-hype or hope? EPMA J. 2020;11:603–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mazurakova A, Samec M, Koklesova L, Biringer K, Kudela E, Al-Ishaq RK, Pec M, Giordano FA, Busselberg D, Kubatka P, Golubnitschaja O. Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine—comprehensive effects of phytochemicals in primary, secondary and tertiary care. EPMA J. 2022;13:461–86.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kucera R, Pecen L, Topolcan O, Dahal AR, Costigliola V, Giordano FA, Golubnitschaja O. Prostate cancer management: long-term beliefs, epidemic developments in the early twenty-first century and 3PM dimensional solutions. EPMA J. 2020;11:399–418.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Andersson C, Vasan RS. Epidemiology of cardiovascular disease in young individuals. Nat Rev Cardiol. 2018;15:230–40.

    Article  PubMed  Google Scholar 

  16. Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203–12.

    Article  PubMed  Google Scholar 

  17. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124:799–815.

    Article  CAS  PubMed  Google Scholar 

  18. Kivimaki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018;15:215–29.

    Article  CAS  PubMed  Google Scholar 

  19. Libby P, Sidlow R, Lin AE, Gupta D, Jones LW, Moslehi J, Zeiher A, Jaiswal S, Schulz C, Blankstein R, Bolton KL, Steensma D, Levine RL, Ebert BL. Clonal hematopoiesis: crossroads of aging, cardiovascular disease, and cancer: JACC review topic of the week. J Am Coll Cardiol. 2019;74:567–77.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Libby P, Kobold S. Inflammation: a common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc Res. 2019;115:824–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karlstaedt A, Moslehi J, de Boer RA. Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat Rev Cardiol. 2022;19:414–25.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lancellotti P, Marechal P, Donis N, Oury C. Inflammation, cardiovascular disease, and cancer: a common link with far-reaching implications. Eur Heart J. 2019;40:3910–2.

    Article  PubMed  Google Scholar 

  23. Aboumsallem JP, Moslehi J, de Boer RA. Reverse cardio-oncology: cancer development in patients with cardiovascular disease. J Am Heart Assoc. 2020;9: e013754.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Koelwyn GJ, Aboumsallem JP, Moore KJ, de Boer RA. Reverse cardio-oncology: exploring the effects of cardiovascular disease on cancer pathogenesis. J Mol Cell Cardiol. 2022;163:1–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liang Z, He Y, Hu X. Cardio-oncology: mechanisms, drug combinations, and reverse cardio-oncology. Int J Mol Sci. 2022;23:10617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang X, Chen X, Xu H, Zhou S, Zheng Y, Keller BB, Cai L. Emerging roles of microRNA-208a in cardiology and reverse cardio-oncology. Med Res Rev. 2021;41:2172–94.

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Canaveras JC, Chen L, Rabinowitz JD. The tumor metabolic microenvironment: lessons from lactate. Cancer Res. 2019;79:3155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871;2019:455–68.

    Google Scholar 

  29. Vu LT, Gong J, Pham TT, Kim Y, Le MTN. microRNA exchange via extracellular vesicles in cancer. Cell Prolif. 2020;53: e12877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol. 2014;2:61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Wit S, de Boer RA. From studying heart disease and cancer simultaneously to reverse cardio-oncology. Circulation. 2021;144:93–5.

    Article  PubMed  Google Scholar 

  32. Schober A, Weber C. Mechanisms of microRNAs in atherosclerosis. Annu Rev Pathol. 2016;11:583–616.

    Article  CAS  PubMed  Google Scholar 

  33. Nemecz M, Alexandru N, Tanko G, Georgescu A. Role of microRNA in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2016;18:87.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shu Z, Tan J, Miao Y, Zhang Q. The role of microvesicles containing microRNAs in vascular endothelial dysfunction. J Cell Mol Med. 2019;23:7933–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Njock MS, Fish JE. Endothelial miRNAs as cellular messengers in cardiometabolic diseases. Trends Endocrinol Metab. 2017;28:237–46.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong L, Simard MJ, Huot J. Endothelial microRNAs regulating the NF-kappaB pathway and cell adhesion molecules during inflammation. FASEB J. 2018;32:4070–84.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez-Hernando C, Suarez Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr Opin Hematol. 2018;25:227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JB, Peter K. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012;93:633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovasc Res. 2019;115:844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hasin T, Gerber Y, Weston SA, Jiang R, Killian JM, Manemann SM, Cerhan JR, Roger VL. Heart failure after myocardial infarction is associated with increased risk of cancer. J Am Coll Cardiol. 2016;68:265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Banke A, Schou M, Videbaek L, Moller JE, Torp-Pedersen C, Gustafsson F, Dahl JS, Kober L, Hildebrandt PR, Gislason GH. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail. 2016;18:260–6.

    Article  PubMed  Google Scholar 

  42. Banke A, Fosbol EL, Moller JE, Gislason GH, Andersen M, Bernsdorf M, Jensen MB, Schou M, Ejlertsen B. Long-term effect of epirubicin on incidence of heart failure in women with breast cancer: insight from a randomized clinical trial. Eur J Heart Fail. 2018;20:1447–53.

    Article  CAS  PubMed  Google Scholar 

  43. Koelwyn GJ, Newman AAC, Afonso MS, van Solingen C, Corr EM, Brown EJ, Albers KB, Yamaguchi N, Narke D, Schlegel M, Sharma M, Shanley LC, Barrett TJ, Rahman K, Mezzano V, Fisher EA, Park DS, Newman JD, Quail DF, Nelson ER, Caan BJ, Jones LW, Moore KJ. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat Med. 2020;26:1452–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, de Jong S, Haubner BJ, Nagengast WB, Lyon AR, van der Vegt B, van Veldhuisen DJ, Westenbrink BD, van der Meer P, Sillje HHW, de Boer RA. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138:678–91.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan Y, Mei Z, Qu Z, Li G, Yu S, Liu Y, Liu K, Shen Z, Pu J, Wang Y, Wang C, Sun Z, Liu Q, Pang X, Wang A, Ren Z, Wang T, Liu Y, Hong J, Xie J, Li X, Wang Z, Du W, Yang B. Exosomes secreted from cardiomyocytes suppress the sensitivity of tumor ferroptosis in ischemic heart failure. Signal Transduct Target Ther. 2023;8:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Njock MS, O’Grady T, Nivelles O, Lion M, Jacques S, Cambier M, Herkenne S, Muller F, Christian A, Remacle C, Guiot J, Rahmouni S, Dequiedt F, Struman I. Endothelial extracellular vesicles promote tumour growth by tumour-associated macrophage reprogramming. J Extracell Vesicles. 2022;11: e12228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15:356–62.

