Basurto-Lozada P, Molina-Aguilar C, Castaneda-Garcia C, et al. Acral lentiginous melanoma: Basic facts, biological characteristics and research perspectives of an understudied disease. Pigment Cell Melanoma Res. 2021;34(1):59–71.
Article
PubMed
Google Scholar
Rawson RV, Johansson PA, Hayward NK, et al. Unexpected UVR and non-UVR mutation burden in some acral and cutaneous melanomas. Lab Invest. 2017;97(2):130–45.
Article
CAS
PubMed
Google Scholar
Kaskel P, Kind P, Sander S, et al. Trauma and melanoma formation: a true association? Br J Dermatol. 2000;143(4):749–53.
Article
CAS
PubMed
Google Scholar
Huang K, Fan J, Misra S. Acral lentiginous melanoma: incidence and survival in the United States, 2006–2015, an analysis of the SEER Registry. J Surg Res. 2020;251:329–39.
Article
PubMed
Google Scholar
Teramoto Y, Keim U, Gesierich A, et al. Acral lentiginous melanoma: a skin cancer with unfavourable prognostic features. A study of the German central malignant melanoma registry (CMMR) in 2050 patients. Br J Dermatol. 2018;178(2):443–51.
Article
CAS
PubMed
Google Scholar
Zhang N, Wang L, Zhu GN, et al. The association between trauma and melanoma in the Chinese population: a retrospective study. J Eur Acad Dermatol Venereol. 2014;28(5):597–603.
Article
CAS
PubMed
Google Scholar
Lee JH, Choi YD, Hwang JH, et al. Frequency of trauma, physical stress, and occupation in acral melanoma: analysis of 313 acral melanoma patients in Korea. Ann Dermatol. 2021;33(3):228–36.
Article
PubMed
PubMed Central
Google Scholar
Rangwala S, Hunt C, Modi G, et al. Amelanotic subungual melanoma after trauma: an unusual clinical presentation. Dermatol Online J. 2011;17(6):8.
PubMed
Google Scholar
Bormann G, Marsch WC, Haerting J, et al. Concomitant traumas influence prognosis in melanomas of the nail apparatus. Br J Dermatol. 2006;155(1):76–80.
Article
CAS
PubMed
Google Scholar
MöHRLE M, HäFNER HM. Is subungual melanoma related to trauma? Dermatology. 2002;204(4):259–61.
Article
PubMed
Google Scholar
Mole RJ, Mackenzie DN. Subungual Melanoma. Tampa: StatPearls Publishing; 2022.
Google Scholar
Jung HJ, Kweon SS, Lee JB, et al. A clinicopathologic analysis of 177 acral melanomas in Koreans: relevance of spreading pattern and physical stress. JAMA Dermatol. 2013;149(11):1281–8.
Article
PubMed
Google Scholar
Lee TL, Lin MH, Liao YH, et al. Clinicopathological characteristics and prognosis in significantly thick acral lentiginous melanoma in Taiwan. J Formos Med Assoc. 2021. https://doi.org/10.1016/j.jfma.2021.12.001.
Article
PubMed
PubMed Central
Google Scholar
Lv J, Dai B, Kong Y, et al. Acral melanoma in Chinese: a clinicopathological and prognostic study of 142 cases. Sci Rep. 2016;6:31432. https://doi.org/10.1038/srep31432
Article
CAS
PubMed
PubMed Central
Google Scholar
Csányi I, Houshmand N, Szűcs M, et al. Acral lentiginous melanoma: a single-centre retrospective review of four decades in East-Central Europe. J Eur Acad Dermatol Venereol. 2020;34(9):2004–10.
Article
PubMed
Google Scholar
Lino-silva LS, Zepeda-najar C, Salcedo-hernández RA, et al. Acral lentiginous melanoma: survival analysis of 715 cases. J Cutan Med Surg. 2019;23(1):38–43.
Article
PubMed
Google Scholar
Wang L, Wu J, Dai Z, et al. Clinical characteristics and prognosis of acral lentiginous melanoma: a single-center series of 211 cases in China. Int J Dermatol. 2021;60(12):1504–9.
