Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.
Article
CAS
PubMed
Google Scholar
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.
Article
CAS
PubMed
Google Scholar
Wang X, Lu J, Guo G, Yu J. Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death Dis. 2021;12(4):299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Guo G, Guan H, Yu Y, Lu J, et al. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 2019;38(1):87.
Article
PubMed
PubMed Central
Google Scholar
Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE. 2006;357:re13.
Google Scholar
Shih VF, Tsui R, Caldwell A, Hoffmann A. A single NF-κB system for both canonical and non-canonical signaling. Cell Res. 2011;21:86–102.
Article
CAS
PubMed
Google Scholar
Boehm JS, Zhao JJ, Yao J, Kim SY, Firestein R, Dunn IF. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell. 2007;129:1065–79.
Article
CAS
PubMed
Google Scholar
Guan H, Zhang H, Cai J, Wu J, Yuan J, Li J, et al. IKBKE is over-expressed in glioma and contributes to resistance of glioma cells to apoptosis via activating NF-κB. J Pathol. 2011;223:436–45.
Article
CAS
PubMed
Google Scholar
Li H, Chen L, Zhang A, Wang G, Han L, Yu K, et al. Silencing of IKKepsilon using siRNA inhibits proliferation and invasion of glioma cells in vitro and in vivo. Int J Oncol. 2012;41:169–78.
CAS
PubMed
Google Scholar
Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502–14.
Article
PubMed
PubMed Central
Google Scholar
Guo JP, Shu SK, He L, Lee YC, Kruk PA, Grenman S, et al. Deregulation of IKBKE is associated with tumour progression, poor prognosis, and cisplatin resistance in ovarian cancer. Am J Pathol. 2009;175:324–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Péant B, Diallo JS, Dufour F, Le Page C, Delvoye N, Saad F, et al. Over-expression of IκB-kinase-ε (IKKε/IKKi) induces secretion of inflammatory cytokines in prostate cancer cell lines. Prostate. 2009;69:706–18.
Article
PubMed
CAS
Google Scholar
Guo J, Kim D, Gao J, Kurtyka C, Chen H, Yu C, et al. IKBKE is induced by STAT3 and tobacco carcinogen and determines chemosensitivity in non-small cell lung cancer. Oncogene. 2013;32:151–9.
Article
CAS
PubMed
Google Scholar
Li W, Chen Y, Zhang J, Hong L, Yuan N, Wang X, et al. IKBKE upregulation is positively associated with squamous cell carcinoma of the lung in vivo and malignant transformation of human bronchial epithelial cells in vitro. Med Sci Monit. 2015;21:1577–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SE, Hong M, Cho J, Lee J, Kim KM. IKKε and TBK1 expression in gastric cancer. Oncotarget. 2017;8:16233–42.
Article
PubMed
Google Scholar
Hildebrandt MA, Tan W, Tamboli P, Huang M, Ye Y, Lin J, et al. Kinome expression profiling identifies IKBKE as a predictor of overall survival in clear cell renal cell carcinoma patients. Carcinogenesis. 2012;33:799–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Teng F, Lu J, Mu D, Zhang J, Yu J. Expression and prognostic role of IKBKE and TBK1 in stage I non-small cell lung cancer. Cancer Manag Res. 2019;11:6593–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin M, Wang X, Lu J. Advances in IKBKE as a potential target for cancer therapy. Cancer Med. 2019;9:247–58.
Article
PubMed
PubMed Central
Google Scholar
Tyner JW, Bumm TG, Deininger J, Wood L, Aichberger KJ, Loriaux MM, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010;115:5232–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lue HW, Cole B, Rao SA, Podolak J, Van Gaest A, King C, et al. Src and STAT3 inhibitors synergize to promote tumour inhibition in renal cell carcinoma. Oncotarget. 2015;6:44675–87.
Article
PubMed
PubMed Central
Google Scholar
Hu Y, Dong XZ, Liu X, Liu P, Chen YB. Enhanced antitumour activity of cetuximab in combination with the Jak inhibitor CYT387 against non-small-cell lung cancer with various genotypes. Mol Pharm. 2016;13:689–97.