    Article  CAS  PubMed  Google Scholar 

  48. Bermudez Brito M, Goulielmaki E, Papakonstanti EA. Focus on PTEN regulation. Front Oncol. 2015;5:166.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ghafouri-Fard S, Abak A, Shoorei H, Mohaqiq M, Majidpoor J, Sayad A, Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother. 2021;133: 110986.

    Article  CAS  PubMed  Google Scholar 

  50. Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: recent development from bench to bedside. Biochim Biophys Acta Rev Cancer. 1868;2017:538–63.

    Google Scholar 

  51. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13:17–24.

    Article  CAS  Google Scholar 

  52. Cui J, Shu J. Circulating microRNA trafficking and regulation: computational principles and practice. Brief Bioinform. 2020;21:1313–26.

    Article  CAS  PubMed  Google Scholar 

  53. Fung EC, Butt AN, Eastwood J, Swaminathan R, Sodi R. Circulating microRNA in cardiovascular disease. Adv Clin Chem. 2019;91:99–122.

    Article  CAS  PubMed  Google Scholar 

  54. Li X, Yan X, Wang F, Yang Q, Luo X, Kong J, Ju S. Down-regulated lncRNA SLC25A5-AS1 facilitates cell growth and inhibits apoptosis via miR-19a-3p/PTEN/PI3K/AKT signalling pathway in gastric cancer. J Cell Mol Med. 2019;23:2920–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Baik SH, Lee J, Lee YS, Jang JY, Kim CW. ANT2 shRNA downregulates miR-19a and miR-96 through the PI3K/Akt pathway and suppresses tumor growth in hepatocellular carcinoma cells. Exp Mol Med. 2016;48: e222.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ma Q, Peng Z, Wang L, Li Y, Wang K, Zheng J, Liang Z, Liu T. miR-19a correlates with poor prognosis of clear cell renal cell carcinoma patients via promoting cell proliferation and suppressing PTEN/SMAD4 expression. Int J Oncol. 2016;49:2589–99.

    Article  CAS  PubMed  Google Scholar 

  57. Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Herault A, Dubois T, Maille P, Soyeux P, Sibony M, de la Taille A, Vordos D, Lebret T, Radvanyi F, Allory Y. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 2014;134:1776–84.

    Article  CAS  PubMed  Google Scholar 

  58. Li W, Dong X, He C, Tan G, Li Z, Zhai B, Feng J, Jiang X, Liu C, Jiang H, Sun X. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2019;38:183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng X, Dong L, Zhao S, Li Q, Liu D, Zhu X, Ge X, Li R, Wang G. Propofol affects non-small-cell lung cancer cell biology by regulating the miR-21/PTEN/AKT pathway in vitro and in vivo. Anesth Analg. 2020;131:1270–80.

    Article  CAS  PubMed  Google Scholar 

  60. Liu H, Wang J, Tao Y, Li X, Qin J, Bai Z, Chi B, Yan W, Chen X. Curcumol inhibits colorectal cancer proliferation by targeting miR-21 and modulated PTEN/PI3K/Akt pathways. Life Sci. 2019;221:354–61.

    Article  CAS  PubMed  Google Scholar 

  61. Liu Y, Zheng M, Jiao M, Yan C, Xu S, Du Q, Morsch M, Yin J, Shi B. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy. Biomaterials. 2021;276: 121036.

    Article  CAS  PubMed  Google Scholar 

  62. N. Cancer Genome Atlas Research. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  Google Scholar 

  63. Wan W, Wan W, Long Y, Li Q, Jin X, Wan G, Zhang F, Lv Y, Zheng G, Li Z, Zhu Y. MiR-25-3p promotes malignant phenotypes of retinoblastoma by regulating PTEN/Akt pathway. Biomed Pharmacother. 2019;118: 109111.

    Article  CAS  PubMed  Google Scholar 

  64. Feng X, Jiang J, Shi S, Xie H, Zhou L, Zheng S. Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int J Oncol. 2016;49:2600–10.

    Article  CAS  PubMed  Google Scholar 

  65. Yang B, Feng X, Liu H, Tong R, Wu J, Li C, Yu H, Chen Y, Cheng Q, Chen J, Cai X, Wu W, Lu Y, Hu J, Liang K, Lv Z, Wu J, Zheng S. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial-mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene. 2020;39:6529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu C, Shan Z, Hong J, Yang L. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol. 2017;51:235–44.

    Article  CAS  PubMed  Google Scholar 

  67. Li M, Shan W, Hua Y, Chao F, Cui Y, Lv L, Dou X, Bian X, Zou J, Li H, Lin W. Exosomal miR-92b-3p promotes chemoresistance of small cell lung cancer through the PTEN/AKT pathway. Front Cell Dev Biol. 2021;9: 661602.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li N, Miao Y, Shan Y, Liu B, Li Y, Zhao L, Jia L. MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death Dis. 2017;8: e2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng L, Zhang Y, Liu Y, Zhou M, Lu Y, Yuan L, Zhang C, Hong M, Wang S, Li X. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer. J Transl Med. 2015;13:252.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lu Q, Liu T, Feng H, Yang R, Zhao X, Chen W, Jiang B, Qin H, Guo X, Liu M, Li L, Guo H. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol Cancer. 2019;18:111.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Han W, Liu J. LncRNA-p21 inhibited the proliferation of osteosarcoma cells via the miR-130b/PTEN/AKT signaling pathway. Biomed Pharmacother. 2018;97:911–8.

