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Clinical features, molecular pathology, 
and immune microenvironmental 
characteristics of acral melanoma
Jianping Gui†, Zhen Guo† and Di Wu*   

Abstract 

Acral melanoma (AM) has unique biology as an aggressive subtype of melanoma. It is a common subtype of mela-
noma in races with darker skin tones usually diagnosed at a later stage, thereby presenting a worse prognosis com-
pared to cutaneous melanoma. The pathogenesis of acral melanoma differs from cutaneous melanoma, and trauma 
promotes its development. Compared to cutaneous melanomas, acral melanomas have a significantly lighter muta-
tional burden with more copy number variants. Most acral melanomas are classified as triple wild-type. In contrast to 
cutaneous melanomas, acral melanomas have a suppressive immune microenvironment. Herein, we reviewed the 
clinical features, genetic variants, and immune microenvironmental characteristics of limbic melanomas to summarise 
their unique features.

Keywords: Acral melanoma, Clinical features, Molecular pathology, Immune microenvironment

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Acral melanoma (AM) occurs in the glabrous skin of 
palms, soles, and nail beds and is the most common 
melanoma subtype in Asian, African, and Hispanic popu-
lations. Notably, due to its unique risk factors, site of ori-
gin, and pathological type, AM has significantly different 
clinical outcomes than cutaneous melanoma (CM). The 
local recurrence of AM is two to five times higher than 
other melanoma subtypes [1]. Moreover, AM is usually at 
a more advanced disease stage when diagnosed. Immune 
checkpoint inhibitors and targeted therapies have dra-
matically changed the clinical outcomes of melanoma 
and have significantly improved the prognosis of mela-
noma patients. However, AM patients do not benefit as 
much from targeted therapy and immunotherapy as CM 
patients. Hence, since melanoma treatments enter the era 

of targeted and immunotherapy, it is particularly impor-
tant to investigate the molecular and immunological fea-
tures of AM pathogenesis.

Clinical characteristics
The causative factors of AM are different from CM, and 
AM is less likely to develop from ultraviolet damage, 
due to the low exposure to sunlight on the palms, soles, 
and nail beds. Moreover, the nail plate has been shown 
to protect the skin against ultraviolet exposure but this 
protection might be incomplete [2]. Trauma is a contro-
versial potential cause of extremity melanomas and some 
studies have not found statistically significant differences 
in trauma groups [3]. However, AM tends to occur in the 
foot, suggesting the possibility that trauma and mechani-
cal stress contribute to its development [1, 4, 5]. Addi-
tionally, a retrospective study of a Chinese population 
found a potential association between trauma and AM, 
particularly lower limb melanoma [6]. The 104 cases of 
trauma-related melanoma had a significant predomi-
nance of AM and the risk of post-trauma melanoma was 

Open Access

Journal of 
Translational Medicine

†Jianping Gui and Zhen Guo authors contributed equally

*Correspondence:  wudi1971@jlu.edu.cn

Cancer Center, The First Hospital of Jilin University, 1 Xinmin St, 
Changchun 130021, China

http://orcid.org/0000-0002-0742-0556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03532-2&domain=pdf


Page 2 of 10Gui et al. Journal of Translational Medicine          (2022) 20:367 

significantly higher in the upper and lower extremities 
than in other sites (p < 0.0001) [6]. A Korean study ana-
lyzing the relationship between AM and trauma reached 
similar conclusions [7]. Nevertheless, the relationship 
between trauma and AM remains unclear. Trauma does 
not necessarily lead to AM development, but its effects 
on AM cannot be ignored. Although there is no clear 
statistical evidence, the relationship between trauma and 
the development of nail apparatus melanoma (NAM) 
is agreed upon by most researchers [8–10]. Some stud-
ies have even suggested that trauma has a much greater 
impact on NAM than AM since NAM occurs more often 
in the thumb or big toe (75–90%), which are more sus-
ceptible to trauma [11]. One study has also found that 
NAM is more closely associated with trauma than non-
nail acral melanoma (NNAM) (p = 0.002) and that nails 
are most often affected by trauma, followed by toenails 
[7].