Article
CAS
PubMed
Google Scholar
Huang K, Xu Y, Gabriel EM, et al. Comparative analysis of acral melanoma in Chinese and Caucasian patients. J Skin Cancer. 2020;2020:5169051.
Article
PubMed
PubMed Central
Google Scholar
Rubegni P, Rossi S, Nami N, et al. A single centre melanoma thickness trend (1985–2009) in relation to skin areas accessible and non-accessible to self-inspection. Australas J Dermatol. 2012;53(1):32–6.
Article
PubMed
Google Scholar
Phan A, Touzet S, Dalle S, et al. Acral lentiginous melanoma: a clinicoprognostic study of 126 cases. Br J Dermatol. 2006;155(3):561–9.
Article
CAS
PubMed
Google Scholar
Kolla AM, Vitiello GA, Friedman EB, et al. Acral lentiginous melanoma: a United States multi-center substage survival analysis. Cancer Control. 2021;28:10732748211053568.
Article
PubMed
PubMed Central
Google Scholar
Sanlorenzo M, Osella-Abate S, Ribero S, et al. Melanoma of the lower extremities: foot site is an independent risk factor for clinical outcome. Int J Dermatol. 2015;54(9):1023–9.
Article
PubMed
Google Scholar
Mao L, Qi Z, Zhang L, et al. Immunotherapy in acral and mucosal melanoma: current status and future directions. Front Immunol. 2021;12: 680407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollina U, Tempel S, Hansel G. Subungual melanoma: a single center series from Dresden. Dermatol Ther. 2019;32(5): e13032.
Article
PubMed
Google Scholar
Singal A, Pandhi D, Gogoi P, et al. Subungual melanoma is not so rare: report of four cases from India. Indian Dermatol Online J. 2017;8(6):471–4.
Article
PubMed
PubMed Central
Google Scholar
Behbahani S, Malerba S, Samie FH. Racial and ethnic differences in the clinical presentation and outcomes of acral lentiginous melanoma. Br J Dermatol. 2021;184(1):158–60.
Article
CAS
PubMed
Google Scholar
Bradford PT, Goldstein AM, McMaster ML, et al. Acral lentiginous melanoma: incidence and survival patterns in the United States, 1986–2005. Arch Dermatol. 2009;145(4):427–34.
Article
PubMed
PubMed Central
Google Scholar
Gavillero A, García-Casado Z, Requena C, et al. Differences by anatomical site of non-acral lentiginous melanomas of the lower limb. Dermatology. 2022. https://doi.org/10.1159/000522492.
Article
PubMed
Google Scholar
Wei X, Wu D, Li H, et al. The clinicopathological and survival profiles comparison across primary sites in acral melanoma. Ann Surg Oncol. 2020;27(9):3478–85. https://doi.org/10.1245/s10434-020-08418-5.
Article
PubMed
PubMed Central
Google Scholar
Kostaki M, Plaka M, Stergiopoulou A, et al. Subungual melanoma: the experience of a Greek melanoma reference centre from 2003 to 2018. J Eur Acad Dermatol Venereol. 2020;34(5):e231–4.
Article
CAS
PubMed
Google Scholar
Nunes LF, Mendes GLQ, Koifman RJ. Subungual melanoma: a retrospective cohort of 157 cases from Brazilian National Cancer Institute. J Surg Oncol. 2018;118(7):1142–9.
Article
PubMed
Google Scholar
Freeman JB, Gray ES, Millward M, et al. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells. J Transl Med. 2012;10:192.
Article
PubMed
PubMed Central
Google Scholar
Rapanotti MC, Cugini E, Nuccetelli M, et al. MCAM/MUC18/CD146 as a multifaceted warning marker of melanoma progression in liquid biopsy. Int J Mol Sci. 2021;22(22):12416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khattak MA, Reid A, Freeman J, et al. PD-L1 expression on circulating tumor cells may be predictive of response to pembrolizumab in advanced melanoma: results from a pilot study. Oncologist. 2020;25(3):e523.