    Article  CAS  PubMed  Google Scholar 

  72. Sekino Y, Sakamoto N, Sentani K, Oue N, Teishima J, Matsubara A, Yasui W. miR-130b promotes sunitinib resistance through regulation of PTEN in renal cell carcinoma. Oncology. 2019;97:164–72.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Q, Zhang B, Sun L, Yan Q, Zhang Y, Zhang Z, Su Y, Wang C. MicroRNA-130b targets PTEN to induce resistance to cisplatin in lung cancer cells by activating Wnt/beta-catenin pathway. Cell Biochem Funct. 2018;36:194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramirez-Moya J, Wert-Lamas L, Santisteban P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene. 2018;37:3369–83.

    Article  CAS  PubMed  Google Scholar 

  75. Yang F, Yan Y, Yang Y, Hong X, Wang M, Yang Z, Liu B, Ye L. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 2020;73: 109675.

    Article  CAS  PubMed  Google Scholar 

  76. Ding L, Zhang S, Xu M, Zhang R, Sui P, Yang Q. MicroRNA-27a contributes to the malignant behavior of gastric cancer cells by directly targeting PH domain and leucine-rich repeat protein phosphatase 2. J Exp Clin Cancer Res. 2017;36:45.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen H, Pan H, Qian Y, Zhou W, Liu X. MiR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Mol Cancer. 2018;17:4.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ni QF, Zhang Y, Yu JW, Hua RH, Wang QH, Zhu JW. miR-92b promotes gastric cancer growth by activating the DAB2IP-mediated PI3K/AKT signalling pathway. Cell Prolif. 2020;53: e12630.

    Article  PubMed  Google Scholar 

  79. Zhang Z, Fu X, Gao Y, Nie Z. LINC01535 attenuates ccRCC progression through regulation of the miR-146b-5p/TRIM2 axis and inactivation of the pI3K/Akt pathway. J Oncol. 2022;2022:2153337.

    PubMed  PubMed Central  Google Scholar 

  80. Meng G, Li G, Yang X, Xiao N. Inhibition of miR146b-5p suppresses CT-guided renal cell carcinoma by targeting TRAF6. J Cell Biochem. 2018;120:2382–90.

    Article  PubMed  Google Scholar 

  81. Gu W, Gong L, Wu X, Yao X. Hypoxic TAM-derived exosomal miR-155-5p promotes RCC progression through HuR-dependent IGF1R/AKT/PI3K pathway. Cell Death Discov. 2021;7:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sagar SK. miR-106b as an emerging therapeutic target in cancer. Genes Dis. 2022;9:889–99.

    Article  CAS  PubMed  Google Scholar 

  83. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

    Article  CAS  PubMed  Google Scholar 

  84. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  85. Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DC, Zheng G. E-cadherin/beta-catenin complex and the epithelial barrier. J Biomed Biotechnol. 2011;2011: 567305.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Guo F, Parker Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol. 2014;7:19.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zhao X, Lu Y, Nie Y, Fan D. MicroRNAs as critical regulators involved in regulating epithelial- mesenchymal transition. Curr Cancer Drug Targets. 2013;13:935–44.

    Article  CAS  PubMed  Google Scholar 

  88. Diaz-Lopez A, Moreno-Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res. 2014;6:205–16.

    PubMed  PubMed Central  Google Scholar 

  89. Wang Z, Li Y, Kong D, Sarkar FH. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets. 2010;11:745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhong J, He Y, Chen W, Shui X, Chen C, Lei W. Circulating microRNA-19a as a potential novel biomarker for diagnosis of acute myocardial infarction. Int J Mol Sci. 2014;15:20355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Karakas M, Schulte C, Appelbaum S, Ojeda F, Lackner KJ, Munzel T, Schnabel RB, Blankenberg S, Zeller T. Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J. 2017;38:516–23.

    CAS  PubMed  Google Scholar 

  92. Hosseinpor S, Khalvati B, Safari F, Mirzaei A, Hosseini E. The association of plasma levels of miR-146a, miR-27a, miR-34a, and miR-149 with coronary artery disease. Mol Biol Rep. 2022;49:3559–67.

    Article  CAS  PubMed  Google Scholar 

  93. Marques FZ, Vizi D, Khammy O, Mariani JA, Kaye DM. The transcardiac gradient of cardio-microRNAs in the failing heart. Eur J Heart Fail. 2016;18:1000–8.

    Article  CAS  PubMed  Google Scholar 

  94. Xue S, Zhu W, Liu D, Su Z, Zhang L, Chang Q, Li P. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction. Mol Med. 2019;25:18.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Roncarati R, Viviani Anselmi C, Losi MA, Papa L, Cavarretta E, da Costa Martins P, Contaldi C, Saccani Jotti G, Franzone A, Galastri L, Latronico MV, Imbriaco M, Esposito G, de Windt L, Betocchi S, Condorelli G. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63:920–7.

    Article  CAS  PubMed  Google Scholar 

  96. Silverman MG, Yeri A, Moorthy MV, Camacho Garcia F, Chatterjee NA, Glinge CSA, Tfelt-Hansen J, Salvador AM, Pico AR, Shah R, Albert CM, Das S. Circulating miRNAs and risk of sudden death in patients with coronary heart disease. JACC Clin Electrophysiol. 2020;6:70–9.

    Article  PubMed  Google Scholar 

  97. Singh N, Heggermont W, Fieuws S, Vanhaecke J, Van Cleemput J, De Geest B. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J Heart Lung Transplant. 2015;34:1376–84.

    Article  PubMed  Google Scholar 

  98. Liu Y, Li Q, Hosen MR, Zietzer A, Flender A, Levermann P, Schmitz T, Fruhwald D, Goody P, Nickenig G, Werner N, Jansen F. Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circ Res. 2019;124:575–87.

    Article  CAS  PubMed  Google Scholar 

  99. Gan L, Xie D, Liu J, Bond Lau W, Christopher TA, Lopez B, Zhang L, Gao E, Koch W, Ma XL, Wang Y. Small extracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice. Circulation. 2020;141:968–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen SP, Chang YA, Chou CH, Juan CC, Lee HC, Chen LK, Wu PC, Wang YF, Fuh JL, Lirng JF, Ducros A, Huang HD, Wang SJ. Circulating microRNAs associated with reversible cerebral vasoconstriction syndrome. Ann Neurol. 2021;89:459–73.