Interestingly, there are differences in the incidence 
of AM between men and women across ethnic groups. 
However, some studies did not find a significant differ-
ence regarding gender in AM [12–14] and there are con-
flicting views on the relationship between gender and 
AM prognosis since studies have found that gender is not 
an independent prognostic factor of AM [15–17]. In con-
trast, other studies have suggested that being a woman is 
an independent prognostic factor, presenting prolonged 
overall survival (OS) compared to male patients. Being a 
male is also associated with a poorer prognosis [16], and 
a study analyzing Caucasian versus Chinese AM patients 
found that the 5-year disease-specific survival (DSS) was 
77.9% in Chinese female patients compared to 59.4% in 
male patients, after controlling for other influencing 
factors. Similar results were observed in the Caucasian 
group [18]. These results might be due to the thicker 
Breslow thickness in males at the time of diagnosis [19]. 
In another study with ALM patients, the 5- and 10-year 
DSS rates were higher in women than in men (p < 0.001), 
and men were more likely to develop thicker tumors than 
women (p < 0.001). Moreover, men had later disease stag-
ing than women (p < 0.001) [19], as described by Phan, 
Kolla, and Huang et al. [4, 20, 21]. Additionally, in a study 
of melanomas located in the lower limbs, the frequency 
of disease progression was higher in men than in women, 
regardless of whether the site of disease was in the legs 
or feet. Besides, in the foot group, lymph node involve-
ment was more frequent in men. The authors hypothe-
sized that this difference might be related to the different 
lymphatic drainage of the foot in men and women [22].
In a retrospective study with 176 ALM patients, 60.30% 
of patients who underwent sentinel lymph node (SLN) 
biopsy were positive and negative SLN patients were pre-
dominantly females (1:4) [15]. The relationship between 

gender and the clinical outcome of AM remains a matter 
of debate and research, and hormonal or immunological 
factors might be responsible for these differences.

Furthermore, AM has a variable incidence across 
ethnic groups. It is the most common subtype of mela-
noma in Asian, African, and Hispanic populations. The 
most common melanoma subtypes in China are AM and 
mucosal melanoma, accounting for approximately 65% 
of cases [23]. Moreover, NAM, an AM subtype, accounts 
for 0.7–3.5% of melanomas in Caucasians [24], with a 
higher incidence (10–75%) in Asian and African patients 
[10, 25]. The clinical outcomes of AM also vary among 
races. A study with 4139 acral melanoma patients found 
that black, Asian, and Hispanic patients exhibited more 
advanced disease staging, had thicker Breslow thickness, 
and had more ulcers compared to Caucasians. This study 
also found that income, education, and social welfare 
were statistically significant to prognosis in the black and 
Hispanic populations. These factors might also contrib-
ute to delayed diagnosis in patients, which is related to 
worse OS [26].

Additionally, Huang et  al. have shown that Chinese 
patients have more advanced diseases compared to Cau-
casians, including thicker Breslow thickness and more 
ulcers. However, after controlling for staging and Bres-
low thickness, the 5-year DSS rates were 68.4 and 73% 
for Chinese and Caucasian AM patients, respectively, 
with no significant difference (p = 0.56) [18], similar to 
Bradford et  al. Additionally, there were no statistically 
significant differences in the 5- and 10-year survival rates 
between races (non-Hispanic whites, blacks, Hispanic 
whites, and Asian/Pacific Islanders) after controlling for 
tumor thickness or ALM stage (p > 0.05) [27]. These stud-
ies have found differences in disease stage, thickness, and 
ulcer rates between races, but not in the stratified analy-
sis. Possibly, the genetic alterations in AM patients are 
similar between races, and the differences in prognosis 
might be associated with delay in diagnosis. Neverthe-
less, other socioeconomic factors might also influence 
prognosis.

Non-nail acral melanomas are more common on the 
foot (82–88.6%) [4, 5, 15] and nail melanoma appears to 
be more common on the nails than on the toenails (58–
61%) [7, 12, 15, 20]. The prognosis for AM is worse than 
for CM. Currently, there is debate in the literature as to 
whether this poorer prognosis is due to the more aggres-
sive biology of AM, its unique site of origin, or the late 
clinical stage at diagnosis. Many researchers consider the 
foot as an independent risk factor for clinical outcomes 
(Table  1). For example, in melanomas with lower limb 
sites, the prognosis is significantly higher in the leg group 
than in the foot group, regardless of the histological sub-
type [22, 28]. Additionally, a study found that plantar 
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melanoma had a worse prognosis compared to the palms 
and nail beds [29]. Thus, poorer AM prognoses might 
be more closely related to the anatomical site than the 
histological subtype [5], similar to NAM. For example, 
Kostaki et al. found that tumors in the toes had a higher 
Breslow thickness at diagnosis compared to those in the 
fingers (p < 0.001) [30]. The authors hypothesized that 
since lesions in the hand are more easily detected finger 
melanoma patients are diagnosed earlier. Additionally, a 
retrospective study with NAM patients in Brazil found 
that melanomas occurring in the toes had worse 5-year 
relapse-free survival (RFS) compared to finger melano-
mas, with the anatomical location of the foot being an 
independent risk factor [31].