Article
CAS
PubMed
Google Scholar
Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, et al. Inhibition of KRAS-driven tumourigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 2014;4:452–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, et al. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin Invest. 2014;124:5411–23.
Article
PubMed
PubMed Central
Google Scholar
Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji T, Liu D, Shao W, Yang W, Wu H, Bian X. Decreased expression of LATS1 is correlated with the progression and prognosis of glioma. J Exp Clin Cancer Res. 2012;31:67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumours and promotes glioblastoma growth. J Neuropathol Exp Neurol. 2011;70:568–77.
Article
CAS
PubMed
Google Scholar
Liu Y, Lu J, Zhang Z, Zhu L, Dong S, Guo G, et al. Amlexanox, a selective inhibitor of IKBKE, generates anti-tumoral effects by disrupting the Hippo pathway in human glioblastoma cell lines. Cell Death Dis. 2017;8:e3022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.
Article
CAS
PubMed
Google Scholar
Pobbati AV, Hong W. Emerging roles of TEAD transcription factors and its coactivators in cancers. Cancer Biol Ther. 2013;14:390–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene. 2011;30:1229–40.
Article
CAS
PubMed
Google Scholar
Neto-Silva RM, de Beco S, Johnston LA. Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of YAP. Dev Cell. 2010;19:507–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res. 2011;71:2728–38.
Article
CAS
PubMed
Google Scholar
Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, et al. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem. 2009;284:13355–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen RR, Zhou AY, Kim E, Lim E, Habelhah H, Hahn WC. IκB kinase ε phosphorylates TRAF2 to promote mammary epithelial cell transformation. Mol Cell Biol. 2012;32:4756–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell. 2009;34:461–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo JP, Tian W, Shu S, Xin Y, Shou C, Cheng JQ. IKBKE phosphorylation and inhibition of FOXO3a: a mechanism of IKBKE oncogenic function. PLoS ONE. 2013;8:e63636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moroishi T, Park HW, Qin B, Chen Q, Meng Z, Plouffe SW, et al. A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes Dev. 2015;29:1271–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai X, Liu H, Shen S, Guo X, Yan H, Ji X, et al. YAP activates the Hippo pathway in a negative feedback loop. Cell Res. 2017;27:1073.
Article
PubMed
PubMed Central
Google Scholar
Kim B, Srivastava SK, Kim SH. Caspase-9 as a therapeutic target for treating cancer. Expert Opin Ther Targets. 2015;19:113–27.
Article
CAS
PubMed
Google Scholar
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22:526–39.
Article
CAS
PubMed
Google Scholar
Loukil A, Cheung CT, Bendris N, Lemmers B, Peter M, Blanchard JM. Cyclin A2: at the crossroads of cell cycle and cell invasion. World J Biol Chem. 2015;6:346–50.
Article
PubMed
PubMed Central
Google Scholar
Nakayama Y, Yamaguchi N. Role of cyclin B1 levels in DNA damage and DNA damage-induced senescence. Int Rev Cell Mol Biol. 2013;305:303–37.
Article
CAS
PubMed
Google Scholar
Sur S, Agrawal DK. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies. Mol Cell Biochem. 2016;416:33–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aressy B, Ducommun B. Cell cycle control by the CDC25 phosphatases. Anticancer Agents Med Chem. 2008;8:818–24.
Article
CAS
PubMed
Google Scholar
Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 2016;94:1313–26.
Article
CAS
Google Scholar
Visser S, Yang X. LATS tumor suppressor: a new governor of cellular homeostasis. Cell Cycle. 2010;9:3892–903.
Article
CAS
PubMed
Google Scholar
Durmus S, Xu N, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. P-glycoprotein (MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2/M) restrict brain accumulation of the JAK1/2 inhibitor, CYT387. Pharmacol Res. 2013;76:9–16.
Article
CAS
PubMed
Google Scholar
Rodrigues SF, Fiel LA, Shimada AL, Pereira NR, Guterres SS, Pohlmann AR, et al. Lipid-core nanocapsules act as a drug shuttle through the blood brain barrier and reduce glioblastoma after intravenous or oral administration. J Biomed Nanotechnol. 2016;12:986–1000.
Article
CAS
PubMed
Google Scholar