Craig SA. Betaine in human nutrition. Am J Clin Nutr. 2004;80(3):539–49.
CAS
PubMed
Google Scholar
Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in, methyl group metabolism. Clin Biochem. 2010;43(9):732–44.
Article
CAS
PubMed
Google Scholar
Day CR, Kempson SA. Betaine chemistry, roles, and potential use in liver disease. Biochim Biophys Acta. 2016;1860(6):1098–106.
Article
CAS
PubMed
Google Scholar
Cholewa JM, Guimarães-Ferreira L, Zanchi NE. Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids. 2014;46(8):1785–93.
Article
CAS
PubMed
Google Scholar
Apicella JM, Lee EC, Bailey BL, Saenz C, Anderson JM, Craig SA, Kraemer WJ, Volek JS, Maresh CM. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise. Eur J Appl Physiol. 2013;113(3):793–802.
Article
CAS
PubMed
Google Scholar
Senesi P, Luzi L, Montesano A, Mazzocchi N, Terruzzi I. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J Transl Med. 2013;11:174.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burattini S, Ferri P, Battistelli M, Curci R, Luchetti F, Falcieri E. C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem. 2004;48:223–33.
CAS
PubMed
Google Scholar
Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13:27–38.
Article
PubMed
Google Scholar
Govoni KE. Insulin-like growth factor-I molecular pathways in osteoblasts: potential targets for pharmacological manipulation. Curr Mol Pharmacol. 2012;5(2):143–52.
Article
CAS
PubMed
Google Scholar
Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, Crane J, Frassica F, Zhang L, Rodriguez JP, Xiaofeng J, Shoshana Y, Shouhong X, Argiris E, Mei W, Xu C. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18:1095–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol. 2004;166:85–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girgis CM, Baldock PA, Downes M, Vitamin D. muscle and bone: integrating effects in development, aging and injury. Mol Cell Endocrinol. 2015;15(410):3–10.
Article
Google Scholar
Kaji H. Interaction between muscle and bone. J Bone Metab. 2014;21(1):29–40.
Article
PubMed
PubMed Central
Google Scholar
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone. 2015;80:2–13.
Article
CAS
PubMed
Google Scholar
Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99(5):1233–9.
Article
CAS
PubMed
Google Scholar
Vimalraj S, Arumugam B, Miranda PJ, Selvamurugan N. Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015;78:202–8.
Article
CAS
PubMed
Google Scholar
Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene. 2006;372:62–70.
Article
CAS
PubMed
Google Scholar
Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation. J Cell Biochem. 2013;114(5):975–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Huang Y, Zhang L, Zhang C. Transcriptional regulation of bone sialoprotein gene expression by Osx. Biochem Biophys Res Commun. 2016;476(4):574–9.
Article
CAS
PubMed
Google Scholar
Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem. 2001;276:14443–50.
Article
CAS
PubMed
Google Scholar
Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645–52.
Article
CAS
PubMed
Google Scholar
Bonjour JP. Calcium and phosphate: a duet of ions playing for bone health. J Am Coll Nutr. 2011;30(Suppl 1):438S–48S.
Article
CAS
PubMed
Google Scholar
Oliva J, Bardag-Gorce F, Tillman B, French SW. Protective effect of quercetin, EGCG, catechin and betaine against oxidative stress induced by ethanol in vitro. Exp Mol Pathol. 2011;90:295–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev. 2014;114(7):3854–918.
Article
CAS
PubMed
PubMed Central
Google Scholar
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–71.
Article
PubMed
PubMed Central
Google Scholar
Curtis E, Litwic A, Cooper C, Dennison E. Determinants of muscle and bone aging. J Cell Physiol. 2015;230:2618–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robey GP, Termine JD. Human bone cells in vitro. Calcif Tissue Int. 1985;37:453–60.
Article
CAS
PubMed
Google Scholar
Montesano A, Luzi L, Senesi P, Mazzocchi N, Terruzzi I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med. 2013;11:310.
Article
PubMed
PubMed Central
Google Scholar
Terruzzi I, Montesano A, Senesi P, Vacante F, Benedini S, Luzi L. Ranolazine promotes muscle differentiation and reduces oxidative stress in C2C12 skeletal muscle cells. Endocrine. 2016; doi:10.1007/s12020-016-1181-5.
Google Scholar
Donida BM, Mrak E, Gravaghi C, Villa I, Cosentino S, Zacchi E, Perego S, Rubinacci A, Fiorilli A, Tettamanti G, Ferraretto A. Casein phosphopeptides promote calcium uptake and modulate the differentiation pathway in human primary osteoblast-like cells. Peptides. 2009;30:2233–41.
Article
CAS
PubMed
Google Scholar
Grynkiewcz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;6:3440–50.
Google Scholar
Fox J, Green DT. Direct effects of calcium channel blockers on duodenal calcium transport in vivo. Eur J Pharmacol. 1986;129:159–64.