    Article  CAS  PubMed  Google Scholar 

  101. Toro R, Perez-Serra A, Mangas A, Campuzano O, Sarquella-Brugada G, Quezada-Feijoo M, Ramos M, Alcala M, Carrera E, Garcia-Padilla C, Franco D, Bonet F. miR-16-5p suppression protects human cardiomyocytes against endoplasmic reticulum and oxidative stress-induced injury. Int J Mol Sci. 2022;23:1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Plasma microRNA-133a is a new marker for both acute myocardial infarction and underlying coronary artery stenosis. J Transl Med. 2013;11:222.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yuan J, Tan L, Yin Z, Zhu W, Tao K, Wang G, Shi W, Gao J. MIR17HG-miR-18a/19a axis, regulated by interferon regulatory factor-1, promotes gastric cancer metastasis via Wnt/beta-catenin signalling. Cell Death Dis. 2019;10:454.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wu R, Zhao B, Ren X, Wu S, Liu M, Wang Z, Liu W. MiR-27a-3p targeting gsk3beta promotes triple-negative breast cancer proliferation and migration through Wnt/beta-catenin pathway. Cancer Manag Res. 2020;12:6241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen MW, Yang ST, Chien MH, Hua KT, Wu CJ, Hsiao SM, Lin H, Hsiao M, Su JL, Wei LH. The STAT3-miRNA-92-Wnt signaling pathway regulates spheroid formation and malignant progression in ovarian cancer. Cancer Res. 2017;77:1955–67.

    Article  CAS  PubMed  Google Scholar 

  106. Zhou Y, Jin Z, Wang C. Glycogen phosphorylase B promotes ovarian cancer progression via Wnt/beta-catenin signaling and is regulated by miR-133a-3p. Biomed Pharmacother. 2019;120: 109449.

    Article  CAS  PubMed  Google Scholar 

  107. Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova). 2015;3: e35.

    Article  PubMed  Google Scholar 

  108. Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Ranjbar A, Seyed Saleh SH, Bagherian M, Sharifzadeh SO, Hushmandi K, Liskova A, Kubatka P, Makvandi P, Tergaonkar V, Kumar AP, Ashrafizadeh M, Sethi G. Regulation of Nuclear Factor-KappaB (NF-kappaB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett. 2021;509:63–80.

    Article  CAS  PubMed  Google Scholar 

  109. Siveen KS, Nguyen AH, Lee JH, Li F, Singh SS, Kumar AP, Low G, Jha S, Tergaonkar V, Ahn KS, Sethi G. Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells. Br J Cancer. 2014;111:1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I. p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell. 2002;1:493–503.

    Article  CAS  PubMed  Google Scholar 

  111. Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 2009;1: a000141.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008;18:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu J, Ding J, Yang J, Guo X, Zheng Y. MicroRNA roles in the nuclear factor kappa B signaling pathway in cancer. Front Immunol. 2018;9:546.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Correction for Jeon et al. A set of NF-kappaB-regulated microRNAs induces acquired TRAIL resistance in Lung cancer, Proc Natl Acad Sci U S A. 2021. 118.

  115. Ginckels P, Holvoet P. Oxidative stress and inflammation in cardiovascular diseases and cancer: role of non-coding RNAs. Yale J Biol Med. 2022;95:129–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, Wang Y. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 2019;9:6901–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qiao L, Hu S, Liu S, Zhang H, Ma H, Huang K, Li Z, Su T, Vandergriff A, Tang J, Allen T, Dinh PU, Cores J, Yin Q, Li Y, Cheng K. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest. 2019;129:2237–50.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhelankin AV, Stonogina DA, Vasiliev SV, Babalyan KA, Sharova EI, Doludin YV, Shchekochikhin DY, Generozov EV, Akselrod AS. Circulating extracellular miRNA analysis in patients with stable CAD and acute coronary syndromes. Biomolecules. 2021;11:962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L, McDonald K, Thum T. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015;17:405–15.

    Article  CAS  PubMed  Google Scholar 

  120. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, Zeiher AM, Landmesser U, Dimmeler S. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33:1392–400.

    Article  CAS  PubMed  Google Scholar 

  121. Liao Y, Li H, Cao H, Dong Y, Gao L, Liu Z, Ge J, Zhu H. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype. Protein Cell. 2021;12:194–212.

    Article  CAS  PubMed  Google Scholar 

  122. Chouvarine P, Legchenko E, Geldner J, Riehle C, Hansmann G. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. J Mol Med (Berl). 2019;97:1427–38.

    Article  CAS  PubMed  Google Scholar 

  123. Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak-Stothard B, Chakrabarti A, Howard LS, Gibbs JS, Lawrie A, Condliffe R, Elliot CA, Kiely DG, Huson L, Ghofrani HA, Tiede H, Schermuly R, Zeiher AM, Dimmeler S, Wilkins MR. Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;187:294–302.

    Article  CAS  PubMed  Google Scholar 

  124. Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: a genome-wide prospective study. J Heart Lung Transplant. 2017;36:616–24.

    Article  PubMed  Google Scholar 

  125. Li H, Zhang P, Li F, Yuan G, Wang X, Zhang A, Li F. Plasma miR-22-5p, miR-132-5p, and miR-150-3p are associated with acute myocardial infarction. Biomed Res Int. 2019;2019:5012648.

    PubMed  PubMed Central  Google Scholar 

  126. Leistner DM, Boeckel JN, Reis SM, Thome CE, De Rosa R, Keller T, Palapies L, Fichtlscherer S, Dimmeler S, Zeiher AM. Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. Eur Heart J. 2016;37:1738–49.

    Article  CAS  PubMed  Google Scholar 

  127. Miyamoto SD, Karimpour-Fard A, Peterson V, Auerbach SR, Stenmark KR, Stauffer BL, Sucharov CC. Circulating microRNA as a biomarker for recovery in pediatric dilated cardiomyopathy. J Heart Lung Transplant. 2015;34:724–33.

