Jo VY, Fletcher CD. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology. 2014;46(2):95–104.
Article
CAS
PubMed
Google Scholar
Bielack SS, Kempf-Bielack B, Branscheid D, Carrle D, Friedel G, Helmke K, Kevric M, Jundt G, Kuhne T, Maas R, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol. 2009;27(4):557–65.
Article
PubMed
Google Scholar
Norris RE, Adamson PC. Challenges and opportunities in childhood cancer drug development. Nat Rev Cancer. 2012;12(11):776–82.
Article
CAS
PubMed
Google Scholar
Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–5.
Article
CAS
PubMed
Google Scholar
Chabner BA. NCI-60 cell line screening: a radical departure in its time. J Natl Cancer Inst. 2016;108(5):djv388.
Article
PubMed
Google Scholar
Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ, Vora MI, Patel C, Orina JN, Eliseeva TA, Singal V, et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc Natl Acad Sci USA. 2011;108(46):18708–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4(9):998–1013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giovanella BC, Stehlin JJ, Williams LJ, Lee SS, Shepard RC. Heterotransplantation of human cancers into nude mice: a model system for human cancer chemotherapy. Cancer Am Cancer Soc. 1978;42(5):2269–81.
CAS
Google Scholar
Houghton JA, Houghton PJ, Webber BL. Growth and characterization of childhood rhabdomyosarcomas as xenografts. J Natl Cancer Inst. 1982;68(3):437–43.
CAS
PubMed
Google Scholar
Bauer HC, Brosjö O, Broström LA, Nilsson OS, Reinholt FP, Tribukait B. Growth and ploidy of human osteosarcoma xenografts in serial passage in nude mice. Eur J Cancer Clin Oncol. 1986;22(7):821–30.
Article
CAS
PubMed
Google Scholar
Neely JE, Ballard ET, Britt AL, Workman L. Characteristics of 85 pediatric tumors heterotransplanted into nude mice. Exp Cell Biol. 1983;51(4):217–27.
CAS
PubMed
Google Scholar
Meyer WH, Houghton JA, Houghton PJ, Webber BL, Douglass EC, Look AT. Development and characterization of pediatric osteosarcoma xenografts. Cancer Res. 1990;50(9):2781–5.
CAS
PubMed
Google Scholar
Bruheim S, Xi Y, Ju J, Fodstad O. Gene expression profiles classify human osteosarcoma xenografts according to sensitivity to doxorubicin, cisplatin, and ifosfamide. Clin Cancer Res. 2009;15(23):7161–9.
Article
CAS
PubMed
Google Scholar
Stebbing J, Paz K, Schwartz GK, Wexler LH, Maki R, Pollock RE, Morris R, Cohen R, Shankar A, Blackman G, et al. Patient-derived xenografts for individualized care in advanced sarcoma. Cancer Am Cancer Soc. 2014;120(13):2006–15.
Google Scholar
Houghton PJ, Adamson PC, Blaney S, Fine HA, Gorlick R, Haber M, Helman L, Hirschfeld S, Hollingshead MG, Israel MA, et al. Testing of new agents in childhood cancer preclinical models: meeting summary. Clin Cancer Res. 2002;8(12):3646–57.
PubMed
Google Scholar
Kuijjer ML, Namløs HM, Hauben EI, Machado I, Kresse SH, Serra M, Llombart-Bosch A, Hogendoorn PC, Meza-Zepeda LA, Myklebost O, et al. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts. BMC Med Genom. 2011;4:66.
Article
CAS
Google Scholar
Whiteford CC, Bilke S, Greer BT, Chen Q, Braunschweig TA, Cenacchi N, Wei JS, Smith MA, Houghton P, Morton C, et al. Credentialing preclinical pediatric xenograft models using gene expression and tissue microarray analysis. Cancer Res. 2007;67(1):32–40.
Article
CAS
PubMed
Google Scholar
Neale G, Su X, Morton CL, Phelps D, Gorlick R, Lock RB, Reynolds CP, Maris JM, Friedman HS, Dome J, et al. Molecular characterization of the pediatric preclinical testing panel. Clin Cancer Res. 2008;14(14):4572–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kresse SH, Meza-Zepeda LA, Machado I, Llombart-Bosch A, Myklebost O. Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations. Cancer Am Cancer Soc. 2012;118(2):558–70.
Google Scholar
Stewart E, Federico SM, Chen X, Shelat AA, Bradley C, Gordon B, Karlstrom A, Twarog NR, Clay MR, Bahrami A, et al. Orthotopic patient-derived xenografts of paediatric solid tumours. Nature. 2017;549(7670):96–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17.