Article
CAS
Google Scholar
Forschner A, Battke F, Hadaschik D, et al. Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma—results of a prospective biomarker study. J Immunother Cancer. 2019;7(1):180.
Article
PubMed
PubMed Central
Google Scholar
Tsao SC, Weiss J, Hudson C, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198.
Article
PubMed
CAS
Google Scholar
Kaneko A, Kanemaru H, Kajihara I, et al. Liquid biopsy-based analysis by ddPCR and CAPP-Seq in melanoma patients. J Dermatol Sci. 2021;102(3):158–66.
Article
CAS
PubMed
Google Scholar
Cesi G, Philippidou D, Kozar I, et al. A new ALK isoform transported by extracellular vesicles confers drug resistance to melanoma cells. Mol Cancer. 2018;17(1):145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vella LJ, Behren A, Coleman B, et al. Intercellular resistance to BRAF inhibition can be mediated by extracellular vesicle-associated PDGFRβ. Neoplasia. 2017;19(11):932–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordonnier M, Nardin C, Chanteloup G, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9(1):1710899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenberg E, Besser MJ, Ben-Ami E, et al. A comparative analysis of total serum miRNA profiles identifies novel signature that is highly indicative of metastatic melanoma: a pilot study. Biomarkers. 2013;18(6):502–8.
Article
CAS
PubMed
Google Scholar
Li P, He QY, Luo CQ, et al. Circulating miR-221 expression level and prognosis of cutaneous malignant melanoma. Med Sci Monit. 2014;20:2472–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bai M, Zhang H, Si L, et al. Upregulation of serum miR-10b Is associated with poor prognosis in patients with melanoma. J Cancer. 2017;8(13):2487–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi Q, Liu L, Chen J, et al. Integrative genomic profiling uncovers therapeutic targets of acral melanoma in Asian populations. Clin Cancer Res. 2022;28(12):2690–703.
Article
CAS
PubMed
Google Scholar
Bastian BC, Kashani-Sabet M, Hamm H, et al. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res. 2000;60(7):1968–73.
CAS
PubMed
Google Scholar
Newell F, Wilmott JS, Johansson PA, et al. Whole-genome sequencing of acral melanoma reveals genomic complexity and diversity. Nat Commun. 2020;11(1):5259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaremba A, Murali R, Jansen P, et al. Clinical and genetic analysis of melanomas arising in acral sites. Eur J Cancer. 2019;119:66–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vazquez VDEL, Vicente AL, Carloni A, et al. Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res. 2016;26(2):93–9.
Article
CAS
Google Scholar
Niu HT, Zhou QM, Wang F, et al. Identification of anaplastic lymphoma kinase break points and oncogenic mutation profiles in acral/mucosal melanomas. Pigment Cell Melanoma Res. 2013;26(5):646–53.
Article
CAS
PubMed
Google Scholar
Ponti G, Manfredini M, Greco S, et al. BRAF, NRAS and C-KIT advanced melanoma: clinico-pathological features, targeted-therapy strategies and survival. Anticancer Res. 2017;37(12):7043–8.
CAS
PubMed
Google Scholar
Yeh I, Jorgenson E, Shen L, et al. Targeted genomic profiling of acral melanoma. J Natl Cancer Inst. 2019;111(10):1068–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haugh AM, Zhang B, Quan VL, et al. Distinct patterns of acral melanoma based on site and relative sun exposure. J Invest Dermatol. 2018;138(2):384–93.
Article
CAS
PubMed
Google Scholar
Borkowska A, Szumera-Ciećkiewicz A, Spałek M, et al. Mutation profile of primary subungual melanomas in Caucasians. Oncotarget. 2020;11(25):2404–13.
Article
PubMed
PubMed Central
Google Scholar
Holman BN, van Gulick RJ, Amato CM, et al. Clinical and molecular features of subungual melanomas are site-specific and distinct from acral melanomas. Melanoma Res. 2020;30(6):562–73.