    Article  PubMed  Google Scholar 

  128. Dickinson BA, Semus HM, Montgomery RL, Stack C, Latimer PA, Lewton SM, Lynch JM, Hullinger TG, Seto AG, van Rooij E. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail. 2013;15:650–9.

    Article  CAS  PubMed  Google Scholar 

  129. Zhao J, Florentin J, Tai YY, Torrino S, Ohayon L, Brzoska T, Tang Y, Yang J, Negi V, Woodcock CC, Risbano MG, Nouraie SM, Sundd P, Bertero T, Dutta P, Chan SY. Long range endocrine delivery of circulating miR-210 to endothelium promotes pulmonary hypertension. Circ Res. 2020;127:677–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rutkovskiy A, Lyngbakken MN, Dahl MB, Bye A, Pedersen MH, Wisloff U, Christensen G, Hoiseth AD, Omland T, Rosjo H. Circulating microRNA-210 concentrations in patients with acute heart failure: data from the akershus cardiac examination 2 study. Clin Chem. 2021;67:889–98.

    Article  PubMed  Google Scholar 

  131. Arora S, Singh P, Tabassum G, Dohare R, Syed MA. miR-16-5p regulates aerobic glycolysis and tumorigenesis of NSCLC cells via LDH-A/lactate/NF-kappaB signaling. Life Sci. 2022;304: 120722.

    Article  CAS  PubMed  Google Scholar 

  132. Li H, Ouyang R, Wang Z, Zhou W, Chen H, Jiang Y, Zhang Y, Li H, Liao M, Wang W, Ye M, Ding Z, Feng X, Liu J, Zhang B. MiR-150 promotes cellular metastasis in non-small cell lung cancer by targeting FOXO4. Sci Rep. 2016;6:39001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dai T, Zhao X, Li Y, Yu L, Li Y, Zhou X, Gong Q. miR-423 promotes breast cancer invasion by activating NF-kappaB signaling. Onco Targets Ther. 2020;13:5467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bakirtzi K, Hatziapostolou M, Karagiannides I, Polytarchou C, Jaeger S, Iliopoulos D, Pothoulakis C. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology. 2011;141:1749-1761 e1741.

    Article  CAS  PubMed  Google Scholar 

  135. Liu X, Liu B, Li R, Wang F, Wang N, Zhang M, Bai Y, Wu J, Liu L, Han D, Li Z, Feng B, Zhou G, Wang S, Zeng L, Miao J, Yao Y, Liang B, Huang L, Wang Q, Wu Y. miR-146a-5p plays an oncogenic role in NSCLC via suppression of TRAF6. Front Cell Dev Biol. 2020;8:847.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358:502–11.

    Article  CAS  PubMed  Google Scholar 

  138. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8:603–19.

    Article  CAS  PubMed  Google Scholar 

  139. Liu JJ, Lin M, Yu JY, Liu B, Bao JK. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett. 2011;300:105–14.

    Article  CAS  PubMed  Google Scholar 

  140. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS, Wei MQ. Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol. 2012;39:739–46.

    Article  CAS  PubMed  Google Scholar 

  142. Su Y, Sun Y, Tang Y, Li H, Wang X, Pan X, Liu W, Zhang X, Zhang F, Xu Y, Yan C, Ong SB, Xu D. Circulating miR-19b-3p as a novel prognostic biomarker for acute heart failure. J Am Heart Assoc. 2021;10: e022304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li L, Li S, Wu M, Chi C, Hu D, Cui Y, Song J, Lee C, Chen H. Early diagnostic value of circulating microRNAs in patients with suspected acute myocardial infarction. J Cell Physiol. 2019;234:13649–58.

    Article  CAS  PubMed  Google Scholar 

  144. Wang J, Xu X, Li P, Zhang B, Zhang J. HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARgamma/NF-kappaB axis. Atherosclerosis. 2021;323:1–12.

    Article  CAS  PubMed  Google Scholar 

  145. Han H, Qu G, Han C, Wang Y, Sun T, Li F, Wang J, Luo S. MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Exp Mol Med. 2015;47: e138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shah RV, Rong J, Larson MG, Yeri A, Ziegler O, Tanriverdi K, Murthy V, Liu X, Xiao C, Pico AR, Huan T, Levy D, Lewis GD, Rosenzweig A, Vasan RS, Das S, Freedman JE. Associations of circulating extracellular RNAs with myocardial remodeling and heart failure. JAMA Cardiol. 2018;3:871–6.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, Li P. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Front Physiol. 2019;10:123.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34:2206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pei CZ, Liu B, Li YT, Fang L, Zhang Y, Li YG, Meng S. MicroRNA-126 protects against vascular injury by promoting homing and maintaining stemness of late outgrowth endothelial progenitor cells. Stem Cell Res Ther. 2020;11:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75:336–40.

    Article  CAS  PubMed  Google Scholar 

  151. D’Alessandra Y, Carena MC, Spazzafumo L, Martinelli F, Bassetti B, Devanna P, Rubino M, Marenzi G, Colombo GI, Achilli F, Maggiolini S, Capogrossi MC, Pompilio G. Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS ONE. 2013;8: e80345.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Guo Y, Ye Q, Deng P, Cao Y, He D, Zhou Z, Wang C, Zaytseva YY, Schwartz CE, Lee EY, Evers BM, Morris AJ, Liu S, She QB. Spermine synthase and MYC cooperate to maintain colorectal cancer cell survival by repressing Bim expression. Nat Commun. 2020;11:3243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Baumgartner U, Berger F, Hashemi Gheinani A, Burgener SS, Monastyrskaya K, Vassella E. miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol Cancer. 2018;17:44.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Wang P, Zhuang L, Zhang J, Fan J, Luo J, Chen H, Wang K, Liu L, Chen Z, Meng Z. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7:334–45.

    Article  CAS  PubMed  Google Scholar 

  155. Razumilava N, Bronk SF, Smoot RL, Fingas CD, Werneburg NW, Roberts LR, Mott JL. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology. 2012;55:465–75.