Article
PubMed
PubMed Central
Google Scholar
Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget. 2016;7(40):66212–25.
Article
PubMed
PubMed Central
Google Scholar
Boone JD, Dobbin ZC, Straughn JJ, Buchsbaum DJ. Ovarian and cervical cancer patient derived xenografts: the past, present, and future. Gynecol Oncol. 2015;138(2):486–91.
Article
PubMed
Google Scholar
Williams ES, Rodriguez-Bravo V, Chippada-Venkata U, De Ia IJ, Gong Y, Galsky M, Oh W, Cordon-Cardo C, Domingo-Domenech J. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp. 2015;105:53182.
Google Scholar
DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blattmann C, Thiemann M, Stenzinger A, Roth EK, Dittmar A, Witt H, Lehner B, Renker E, Jugold M, Eichwald V, et al. Establishment of a patient-derived orthotopic osteosarcoma mouse model. J Transl Med. 2015;13:136.
Article
PubMed
PubMed Central
Google Scholar
Crnalic S, Hakansson I, Boquist L, Lofvenberg R, Brostrom LA. A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice. Clin Exp Metastasis. 1997;15(2):164–72.
Article
CAS
PubMed
Google Scholar
Igarashi K, Kawaguchi K, Kiyuna T, Murakami T, Miwa S, Nelson SD, Dry SM, Li Y, Singh A, Kimura H, et al. Patient-derived orthotopic xenograft (PDOX) mouse model of adult rhabdomyosarcoma invades and recurs after resection in contrast to the subcutaneous ectopic model. Cell Cycle. 2017;16(1):91–4.
Article
CAS
PubMed
Google Scholar
Hajdu SI, Lemos LB, Kozakewich H, Helson L Jr, Beattie EJ. Growth pattern and differentiation of human soft tissue sarcomas in nude mice. Cancer Am Cancer Soc. 1981;47(1):90–8.
CAS
Google Scholar
Stacchiotti S, Saponara M, Frapolli R, Tortoreto M, Cominetti D, Provenzano S, Negri T, Dagrada GP, Gronchi A, Colombo C, et al. Patient-derived solitary fibrous tumour xenografts predict high sensitivity to doxorubicin/dacarbazine combination confirmed in the clinic and highlight the potential effectiveness of trabectedin or eribulin against this tumour. Eur J Cancer. 2017;76:84–92.
Article
CAS
PubMed
Google Scholar
Sakumoto M, Oyama R, Takahashi M, Takai Y, Kito F, Shiozawa K, Qiao Z, Endo M, Yoshida A, Kawai A, et al. Establishment and proteomic characterization of patient-derived clear cell sarcoma xenografts and cell lines. Vitro Cell Dev Biol Anim. 2018;54(2):163–76.
Article
CAS
Google Scholar
Houghton PJ, Morton CL, Chandra Tucker BS, Debbie Payne BA, Edward Favours BS, Cole C, Richard Gorlick MD, Kolb EA, Wendong Zhang BS, Lock R. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer. 2007;49(7):928.
Article
PubMed
Google Scholar
Frapolli R, Tamborini E, Virdis E, Bello E, Tarantino E, Marchini S, Grosso F, Sanfilippo R, Gronchi A, Tercero JC, et al. Novel models of myxoid liposarcoma xenografts mimicking the biological and pharmacologic features of human tumors. Clin Cancer Res. 2010;16(20):4958–67.
Article
CAS
PubMed
Google Scholar
Oyama R, Takahashi M, Yoshida A, Sakumoto M, Takai Y, Kito F, Shiozawa K, Qiao Z, Arai Y, Shibata T, et al. Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines. Sci Rep. 2017;7(1):4712.
Article
PubMed
PubMed Central
Google Scholar
Ishii S, Yamawaki S, Sasaki T, Usui M, Ubayama Y, Minaimi A, Yagi T, Isu K, Kobayashi M. Analysis of osteoid-forming activity of human osteosarcoma implanted into nude mice. Int Orthop. 1982;6(4):215–23.
CAS
PubMed
Google Scholar
Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol. 2017;14(5):267–83.
Article
PubMed
Google Scholar
Mayordomo E, Machado I, Giner F, Kresse SH, Myklebost O, Carda C, Navarro S, Llombart-Bosch A. A tissue microarray study of osteosarcoma: histopathologic and immunohistochemical validation of xenotransplanted tumors as preclinical models. Appl Immunohistochem Mol Morphol. 2010;18(5):453–61.