Liquid biopsy
In recent years, liquid biopsy has been widely used in 
melanoma. Related studies have found that the number 
of CMCs (circulating melanoma cells) correlates with the 
occurrence, and invasion of melanoma. The number of 
CMCs is significantly higher in patients with metastatic 
melanoma [32]. The levels of the melanoma cell adhesion 
molecule MCAM (MUC18/MelCAM/CD146) are also 
correlated with tumor aggressiveness [33]. The 12-month 
PFS rates are significantly better in melanoma patients 
with PD-L1-positive CTCs(circulating tumour cells) than 
in negative patients (81% vs 22%) [34].

Increased ctDNA concentrations are also associated 
with poorer OS [35] and ctDNA (circulating tumour 
DNA) assays can be used to assess the response of mel-
anoma patients to drug therapy. The levels of ctDNA 
[BRAF (V600E), BRAF (V600K), or NRAS (Q61H)] 
decrease when there is a response to targeted therapy 

and increase as the disease progresses [36]. Moreover, 
when melanoma patients become resistant to BRAF/
MEK inhibitors, increased copy numbers of MET muta-
tions is detected in the ctDNA [37].

There is also a link between exosomes and drug resist-
ance in melanoma [38]. Exosomes can be involved in 
the growth and survival of cancer cells through propa-
gated resistance. PDGFRβ moves to melanoma cells via 
exosomal transport and activates the phosphatidylino-
sitol-3-kinase (PI3K-AKT) signaling pathway, thereby 
reducing the susceptibility to BRAF inhibitors [39]. The 
levels of PD-L1 on melanoma-derived exosomes are 
associated with poor disease prognosis, Exosomes carry-
ing PD-L1 had immunosuppressive properties, and that 
can mediate tumor-induced immunosuppression [40].

Finally, circulating miRNAs can be used as biomark-
ers for melanoma diagnosis. For example, the deletion 
of miR-29c and miR-324-3p in the serum of melanoma 
patients suggests an association with melanoma metas-
tasis [41]. Additionally, the upregulation of miR-221 and 
miR-10b expression is associated with poor prognosis 
[42, 43].

Overall, these studies have demonstrated the impor-
tance of liquid biopsy as a tool for melanoma diagnosis, 
efficacy prediction, and prognosis determination.

Mutational landscape
Compared to CM, AM has more chromosomal structural 
variations and copy number variations (CNVs) [23, 44]. 
Tumour mutation burden (TMB) in cutaneous melanoma 
is more than 18 times in acral melanoma {Hayward, 2017 
#321}. The accumulation of chromosomal instability 
occurs at the initial stage of AM, followed by KIT, BRAF, 

Table 1 Influence of the location on the prognosis of acral melanoma

SSM superficial spreading melanoma, NM nodular melanomas, NR not reach

First author Study type Cases Location Results Ref.

Gavillero A Retrospective study n = 285 (SSM and 
NM on the lower 
limb)

Foot vs. Leg Multifactorial and univariate analyses 
confirmed the foot location as an 
independent prognostic factor associ-
ated with reduced melanoma-specific 
survival (HR of 2.3 and 2.7, respectively)

[28]

Martina Sanlorenzo Retrospective study n = 1671 (Total);
n = 327 (Foot)

Foot vs. Leg Multifactorial and univariate analyses 
confirmed the foot site as a negative 
independent prognostic factor for 
disease-specific survival (HR of 2.53 and 
1.52 respectively)

[22]

Xiaoting Wei Multi-center retrospective study n = 1157;
n = 792 (Soles);
n = 95 (Palms);
n = 270 (Nail beds)

Sole vs. Nail bed vs. Palm The 10-year survival rates were 32.8%, 
60.4%. and 48.9% for sole, palm, and nail 
bed groups, respectively. The median 
MSS of patients in the sole group was 
only 65.0 m, significantly shorter than in 
the nail bed (112.0 m) and palm group 
(NR) (p = 0.0053)