    Article  CAS  PubMed  Google Scholar 

  156. Liu Z, Lu Y, Xiao Y, Lu Y. Upregulation of miR-21 expression is a valuable predicator of advanced clinicopathological features and poor prognosis in patients with renal cell carcinoma through the p53/p21-cyclin E2-Bax/caspase-3 signaling pathway. Oncol Rep. 2017;37:1437–44.

    Article  PubMed  Google Scholar 

  157. Nucera S, Giustacchini A, Boccalatte F, Calabria A, Fanciullo C, Plati T, Ranghetti A, Garcia-Manteiga J, Cittaro D, Benedicenti F, Lechman ER, Dick JE, Ponzoni M, Ciceri F, Montini E, Gentner B, Naldini L. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell. 2016;29:905–21.

    Article  CAS  PubMed  Google Scholar 

  158. Mastropasqua F, Marzano F, Valletti A, Aiello I, Di Tullio G, Morgano A, Liuni S, Ranieri E, Guerrini L, Gasparre G, Sbisa E, Pesole G, Moschetta A, Caratozzolo MF, Tullo A. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol Cancer. 2017;16:67.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ji F, Zhang H, Wang Y, Li M, Xu W, Kang Y, Wang Z, Wang Z, Cheng P, Tong D, Li C, Tang H. MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1. Bone. 2013;56:220–6.

    Article  CAS  PubMed  Google Scholar 

  160. Xiong Y, Feng Y, Zhao J, Lei J, Qiao T, Zhou Y, Lu Q, Jiang T, Jia L, Han Y. TFAP2A potentiates lung adenocarcinoma metastasis by a novel miR-16 family/TFAP2A/PSG9/TGF-beta signaling pathway. Cell Death Dis. 2021;12:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chae DK, Ban E, Yoo YS, Kim EE, Baik JH, Song EJ. MIR-27a regulates the TGF-beta signaling pathway by targeting SMAD2 and SMAD4 in lung cancer. Mol Carcinog. 2017;56:1992–8.

    Article  CAS  PubMed  Google Scholar 

  162. Shan G, Gu J, Zhou D, Li L, Cheng W, Wang Y, Tang T, Wang X. Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-beta signaling pathway. Exp Mol Med. 2020;52:1809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yu P, Wu D, You Y, Sun J, Lu L, Tan J, Bie P. miR-208-3p promotes hepatocellular carcinoma cell proliferation and invasion through regulating ARID2 expression. Exp Cell Res. 2015;336:232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer. 2017;3:56–71.

    Article  CAS  PubMed  Google Scholar 

  165. Korkut A, Zaidi S, Kanchi RS, Rao S, Gough NR, Schultz A, Li X, Lorenzi PL, Berger AC, Robertson G, Kwong LN, Datto M, Roszik J, Ling S, Ravikumar V, Manyam G, Rao A, Shelley S, Liu Y, Ju Z, Hansel D, de Velasco G, Pennathur A, Andersen JB, O’Rourke CJ, Ohshiro K, Jogunoori W, Nguyen BN, Li S, Osmanbeyoglu HU, Ajani JA, Mani SA, Houseman A, Wiznerowicz M, Chen J, Gu S, Ma W, Zhang J, Tong P, Cherniack AD, Deng C, Resar L, Weinstein JN, Mishra L, Akbani R, N. Cancer Genome Atlas Research. A pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-beta superfamily. Cell Syst. 2018;7:422-437 e427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li S, Zeng A, Hu Q, Yan W, Liu Y, You Y. miR-423-5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas. Neuro Oncol. 2017;19:55–65.

    Article  CAS  PubMed  Google Scholar 

  167. Fang J, Jiang G, Mao W, Huang L, Huang C, Wang S, Xue H, Ke J, Ni Q. Up-regulation of long noncoding RNA MBNL1-AS1 suppresses breast cancer progression by modulating miR-423-5p/CREBZF axis. Bioengineered. 2022;13:3707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lin ZY, Chen G, Zhang YQ, He HC, Liang YX, Ye JH, Liang YK, Mo RJ, Lu JM, Zhuo YJ, Zheng Y, Jiang FN, Han ZD, Wu SL, Zhong WD, Wu CL. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer. 2017;16:48.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Satterfield L, Shuck R, Kurenbekova L, Allen-Rhoades W, Edwards D, Huang S, Rajapakshe K, Coarfa C, Donehower LA, Yustein JT. miR-130b directly targets ARHGAP1 to drive activation of a metastatic CDC42-PAK1-AP1 positive feedback loop in Ewing sarcoma. Int J Cancer. 2017;141:2062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:e159–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18:457–68.

    Article  CAS  PubMed  Google Scholar 

  172. Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ananthan K, Lyon AR. The role of biomarkers in cardio-oncology. J Cardiovasc Transl Res. 2020;13:431–50.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Cartas-Espinel I, Telechea-Fernandez M, Manterola Delgado C, Avila Barrera A, Saavedra Cuevas N, Riffo-Campos AL. Novel molecular biomarkers of cancer therapy-induced cardiotoxicity in adult population: a scoping review. ESC Heart Fail. 2022;9:1651–65.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li S, Liang Z, Xu L, Zou F. MicroRNA-21: a ubiquitously expressed pro-survival factor in cancer and other diseases. Mol Cell Biochem. 2012;360:147–58.

    Article  CAS  PubMed  Google Scholar 

  176. Pfeffer SR, Yang CH, Pfeffer LM. The role of miR-21 in cancer. Drug Dev Res. 2015;76:270–7.

    Article  CAS  PubMed  Google Scholar 

  177. Bautista-Sanchez D, Arriaga-Canon C, Pedroza-Torres A, De La Rosa-Velazquez IA, Gonzalez-Barrios R, Contreras-Espinosa L, Montiel-Manriquez R, Castro-Hernandez C, Fragoso-Ontiveros V, Alvarez-Gomez RM, Herrera LA. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 2020;20:409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Thavendiranathan P, Nolan MT. An emerging epidemic: cancer and heart failure. Clin Sci (Lond). 2017;131:113–21.

    Article  PubMed  Google Scholar 

  179. Pellegrini L, Sileno S, D’Agostino M, Foglio E, Florio MC, Guzzanti V, Russo MA, Limana F, Magenta A. MicroRNAs in cancer treatment-induced cardiotoxicity. Cancers (Basel). 2020;12:704.