CAS
PubMed
Google Scholar
Llombart-Bosch A, Carda C, Boix J, Pellin A, Peydro-Olaya A. Value of nude mice xenografts in the expression of cell heterogeneity of human sarcomas of bone and soft tissue. Pathol Res Pract. 1988;183(6):683–92.
Article
CAS
PubMed
Google Scholar
Donhuijsen K, Budach V, Van Beuningen D, Schmidt U. Instability of xenotransplanted soft tissue sarcomas. Morphologic and flow cytometric results. Cancer Am Cancer Soc. 1988;61(1):68.
CAS
Google Scholar
Delgado-Baeza E, Miralles-Flores C, Gonzalez-Medievo I. Heterogeneity of xenografted osteosarcoma. A human sarcoma transplanted into nude mice. Acta Orthop Scand. 1991;62(5):410–4.
Article
CAS
PubMed
Google Scholar
Gould VE. Histogenesis and differentiation: a re-evaluation of these concepts as criteria for the classification of tumors. Hum Pathol. 1986;17(3):212–5.
Article
CAS
PubMed
Google Scholar
Monsma DJ, Monks NR, Cherba DM, Dylewski D, Eugster E, Jahn H, Srikanth S, Scott SB, Richardson PJ, Everts RE, et al. Genomic characterization of explant tumorgraft models derived from fresh patient tumor tissue. J Transl Med. 2012;10:125.
Article
PubMed
PubMed Central
Google Scholar
Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, Landron S, Bigot L, Nemati F, Dartigues P, et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18(19):5314–28.
Article
CAS
PubMed
Google Scholar
Martinez-Garcia R, Juan D, Rausell A, Munoz M, Banos N, Menendez C, Lopez-Casas PP, Rico D, Valencia A, Hidalgo M. Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Med. 2014;6(4):27.
Article
PubMed
PubMed Central
Google Scholar
Guilhamon P, Butcher LM, Presneau N, Wilson GA, Feber A, Paul DS, Schütte M, Haybaeck J, Keilholz U, Hoffman J, et al. Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics. Genome Med. 2014;6(12):116.
Article
PubMed
PubMed Central
Google Scholar
Boven E, Pinedo HM, van Hattum AH, Scheffer PG, Peters WH, Erkelens CA, Schluper HM, Kuiper CM, van Ark-Otte J, Giaccone G. Characterization of human soft-tissue sarcoma xenografts for use in secondary drug screening. Br J Cancer. 1998;78(12):1586–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Izumchenko E, Paz K, Ciznadija D, Sloma I, Katz A, Vasquez-Dunddel D, Ben-Zvi I, Stebbing J, McGuire W, Harris W, et al. Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors. Ann Oncol. 2017;28(10):2595–605.
Article
CAS
PubMed
Google Scholar
Horowitz ME, Etcubanas E, Christensen ML, Houghton JA, George SL, Green AA, Houghton PJ. Phase II testing of melphalan in children with newly diagnosed rhabdomyosarcoma: a model for anticancer drug development. J Clin Oncol. 1988;6(2):308–14.
Article
CAS
PubMed
Google Scholar
Houghton PJ, Cheshire PJ, Hallman JN, Lutz L, Friedman HS, Danks MK, Houghton JA. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol. 1995;36(5):393–403.
Article
CAS
PubMed
Google Scholar
Pappo AS, Lyden E, Breneman J, Wiener E, Teot L, Meza J, Crist W, Vietti T. Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol. 2001;19(1):213–9.
Article
CAS
PubMed
Google Scholar
Brosjo O, Bauer HC, Brostrom LA, Nilsson OS, Reinholt FP, Tribukait B. Growth inhibition of human osteosarcomas in nude mice by human interferon-alpha: significance of dose and tumor differentiation. Cancer Res. 1987;47(1):258–62.
CAS
PubMed
Google Scholar
Brosjo O, Bauer HC, Brostrom LA, Nilsonne U, Nilsson OS, Reinholt FP, Strander H, Tribukait B. Influence of human alpha-interferon on four human osteosarcoma xenografts in nude mice. Cancer Res. 1985;45(11 Pt 2):5598–602.
CAS
PubMed
Google Scholar
Nakamura T, Sakahara H, Hosoi S, Yamamuro T, Higashi S, Mikawa H, Endo K, Toyama S. In vivo radiolocalization of antiosteogenic sarcoma monoclonal antibodies in osteogenic sarcoma xenografts. Cancer Res. 1984;44(5):2078–83.
CAS
PubMed
Google Scholar
Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget. 2016;7(16):21114–23.