[29]
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and NRAS mutations and other rare driver mutations 
[44, 45]. BRAF (10–35%) and NRAS (8–27.9%) muta-
tions are common driver mutations in AM but are much 
less frequent than in CM [BRAF (45–50%) and NRAS 
(19–30%)]. Besides, the proportion of triple wild-type 
(TWT) mutations that do not express BRAF, NRAS, or 
NF1 mutations is higher in AM than in CM (38%vs11%) 
[46]. Moreover, NF1 and KIT (6%-20.7%) [47, 48] muta-
tions and amplification of CCND1, CDK4, MITF, and 
TERT are also common in AM [49–51]. In NAM, BRAF 
and NRAS frequencies are low [51–53], and KIT muta-
tions are more common [44]. Holman et  al. found that 
KIT mutations are more common in NAM (16%) than in 
NNAM (3%), with BRAF and NRAS mutations occurring 
almost exclusively in NNAM [54]. This result was also 
supported by Elefanti et  al. They also found that TWT 
was closely associated with NAM [55]. Additionally, one 
study found significant amplification of a region in chro-
mosome 4, including KIT, in NAM patients, whereas no 
such mutations were observed in NNAM [46].

Furthermore, BRAF and NRAS mutations might be 
associated with ultraviolet radiation (UVR)-induced 
damage [56], which would partly explain the lower BRAF 
and NRAS mutation rates in AM compared to CM. Pre-
vious studies have proposed a classification of AM based 
on the BRAF V600E mutation. BRAF V600E-mutant 
AMs are similar to low Chronic sun damage (low-
CSD) melanomas, presenting fewer DNA copy number 
changes, whereas the histological subtype of non-BRAF 
V600E-mutant patients is more likely to be ALM [51]. 
Newell et al. also found that BRAF V600E-mutant AMs 
are similar to CMs with low rearrangement burden and 
fewer samples with complex chromosomes [46]. Addi-
tionally, BRAF-mutated AM has been associated with 
earlier clinical staging (pT1-T2 stages), more favorable 
histological prognostic factors (such as thinner Breslow 
thickness), and lower mitotic counts [55]. The clinical 
outcomes of BRAF-mutated AM patients are also better 
than in wild-type BRAF patients [57]. The BRAF muta-
tions are also common in benign nevi [58]. However, 
Yamazaki et  al. showed that BRAF V600 mutations are 
more common in advanced ALM than in early ALM [59]. 
Moreover, BRAF mutations participate in the metastatic 
spread of melanoma [60]. Overall, these studies have 
indicated that BRAF mutations play an important role in 
melanoma development, maintenance, and progression.

Previous studies have found that AM with UVR char-
acteristics most often occurs in the nail area [2], suggest-
ing that the nail plate is not completely resistant to UVR. 
A study with 87 tumor tissue specimens (59 tumors 
from the soles of the feet, 6 from the palms of the hands, 
and 22 nail tumors) found that nail tumors had a higher 

proportion of UVR features than toenail tumors. Besides, 
NAM presented the highest mutational burden of all tis-
sue specimens, while foot NNAM presented the lowest 
[46]. Finally, Shi et al. showed that foot NAM has a higher 
mutational load than foot NNAM [44].

Acral melanoma has complex and variable chromo-
somal structural abnormalities, including copy number 
amplification and deletion, chromosomal aneuploidy, 
and localized structural rearrangements. The gain of 
chromosomes 7 and 8 and loss of chromosomes 9 and 10 
has been previously identified by Newell et al. Addition-
ally, isochromosomes consisting of 6p gain and 6q loss 
are more common in NAM [46]. The investigators also 
observed recurrent complex rearrangements on chro-
mosomes 5, 6, 7, 11, and 12, associated with amplifica-
tion of TERT, CDK4, MDM2, CCND1, PAK1, and GAB2 
[46]. Yeh et  al. found that PAK1 and GAB2 on the long 
arm of chromosome 11 were within 1 Mb of each other 
and were always co-amplified. MDM2 on chromosome 
12 was co-amplified with CDK4 in more than a third of 
CDK4 amplification cases, and EP300 was amplified on 
chromosome 22 [51]. Numerous genome sequencing 
results on AM have identified common copy number 
amplified genes, including CCND1, GAB2, PAK1, TERT, 
YAP1, MDM2, CDK4, NOTCH2, KIT, and EP300; and 
copy number deletion regions, including those contain-
ing CDKN2A and NF1, and PTEN [47, 61].