    Article  CAS  PubMed  Google Scholar 

  180. Ruggeri C, Gioffre S, Achilli F, Colombo GI, D’Alessandra Y. Role of microRNAs in doxorubicin-induced cardiotoxicity: an overview of preclinical models and cancer patients. Heart Fail Rev. 2018;23:109–22.

    Article  CAS  PubMed  Google Scholar 

  181. Masoudkabir F, Sarrafzadegan N, Gotay C, Ignaszewski A, Krahn AD, Davis MK, Franco C, Mani A. Cardiovascular disease and cancer: evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis. 2017;263:343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ren QW, Yu SY, Teng TK, Li X, Cheung KS, Wu MZ, Li HL, Wong PF, Tse HF, Lam CSP, Yiu KH. Statin associated lower cancer risk and related mortality in patients with heart failure. Eur Heart J. 2021;42:3049–59.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wang S, Wang Y, Cheng H, Zhang Q, Fu C, He C, Wei Q. The networks of noncoding RNAs and their direct molecular targets in myocardial infarction. Int J Biol Sci. 2022;18:3194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Fang Y, Yan D, Wang L, Zhang J, He Q. Circulating microRNAs (miR-16, miR-22, miR-122) expression and early diagnosis of hepatocellular carcinoma. J Clin Lab Anal. 2022;36: e24541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Jiang T, Ye L, Han Z, Liu Y, Yang Y, Peng Z, Fan J. miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: validation by bioinformatics and experimental analyses. J Exp Clin Cancer Res. 2017;36:131.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res. 2020;116:1113–24.

    Article  CAS  PubMed  Google Scholar 

  187. Sequeira JP, Constancio V, Salta S, Lobo J, Barros-Silva D, Carvalho-Maia C, Rodrigues J, Braga I, Henrique R, Jeronimo C. LiKidMiRs: A ddPCR-based panel of 4 circulating miRNAs for detection of renal cell carcinoma. Cancers (Basel). 2022;14:858.

    Article  CAS  PubMed  Google Scholar 

  188. Bush EW, van Rooij E. miR-25 in heart failure. Circ Res. 2014;115:610–2.

    Article  CAS  PubMed  Google Scholar 

  189. Wahlquist C, Jeong D, Rojas-Munoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA, Hajjar RJ, Mercola M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508:531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang M, Wang Y, Jiang L, Song X, Zheng A, Gao H, Wei M, Zhao L. LncRNA CBR3-AS1 regulates of breast cancer drug sensitivity as a competing endogenous RNA through the JNK1/MEK4-mediated MAPK signal pathway. J Exp Clin Cancer Res. 2021;40:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen Q, Liu T, Bao Y, Zhao T, Wang J, Wang H, Wang A, Gan X, Wu Z, Wang L. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 2020;469:68–77.

    Article  CAS  PubMed  Google Scholar 

  192. Liu S, Liu D, Liu J, Liu J, Zhong M. miR-29a-3p promotes migration and invasion in ameloblastoma via Wnt/beta-catenin signaling by targeting catenin beta interacting protein 1. Head Neck. 2021;43:3911–21.

    Article  PubMed  Google Scholar 

  193. Melman YF, Shah R, Danielson K, Xiao J, Simonson B, Barth A, Chakir K, Lewis GD, Lavender Z, Truong QA, Kleber A, Das R, Rosenzweig A, Wang Y, Kass D, Singh JP, Das S. Circulating MicroRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: a translational pilot study. Circulation. 2015;131:2202–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Berania I, Cardin GB, Clement I, Guertin L, Ayad T, Bissada E, Nguyen-Tan PF, Filion E, Guilmette J, Gologan O, Soulieres D, Rodier F, Wong P, Christopoulos A. Four PTEN-targeting co-expressed miRNAs and ACTN4- targeting miR-548b are independent prognostic biomarkers in human squamous cell carcinoma of the oral tongue. Int J Cancer. 2017;141:2318–28.

    Article  CAS  PubMed  Google Scholar 

  195. Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O. Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail. 2012;14:147–54.

    Article  CAS  PubMed  Google Scholar 

  196. Taurino C, Miller WH, McBride MW, McClure JD, Khanin R, Moreno MU, Dymott JA, Delles C, Dominiczak AF. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci (Lond). 2010;119:335–43.

    Article  CAS  PubMed  Google Scholar 

  197. Wang J, Hu L, Huang H, Yu Y, Wang J, Yu Y, Li K, Li Y, Tian T, Chen F. CAR (CARSKNKDC) peptide modified ReNcell-derived extracellular vesicles as a novel therapeutic agent for targeted pulmonary hypertension therapy. Hypertension. 2020;76:1147–60.

    Article  CAS  PubMed  Google Scholar 

  198. Song H, Zhang Y, Liu N, Wan C, Zhang D, Zhao S, Kong Y, Yuan L. miR-92b regulates glioma cells proliferation, migration, invasion, and apoptosis via PTEN/Akt signaling pathway. J Physiol Biochem. 2016;72:201–11.

    Article  CAS  PubMed  Google Scholar 

  199. Liu YM, Cao Y, Zhao PS, Wu LY, Lu YM, Wang YL, Zhao JF, Liu XG. CircCCNB1 silencing acting as a miR-106b-5p sponge inhibited GPM6A expression to promote HCC progression by enhancing DYNC1I1 expression and activating the AKT/ERK signaling pathway. Int J Biol Sci. 2022;18:637–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu W, Chen H, Wong N, Haynes W, Baker CM, Wang X. Pseudohypoxia induced by miR-126 deactivation promotes migration and therapeutic resistance in renal cell carcinoma. Cancer Lett. 2017;394:65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Khella HW, Scorilas A, Mozes R, Mirham L, Lianidou E, Krylov SN, Lee JY, Ordon M, Stewart R, Jewett MA, Yousef GM. Low expression of miR-126 is a prognostic marker for metastatic clear cell renal cell carcinoma. Am J Pathol. 2015;185:693–703.