Article
PubMed
PubMed Central
Google Scholar
Lo WW, Wunder JS, Dickson BC, Campbell V, McGovern K, Alman BA, Andrulis IL. Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer Am Cancer Soc. 2014;120(4):537–47.
CAS
Google Scholar
Xian M, Cao H, Cao J, Shao X, Zhu D, Zhang N, Huang P, Li W, Yang B, Ying M, et al. Bortezomib sensitizes human osteosarcoma cells to adriamycin-induced apoptosis through ROS-dependent activation of p-eIF2alpha/ATF4/CHOP axis. Int J Cancer. 2017;141(5):1029–41.
Article
CAS
PubMed
Google Scholar
Perez M, Peinado-Serrano J, Garcia-Heredia JM, Felipe-Abrio I, Tous C, Ferrer I, Martin-Broto J, Saez C, Carnero A. Efficacy of bortezomib in sarcomas with high levels of MAP17 (PDZK1IP1). Oncotarget. 2016;7(41):67033–46.
Article
PubMed
PubMed Central
Google Scholar
Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, Kahlert UD, Loeb DM. Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget. 2017;8(45):78265–76.
PubMed
PubMed Central
Google Scholar
Zhang T, Li S, Li J, Yin F, Hua Y, Wang Z, Lin B, Wang H, Zou D, Zhou Z, et al. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis. 2016;7(10):e2421.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bharathy N, Svalina MN, Settelmeyer TP, Cleary MM, Berlow NE, Airhart SD, Xiang S, Keck J, Hayden JB, Shern JF, et al. Preclinical testing of the glycogen synthase kinase-3beta inhibitor tideglusib for rhabdomyosarcoma. Oncotarget. 2017;8(38):62976–83.
Article
PubMed
PubMed Central
Google Scholar
Jones SE, Fleuren E, Frankum J, Konde A, Williamson CT, Krastev DB, Pemberton HN, Campbell J, Gulati A, Elliott R, et al. ATR is a therapeutic target in synovial sarcoma. Cancer Res. 2017;77(24):7014–26.
Article
CAS
PubMed
Google Scholar
Li H, Wozniak A, Sciot R, Cornillie J, Wellens J, Van Looy T, Vanleeuw U, Stas M, Hompes D, Debiec-Rychter M, et al. Pazopanib, a receptor tyrosine kinase inhibitor, suppresses tumor growth through angiogenesis in dedifferentiated liposarcoma xenograft models. Transl Oncol. 2014;7(6):665–71.
Article
PubMed
PubMed Central
Google Scholar
Kawano S, Grassian AR, Tsuda M, Knutson SK, Warholic NM, Kuznetsov G, Xu S, Xiao Y, Pollock RM, Smith JS, et al. Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS ONE. 2016;11(7):e158888.
Article
Google Scholar
Monterrubio C, Pascual-Pasto G, Cano F, Vila-Ubach M, Manzanares A, Schaiquevich P, Tornero JA, Sosnik A, Mora J, Carcaboso AM. SN-38-loaded nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery. Biomaterials. 2016;79:69–78.
Article
CAS
PubMed
Google Scholar
Cornillie J, Wozniak A, Pokreisz P, Casazza A, Vreys L, Wellens J, Vanleeuw U, Gebreyohannes YK, Debiec-Rychter M, Sciot R, et al. In vivo antitumoral efficacy of PhAc-ALGP-doxorubicin, an enzyme-activated doxorubicin prodrug, in patient-derived soft tissue sarcoma xenograft models. Mol Cancer Ther. 2017;16(8):1566–75.
Article
CAS
PubMed
Google Scholar
Luetke A, Meyers PA, Lewis I, Juergens H. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev. 2014;40(4):523–32.
Article
PubMed
Google Scholar
Li S, Sun W, Wang H, Zuo D, Hua Y, Cai Z. Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal. Tumour Biol. 2015;36(3):1329–38.
Article
CAS
PubMed
Google Scholar
Fujisaki T, Wada T, Takahashi M, Yamawaki S, Ishii S. In vitro chemosensitivity assay for human osteosarcoma using tumor xenografts. Clin Orthop Relat Res. 1995;313:279–85.
Google Scholar
Bruheim S, Bruland OS, Breistol K, Maelandsmo GM, Fodstad O. Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res. 2004;10(3):133–41.
Article
CAS
PubMed
Google Scholar
Hoffmann J, Schmidt-Peter P, Hansch W, Naundorf H, Bunge A, Becker M, Fichtner I. Anticancer drug sensitivity and expression of multidrug resistance markers in early passage human sarcomas. Clin Cancer Res. 1999;5(8):2198–204.