Article
CAS
PubMed
Google Scholar
Elefanti L, Zamuner C, Fiore DELP, et al. The molecular landscape of primary acral melanoma: a multicenter study of the Italian melanoma intergroup (IMI). Int J Mol Sci. 2021;22(8):3826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong JW, Lee S, Kim DC, et al. Prognostic and clinicopathologic associations of BRAF mutation in primary acral lentiginous melanoma in Korean patients: a preliminary study. Ann Dermatol. 2014;26(2):195–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pollock PM, Harper UL, Hansen KS, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20.
Article
CAS
PubMed
Google Scholar
Yamazaki N, Tanaka R, Tsutsumida A, et al. BRAF V600 mutations and pathological features in Japanese melanoma patients. Melanoma Res. 2015;25(1):9–14.
Article
CAS
PubMed
Google Scholar
Picard M, Pham Dang N, D’incan M, et al. Is BRAF a prognostic factor in stage III skin melanoma? A retrospective study of 72 patients after positive sentinel lymph node dissection. Br J Dermatol. 2014;171(1):108–14.
Article
CAS
PubMed
Google Scholar
Chang JW, Hsieh JJ, Wu CE, et al. Genomic landscapes of acral melanomas in East Asia. Cancer Genomics Proteomics. 2021;18(1):83–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu S, Xu T, Dai J, et al. TERT copy gain predicts the outcome of high-dose interferon α-2b therapy in acral melanoma. Onco Targets Ther. 2018;11:4097–104.
Article
PubMed
PubMed Central
Google Scholar
Lim Y, Lee DY. Identification of genetic mutations related to invasion and metastasis of acral melanoma via whole-exome sequencing. J Dermatol. 2021;48(7):999–1006.
Article
CAS
PubMed
Google Scholar
Farshidfar F, Rhrissorrakrai K, Levovitz C, et al. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat Commun. 2022;13(1):898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M, Yoon J, Chung YJ, et al. Whole-exome sequencing reveals differences between nail apparatus melanoma and acral melanoma. J Am Acad Dermatol. 2018;79(3):559-61.e1.
Article
PubMed
Google Scholar
Lim Y, Yoon D, Lee DY. Novel mutations identified by whole-exome sequencing in acral melanoma. J Am Acad Dermatol. 2020;83(6):1792–4.
Article
PubMed
Google Scholar
Kong Y, Sheng X, Wu X, et al. Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res. 2017;23(22):6946–57.
Article
CAS
PubMed
Google Scholar
Yu J, Yan J, Guo Q, et al. Genetic aberrations in the CDK4 pathway are associated with innate resistance to PD-1 blockade in chinese patients with non-cutaneous melanoma. Clin Cancer Res. 2019;25(21):6511–23.
Article
CAS
PubMed
Google Scholar
Turner J, Couts K, Sheren J, et al. Kinase gene fusions in defined subsets of melanoma. Pigment Cell Melanoma Res. 2017;30(1):53–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tod BM, Schneider JW, Bowcock AM, et al. The tumor genetics of acral melanoma: what should a dermatologist know? JAAD Int. 2020;1(2):135–47.
Article
PubMed
PubMed Central
Google Scholar
Edwards J, Ferguson PM, Lo SN, et al. Tumor mutation burden and structural chromosomal aberrations are not associated with T-cell density or patient survival in acral, mucosal, and cutaneous melanomas. Cancer Immunol Res. 2020;8(11):1346–53.
Article
CAS
PubMed
Google Scholar
Trembath DG, Davis ES, Rao S, et al. Brain tumor microenvironment and angiogenesis in melanoma brain metastases. Front Oncol. 2020;10: 604213.
Article
PubMed
Google Scholar
Attrill GH, Ferguson PM, Palendira U, et al. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res. 2021;34(3):529–49.
Article
CAS
PubMed
Google Scholar
Erdag G, Schaefer JT, Smolkin ME, et al. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res. 2012;72(5):1070–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borkowska AM, Szumera-Ciećkiewicz A, Chraszczewska M, et al. Clinical significance of tumor microenvironment in acral melanoma: a large single-institution study of Caucasians. J Clin Med. 2021;10(7):1452.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castaneda CA, Castillo M, Torres-Cabala C, et al. Relationship between tumor-associated immune infiltrate and p16 staining over clinicopathological features in acral lentiginous melanoma. Clin Transl Oncol. 2019;21(9):1127–34.