    Article  CAS  PubMed  Google Scholar 

  202. Cui Y, Shen T, Xu F, Zhang J, Wang Y, Wu J, Bu H, Fu D, Fang B, Lv H, Wang S, Shi C, Liu B, He H, Tang H, Ge J. KCNN4 may weaken anti-tumor immune response via raising Tregs and diminishing resting mast cells in clear cell renal cell carcinoma. Cancer Cell Int. 2022;22:211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Zhu J, Xu C, Ruan L, Wu J, Li Y, Zhang X. MicroRNA-146b overexpression promotes human bladder cancer invasion via enhancing ETS2-mediated mmp2 mRNA transcription. Mol Ther Nucleic Acids. 2019;16:531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, Wang H, Chen Y, Liu K, Shao Z, Shang Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2018;37:242.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Li Y, Tian Z, Tan Y, Lian G, Chen S, Chen S, Li J, Li X, Huang K, Chen Y. Bmi-1-induced miR-27a and miR-155 promote tumor metastasis and chemoresistance by targeting RKIP in gastric cancer. Mol Cancer. 2020;19:109.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Liu X, Fan Z, Zhao T, Cao W, Zhang L, Li H, Xie Q, Tian Y, Wang B. Plasma miR-1, miR-208, miR-499 as potential predictive biomarkers for acute myocardial infarction: an independent study of Han population. Exp Gerontol. 2015;72:230–8.

    Article  CAS  PubMed  Google Scholar 

  207. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, Stack C, Latimer PA, Olson EN, van Rooij E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124:1537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu A, Shao C, Jin G, Liu R, Hao J, Song B, Ouyang L, Hu X. miR-208-induced epithelial to mesenchymal transition of pancreatic cancer cells promotes cell metastasis and invasion. Cell Biochem Biophys. 2014;69:341–6.

    Article  CAS  PubMed  Google Scholar 

  209. Fang L, Ellims AH, Moore XL, White DA, Taylor AJ, Chin-Dusting J, Dart AM. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med. 2015;13:314.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Wander PL, Enquobahrie DA, Pritchard CC, McKnight B, Rice K, Christiansen M, Lemaitre RN, Rea T, Siscovick D, Sotoodehnia N. Circulating microRNAs and sudden cardiac arrest outcomes. Resuscitation. 2016;106:96–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yang R, Xu J, Hua X, Tian Z, Xie Q, Li J, Jiang G, Cohen M, Sun H, Huang C. Overexpressed miR-200a promotes bladder cancer invasion through direct regulating Dicer/miR-16/JNK2/MMP-2 axis. Oncogene. 2020;39:1983–96.

    Article  CAS  PubMed  Google Scholar 

  212. Ren D, Yang Q, Dai Y, Guo W, Du H, Song L, Peng X. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-kappaB signaling pathway. Mol Cancer. 2017;16:117.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wang L, Song Y, Wang H, Liu K, Shao Z, Shang Z. MiR-210-3p-EphrinA3-PI3K/AKT axis regulates the progression of oral cancer. J Cell Mol Med. 2020;24:4011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Shan Z, Qin S, Li W, Wu W, Yang J, Chu M, Li X, Huo Y, Schaer GL, Wang S, Zhang C. An endocrine genetic signal between blood cells and vascular smooth muscle cells: role of microRNA-223 in smooth muscle function and atherogenesis. J Am Coll Cardiol. 2015;65:2526–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Willeit P, Skroblin P, Kiechl S, Fernandez-Hernando C, Mayr M. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J. 2016;37:3260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xiao W, Wang X, Wang T, Xing J. MiR-223-3p promotes cell proliferation and metastasis by downregulating SLC4A4 in clear cell renal cell carcinoma. Aging (Albany NY). 2019;11:615–33.

    Article  CAS  PubMed  Google Scholar 

  217. Kinget L, Roussel E, Verbiest A, Albersen M, Rodriguez-Antona C, Grana-Castro O, Inglada-Perez L, Zucman-Rossi J, Couchy G, Job S, de Reynies A, Laenen A, Baldewijns M, Beuselinck B. MicroRNAs targeting HIF-2alpha, VEGFR1 and/or VEGFR2 as potential predictive biomarkers for VEGFR tyrosine kinase and HIF-2alpha inhibitors in metastatic clear-cell renal cell carcinoma. Cancers (Basel). 2021;13:3099.

    Article  CAS  PubMed  Google Scholar 

  218. Song XW, Zou LL, Cui L, Li SH, Qin YW, Zhao XX, Jing Q. Plasma miR-451 with echocardiography serves as a diagnostic reference for pulmonary hypertension. Acta Pharmacol Sin. 2018;39:1208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R, Slaby O. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhu S, Huang Y, Su X. Mir-451 correlates with prognosis of renal cell carcinoma patients and inhibits cellular proliferation of renal cell carcinoma. Med Sci Monit. 2016;22:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for Hongbo Ma and Yun Xiong for the suggestions on the revision in this manuscript and work. Sincere thanks to the relevant personnel of the National Geriatric Clinical Research Center for their platform and help.

Funding

This study is supported by the National Natural Science Foundation of China Grant (81771511, 82071589 and 81700044); National Key R&D Program of China Grant (2018YFC2000400); National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Grant (Z2018B04); Grant 2021–2025 from Sichuan Provincial Cadre Health Committee, Grant 2022YFS0108 from Science and Technology Department of Sichuan Province and Grant 2021LY22 from Sichuan Provincial People’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: MY, KS, TL and SG; Literature collection and integration: MY, KS and NH; Analysis and interpretation of data: SG, WX, HG, MY; Statistical analysis: KS, HC, WX, CG; Drafting of the manuscript: MY, KS, SG; Critical revision and final approval of the manuscript: HX. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Dejiang Pang or Hengyi Xiao.

Ethics declarations

Ethics approval and consent to participate

This review article does not contain relevant ethical matters, and all data in this review are based on relevant published studies.

Consent for publication

All authors agreed to the publication of the review article.

Competing interests

The authors declare that they have not any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, T., Guo, S. et al. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 22, 50 (2024). https://doi.org/10.1186/s12967-023-04680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12967-023-04680-9

Keywords