CAS
PubMed
Google Scholar
Day CP, Merlino G, Van DT. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163(1):39–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldstein SD, Hayashi M, Albert CM, Jackson KW, Loeb DM. An orthotopic xenograft model with survival hindlimb amputation allows investigation of the effect of tumor microenvironment on sarcoma metastasis. Clin Exp Metastasis. 2015;32(7):703–15.
Article
CAS
PubMed
Google Scholar
Meehan TF, Conte N, Goldstein T, Inghirami G, Murakami MA, Brabetz S, Gu Z, Wiser JA, Dunn P, Begley DA. PDX-MI: minimal information for patient-derived tumor xenograft models. Cancer Res. 2017;77(21):e62.
Article
CAS
PubMed
Google Scholar
Cortini M, Avnet S, Baldini N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett. 2017;405:90–9.
Article
CAS
PubMed
Google Scholar
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20(10):2553–68.
Article
CAS
PubMed
Google Scholar
Aggarwal C, Meropol NJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse MA, Mitchell E, et al. Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer. Ann Oncol. 2013;24(2):420–8.
Article
CAS
PubMed
Google Scholar
Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, Lim KH, Saturno G, Furney SJ, et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 2016;6(3):286–99.
Article
CAS
PubMed
Google Scholar
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.
Article
CAS
PubMed
Google Scholar
Toyoshima K, Hayashi A, Kashiwagi M, Hayashi N, Iwatsuki M, Ishimoto T, Baba Y, Baba H, Ohta Y. Analysis of circulating tumor cells derived from advanced gastric cancer. Int J Cancer. 2015;137(4):991–8.
Article
CAS
PubMed
Google Scholar
Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA. 2004;101(14):4966–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalscheuer H, Danzl N, Onoe T, Faust T, Winchester R, Goland R, Greenberg E, Spitzer TR, Savage DG, Tahara H, et al. A model for personalized in vivo analysis of human immune responsiveness. Sci Transl Med. 2012;4(125):125r–30r.
Article
Google Scholar
Zheng B, Ren T, Huang Y, Sun K, Wang S, Bao X, Liu K, Guo W. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J Hematol Oncol. 2018;11(1):16.
Article
PubMed
PubMed Central
Google Scholar
Wang M, Yao LC, Cheng M, Cai D, Martinek J, Pan CX, Shi W, Ma AH, De Vere WR, Airhart S, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 2018;32(3):1537–49.
Article
PubMed
Google Scholar
Herndler-Brandstetter D, Shan L, Yao Y, Stecher C, Plajer V, Lietzenmayer M, Strowig T, de Zoete MR, Palm NW, Chen J, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci USA. 2017;114(45):E9626–34.
Article
CAS
PubMed
Google Scholar
Baker O, Tsurkan S, Fu J, Klink B, Rump A, Obst M, Kranz A, Schrock E, Anastassiadis K, Stewart AF. The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Res. 2017;45(13):8105–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basel MT, Narayanan S, Ganta C, Shreshta TB, Marquez A, Pyle M, Hill J, Bossmann SH, Troyer DL. Developing a xenograft human tumor model in immunocompetent mice. Cancer Lett. 2018;412:256–63.
Article
CAS
PubMed
Google Scholar
Semenkow S, Li S, Kahlert UD, Raabe EH, Xu J, Arnold A, Janowski M, Oh BC, Brandacher G, Bulte J, et al. An immunocompetent mouse model of human glioblastoma. Oncotarget. 2017;8(37):61072–82.
Article
PubMed
PubMed Central
Google Scholar
Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, de Nigris F. Sarcoma spheroids and organoids-promising tools in the era of personalized medicine. Int J Mol Sci. 2018;19(2):615.
Article
PubMed Central
Google Scholar
Gaebler M, Silvestri A, Haybaeck J, Reichardt P, Lowery CD, Stancato LF, Zybarth G, Regenbrecht C. Three-dimensional patient-derived in vitro sarcoma models: promising tools for improving clinical tumor management. Front Oncol. 2017;7:203.
Article
PubMed
PubMed Central
Google Scholar
Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell. 2018;173(2):515–28.
Article
CAS
PubMed
Google Scholar
Fong E, Toh TB, Lin Q, Liu Z, Hooi L, Mohd ARM, Benoukraf T, Chow EK, Huynh TH, Yu H. Generation of matched patient-derived xenograft in vitro-in vivo models using 3D macroporous hydrogels for the study of liver cancer. Biomaterials. 2018;159:229–40.
Article
CAS
PubMed
Google Scholar