Moreover, TERT amplification can be associated with 
poor AM prognosis. For example, Yu et  al. determined 
TERT amplification as an independent poor prognos-
tic factor for RFS in AM patients treated with high dose 
interferon (HD-IFN) [62].

The frequency of EP300 gains is also higher in mel-
anomas than in CM (24.5% vs. 11.75%) [44]. Shi et  al. 
have shown that, in patients carrying increased copy 
numbers of the EP300-MITF axis, AM is more aggres-
sive than in patients without these variants, besides 
presenting thicker Breslow thickness, more ulcers, 
and later clinical staging. Furthermore, EP300 gains 
are associated with a suppressive inflammatory envi-
ronment, as evidenced by reduced expression of pro-
inflammatory genes (IL8, IL1B, IL1RN, and Ptgs2) 
[44]. This might be associated with immune escape 
from AM. For example, a study has previously deter-
mined mutations associated with AM invasion and 
metastasis, including EP300, ANO1, CPEB1, INADL, 
MAP1B, MAP7D1, MARCH 6, NETO1, PRKCE, SBK1, 
TNRC6A, USP13, WDR74, and ZNF827 [63]. Farshid-
far et  al. have found that recurrent, late-arising focal 
amplifications of cytoband 22q11.21 associated with 
limbic melanoma metastasis was a major determinant 
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of poor clinical outcome and was related to the down-
regulation of immunomodulatory genes associated 
with immunotherapeutic response. For example, 
LZTR1 and CRKL are two important genes associated 
with 22q11.21 amplification in limbic melanoma, and 
LZTR1 can be a viable therapeutic target [64].

In previous studies, NAM presented the most diverse 
group of oncogenic mutations, including KRAS, 
CTNNB1, TP53, ERBB2, SMAD4, PIK3CA, STK11, 
EGFR, FGFR3, and PTPN11 mutations [52, 53]. The 
genome of NAM has significantly more CNVs than 
NNAM [52, 65]. Lim et  al. suggested that mutations 
in CSMD3 and EHMT1 might play a significant onco-
genic role in NAM, but not in NNAM [66]. Holman 
et  al. have found that, in the PI3K/mTOR pathway, 
RICTOR and TSC1 alterations are prevalent in NAM, 
while AKT1 alterations and PTEN loss are common in 
NNAM [54]. Additionally, NAM and NNAM have their 
preferred pathogenic pathways, such as DNA replica-
tion and repair pathways as well as chromatin modifi-
cation pathways, although not statistically significant 
[54].

Amplification of CCND1 and loss of CDKN2A can 
activate the CDK4 pathway, which is a common genetic 
feature of AM [51]. Kong et  al. found genetic aberra-
tions of the CDK4/6 pathway in 82.7% of AM cases. 
They further showed that patients with CDK4 pathway 
aberrations had a significantly worse prognosis com-
pared to those without these aberrations. This might 
be partly because AM patients with CDK4 pathway 
aberrations have thicker Breslow thickness and more 
ulcers [67]. The genetic variants in the CDK4 pathway 

have also been associated with innate resistance to 
PD-1 therapy in non-CM patients [68], providing some 
theoretical support for the poorer response of AM to 
immunotherapy.

In melanomas lacking these common coding mutations 
(BRAF, NRAS, KRAS, HRAS, NF1, KIT, GNAQ, and 
GNA11), there is a high frequency of kinase fusions [69]. 
These fusions might play a specific role in tumor develop-
ment [70]. In AM, kinase fusions include PAK1, DGKB, 
NTRK1, BRAF, ALK, and RET [49, 69], and might be 
potential therapeutic targets.