Article
CAS
PubMed
Google Scholar
Castaneda CA, Torres-Cabala C, Castillo M, et al. Tumor infiltrating lymphocytes in acral lentiginous melanoma: a study of a large cohort of cases from Latin America. Clin Transl Oncol. 2017;19(12):1478–88.
Article
CAS
PubMed
Google Scholar
Shoushtari AN, Munhoz RR, Kuk D, et al. The efficacy of anti-PD-1 agents in acral and mucosal melanoma. Cancer. 2016;122(21):3354–62.
Article
CAS
PubMed
Google Scholar
Nakamura Y, Namikawa K, Yoshino K, et al. Anti-PD1 checkpoint inhibitor therapy in acral melanoma: a multicenter study of 193 Japanese patients. Ann Oncol. 2020;31(9):1198–206.
Article
CAS
PubMed
Google Scholar
Li J, Smalley I, Chen Z, et al. Single-cell characterization of the cellular landscape of acral melanoma identifies novel targets for immunotherapy. Clin Cancer Res. 2022;28(10):2131–46.
Article
CAS
PubMed
Google Scholar
Lee WJ, Lee YJ, Shin HJ, et al. Clinicopathological significance of tumor-infiltrating lymphocytes and programmed death-1 expression in cutaneous melanoma: a comparative study on clinical subtypes. Melanoma Res. 2018;28(5):423–34.
Article
CAS
PubMed
Google Scholar
Usman HA, Hernowo BS, Tobing MDL, et al. The major role of NF-κB in the depth of invasion on acral melanoma by decreasing CD8(+) T cells. J Pathol Transl Med. 2018;52(3):164–70.
Article
PubMed
PubMed Central
Google Scholar
Abidin FAZ, Usman HA, Suryanti S, et al. CD103+ T lymphocyte count linked to the thickness of invasion on acral melanoma without E-cadherin involvement. Clin Cosmet Investig Dermatol. 2021;14:1783–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura Y, Zhenjie Z, Oya K, et al. Poor lymphocyte infiltration to primary tumors in acral lentiginous melanoma and mucosal melanoma compared to cutaneous melanoma. Front Oncol. 2020;10: 524700.
Article
PubMed
PubMed Central
Google Scholar
Zúñiga-Castillo M, Pereira NV, Sotto MN. High density of M2-macrophages in acral lentiginous melanoma compared to superficial spreading melanoma. Histopathology. 2018;72(7):1189–98.
Article
PubMed
Google Scholar
Takeya M, Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol Int. 2016;66(9):491–505.
Article
PubMed
Google Scholar
Maleki VS. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J Immunother Cancer. 2018;6(1):157.
Article
Google Scholar
Patel SP, Kurzrock R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.
Article
CAS
PubMed
Google Scholar
Davis AA, Patel VG. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J Immunother Cancer. 2019;7(1):278.
Article
PubMed
PubMed Central
Google Scholar
Yun S, Park Y, Moon S, et al. Clinicopathological and prognostic significance of programmed death ligand 1 expression in Korean melanoma patients. J Cancer. 2019;10(13):3070–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren M, Dai B, Kong YY, et al. PD-L1 expression in tumour-infiltrating lymphocytes is a poor prognostic factor for primary acral melanoma patients. Histopathology. 2018;73(3):386–96.
Article
PubMed
Google Scholar
Kaunitz GJ, Cottrell TR, Lilo M, et al. Melanoma subtypes demonstrate distinct PD-L1 expression profiles. Lab Invest. 2017;97(9):1063–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behbahani S, Malerba S, Samie FH. Acral lentiginous melanoma: clinicopathological characteristics and survival outcomes in the US National Cancer Database 2004–2016. Br J Dermatol. 2020;183(5):952–4.
Article
CAS
PubMed
Google Scholar