Tumor immune microenvironment (TIME)
Tumor-infiltrating lymphocytes (TILs) are a fundamen-
tal component of the TIME, representing a population 
of lymphocytes with specific immune responsiveness 
to tumor cells [71]. Many studies have explored the role 
of TILs as biomarkers of tumor immune responses in 
melanoma [72–74]. For example, it has been suggested 
that TILs, particularly cytotoxic CD8 + T cells, are a 
prognostic factor for the OS in melanoma patients and 
are also associated with the response to immune check-
point inhibitors (ICIs) [71]. For example, a study with 
AM patients demonstrated that high TILs can be associ-
ated with a good survival prognosis [75], similar to Cas-
taneda et al. [76, 77]. Moreover, AM has a lower response 
rate to ICIs compared to CM [78, 79]. A small Japanese 
clinical study also found that NAM responded worse to 
immunotherapy than NNAM [79]. AM also has a sup-
pressive immune microenvironment compared to CM 
[80] (Table  2). Another study compared the differences 
in the levels of infiltrating lymphocytes and programmed 

Table 2 A key summary of the immune microenvironment in acral melanoma

First author Study type Case Methodologies Results Ref.

Yoshiyuki Nakamura Retrospective study CM  (n = 53)
AM (n = 65)

Immunohistochemistry The total TIL count was significantly lower in ALM 
than in CM (54.2 vs. 72.9, p < 0.01)
The CD8 TIL count was significantly lower in ALM 
than in CM (33.0 vs. 46.5, p < 0.01)

[84]

Jiannong Li Retrospective study AM (n = 8);
GSE115978 (n = 32);
GSE72056 (n = 19)
TCGA:
AM(n = 336);
CM(n = 443)

scRNA-seq Compared to the non-AM dataset (GSE115978 
and GSE72056), acral melanomas had significantly 
fewer PDCs, CD8 T cells, and NK cells, very few γδ 
T cells, and a lower mean immune infiltration rate 
(39.1% vs. 71.2% vs. 67.6)
Further validation of the TCGA dataset revealed 
that the proportion of CD8T effector memory cells, 
NK cells, and γδ T cells were lower in AM patients 
than in those with CM

[80]

Miguel Zúñiga-Castillo Retrospective study ALM (n = 67);
SSM (n = 67)

Immunohistochemistry Increased M2-Ms in ALM compared to SSM [85]
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death receptor-1 (PD-1) in various melanoma sub-
types and found lower levels of TILs and PD-1 in NAM 
tumors than in NNAM [81], which might partly explain 
the poorer response of NAM to immunotherapy. How-
ever, the sample size of this study was small and more 
research is needed. Nuclear factor κB (NF-κB), a pro-
tein complex associated with tumor cell proliferation, 
invasion, and anti-apoptosis, has an invasive role in AM 
by reducing the number of CD8+ T cells. Additionally, 
positive immune expression of NF-κB might be a predic-
tor of increased risk of AM metastasis [82]. Moreover, 
CD103+ T lymphocytes are significantly associated with 
infiltration thickness in AM (p = 0.0001). However, the 
immunoexpression of E-calcineurin, a ligand for CD103 
and a marker of tumor progression, is not significantly 
associated with the infiltration thickness of AM [83].

CM: cutaneous melanoma; AM: acral melanoma; ALM: 
acral lentiginous melanoma; SSM: superficial spread-
ing melanoma; GSE115978, GSE72056: the two datasets 
mentioned in the author’s article.

Furthermore, M2-macrophages (M2-Ms) in the TIME 
can be associated with local progression, aggressiveness, 
metastasis, and poor prognosis of melanoma. CD163 
is considered a specific marker for M2-Ms [86]. The 
Zúñiga-Castillo team has demonstrated for the first time 
that the density of M2-Ms is higher in the tumor micro-
environment of ALM compared to superficial spread-
ing melanoma (SSM) [85]. In this study, the density of 
M2-Ms was positively correlated with Breslow thickness, 
ulceration, and mitotic activity of ALM patients [85]. 
These results provided a rationale for the more aggressive 
biological behavior of AM compared to CM.

Furthermore, CM has high levels of tumor mutational 
burden (TMB). Many researchers believe that the differ-
ent responses to immunotherapy between AM and CM 
might be related to their significant difference in TMB. 
The higher the TMB of a tumor, the higher the level of 
neoantigen produced by the tumor and the stronger the 
T-cell and anti-tumor responses when recognized by 
the immune system [71]. Thus, tumors with high TMB 
are usually more immunogenic than those with low 
TMB [81, 87]. However, data regarding the relationship 
between TMB and immune infiltration in the TIME are 
often contradictory, with higher mutation rates not nec-
essarily equating to higher immune infiltration, and with 
limitations to predict the efficacy of immunotherapy. 
Cancers with microsatellite instability (MSI) or mis-
match repair (MMR) deficiency had high response rates 
to ICIs. Although a high TMB is common in melanoma, 
high microsatellite instability (MSI- high, MSI-H) is rare. 

For example, no significant elevations of MSI levels have 
been detected in AM samples by Shi et  al., and MMR 
might not be associated with AM in Asian populations 
[44].

PD-L1 has been suggested as a biomarker to predict 
the prognosis of melanoma patients [88, 89]. For exam-
ple, Yun et al. have found that the combined analysis of 
PD-L1 and TILs can be used to predict the survival out-
come of melanoma patients [90]. However, Ren et  al. 
have shown that the levels of PD-L1 in TILs might have 
a different prognostic value than its levels in tumor cells. 
However, the levels of PD-L1 in TILs are a poor prog-
nostic factor for primary AM patients [91]. In contrast, 
another study found that the relationship between the 
levels of PD-L1 in TILs and survival was not statistically 
significant, which the authors believed to be related to 
the different subtypes of melanoma included in the study 
and differences in PD-L1 assays [90]. Moreover, the levels 
of PD-L1 can vary among melanoma subtypes. For exam-
ple, Kaunitz et  al. found that the levels of PD-L1 were 
observed in 31% of AM and 62% of Chronic sun damage 
patients [92].

Conclusions
Acral melanoma is a more malignant subtype of mela-
noma. It is less likely to develop at sites affected by UV 
damage, and trauma might participate in its develop-
ment. Gender (males) and the location of the origin site 
(foot) can be associated with poorer prognoses. Differ-
ences in prognosis between races are more likely related 
to culture, social welfare, and other ethnic backgrounds. 
Therefore, among people of color, greater emphasis 
should be placed on melanoma screening and increased 
protection awareness, which is essential to improve sur-
vival outcomes.

Whole-genome sequencing studies with AM have 
revealed a unique genomic profile characterized by vari-
able chromosomal structural variations and low muta-
tional load. The mutation types of AM are more likely to 
be triple wild-type and, although treatment responses in 
AM do not significantly differ from CM, targeted thera-
pies are less suitable for AM. Melanoma is considered 
one of the most immunogenic tumors, and several stud-
ies have indicated that the TIME is more suppressive in 
AM than in CM. Moreover, the response of AM patients 
to immunotherapy is lower compared to CM patients 
(Table 3 and Fig. 1). Finally, immune combination thera-
pies are more likely to provide long-term clinical benefits 
for AM patients.
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Table 3 A summary of the main clinical features, molecular pathology, and immune microenvironmental characteristics of acral 
melanoma

CM cutaneous melanoma, AM acral melanoma, CNVs copy number variations, TWT  triple wild-type, Ms macrophages, SSM superficial spreading melanoma

Characteristics Classification Results/Conclusions Ref.

Clinical characteristics Etiology Trauma may promote the development of extremity 
melanoma

[1, 6, 7]

Gender Men may have a worse prognosis compared to women [4, 27, 16, 93, 21, 20]

Anatomic subsite The poorer prognosis of AM might be more closely 
related to the anatomical site than the histological 
subtype

[5, 22, 29, 28, 31]

Molecular pathology characteristics Chromosomal structural variations 
and copy number variations

Compared to CM, AM has more chromosomal struc-
tural variations and CNVs
Common copy number amplified genes include 
CCND1, GAB2, PAK1, TERT, YAP1, MDM2, CDK4, 
NOTCH2, KIT, and EP300; common copy number dele-
tion regions, including those containing CDKN2A and 
NF1 and PTEN

[23, 44, 46, 51, 47, 61]

Driver mutations the proportion of TWT mutations is higher in AM than 
in CM (38% vs. 11%)

[60]

Immune microenvironmental characteristics TILs AM has a suppressive immune microenvironment 
compared to CM (CD 8 + T cell, NK cells, and γδ T cells)

[80, 84]

M2-Ms the density of M2-Ms is higher in the ALM tumor 
microenvironment compared to SSM

[85]

PD-L1 Lower levels of PD-L1 are present in AM than in chronic 
sun-damaged melanoma (31% vs. 62%)

[92]

Fig. 1 A summary of the main points in the text. CSVs chromosomal structural variations, CNVs copy number variations, TWT  triple wild-type, 
TILs tumor infiltrating lymphocytes, CTCs circulating tumor cells, CMCs circulating melanoma cells, MCAM melanoma cell adhesion molecule, CR 
complete response, PR partial remission, SD stable disease, PD progression disease
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