Article
CAS
PubMed
Google Scholar
Tsunoda Y, Stuenkel El, Williams AL. Characterization of sustained [Ca2+]I increase in pancreatic acinar cells and its relation to amylase secretion. Am J Physiol. 1990;259:G792–801.
CAS
PubMed
Google Scholar
Pan CC, Cheng HH, Huang CJ, Lu YC, Chen IS, Liu SI, Hsu SS, Chang HT, Huang JK, Chen JS, Jan CR. The antidepressant mirtazapine-induced cytosolic Ca2+ elevation and cytotoxicity in human osteosarcoma cells. Chin J Physiol. 2007;50:41.
Google Scholar
Merritt JE, Jacob R, Hallam TJ. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem. 1989;264:1522–7.
CAS
PubMed
Google Scholar
Plasek J, Sigler K. Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J Photochem Photobiol B. 1996;33:101–24.
Article
CAS
PubMed
Google Scholar
Wolff C, Fuks B, Chatelain P. Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays. J Biomol Screen. 2003;8(5):533–43.
Article
CAS
PubMed
Google Scholar
Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–58.
Article
CAS
PubMed
Google Scholar
Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J Cell Biochem. 2006;97(1):56–70.
Article
CAS
PubMed
Google Scholar
Zahanich I, Graf EM, Heubach JF, Hempel U, Boxberger S, Ravens U. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. J Bone Mineral Res. 2005;20:1637–46.
Article
CAS
Google Scholar
Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, Ding Y. L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2012;424(3):439–45.
Article
CAS
PubMed
Google Scholar
Zanello LP, Norman A. 1α,25 (OH)2 vitamin D3 actions on ion channels in osteoblasts. Steroids. 2006;71:291–7.
Article
CAS
PubMed
Google Scholar
Graham CS, Tashjian AH Jr. Mechanisms of activation of Na+/H+ exchange in human osteoblast-like SaOS-2 cells. Biochem J. 1992;288:137–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKee MD, Nanci A. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res. 1996;35:197–205.
Article
CAS
PubMed
Google Scholar
Pérez-Campo FM, Santurtún A, García-Ibarbia C, Pascual MA, Valero C, Garcés C, Sañudo C, Zarrabeitia MT, Riancho JA. Osterix and RUNX2 are transcriptional regulators of sclerostin in human bone. Calcif Tissue Int. 2016;99:302–9.
Article
PubMed
Google Scholar
Ge C, Xiao G, Jiang DI, Franceschi R. Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol. 2013;29:63–79.
Article
CAS
PubMed
Google Scholar
Franceschi RT, Ge C, Xiao G, Roca H, Jiang DI. Transcriptional regulation of osteoblasts. Ann NY Acad Sci. 2007;1116:196–207.
Article
CAS
PubMed
Google Scholar
Hurley MM, Marcello K, Abreu C, Kessler M. Signal transduction by basic fibroblast growth factor in rat osteoblastic Py1a cells. J Bone Miner Res. 1996;11:1256–63.
Article
CAS
PubMed
Google Scholar
Xiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol. 1997;11:1103–13.
Article
CAS
PubMed
Google Scholar
Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T. Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem. 1997;272:29309–16.
Article
CAS
PubMed
Google Scholar
You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem. 2001;276:13365–71.
Article
CAS
PubMed
Google Scholar
Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W, Hu Y, Xu W, Xu L. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep. 2016;6:21053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chao TS, Byron KL, Lee KM, Villereal M, Rosner MR. Activation of MAP kinases by calcium-dependent and calcium-independent pathways. Stimulation by thapsigargin and epidermal growth factor. J Biol Chem. 1992;267:19876–8.
CAS
PubMed
Google Scholar
Hutchinson TE, Zhong W, Chebolu S, Wilson SM, Darmani NA. L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva). Eur J Pharmacol. 2015;755:110–8.
Article
CAS
PubMed
Google Scholar
Chu ST, Cheng HH, Huang CJ, Chang HC, Chi CC, Su HH, Hsu SS, Wang JL, Chen IS, Liu SI, Lu YC, Huang JK, Ho CM, Jan CR. Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosarcoma cells. Life Sci. 2007;80(4):364–9.
Article
CAS
PubMed
Google Scholar
Lee MS, Kim MS, Park SY, Kang CW. Effects of betaine on ethanol-stimulated secretion of IGF-I and IGFBP-1 in rat primary hepatocytes: involvement of p42/44 MAPK activation. World J Gastroenterol. 2006;12(11):1718–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone. 2015;80:79–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cherry C, Thompson B, Saptarshi N, Wu J, Hoh J. A ‘mitochondria’ odyssey. Trends Mol Med. 2016; doi:10.1016/j.molmed.2016.03.009.
PubMed
Google Scholar
Maggio M, De Vita F, Lauretani F, Buttò V, Bondi G, Cattabiani C, Nouvenne A, Meschi T, Dall’Aglio E, Ceda GP. IGF-1, the cross road of the nutritional, inflammatory and hormonal pathways to frailty. Nutrients. 2013;5(10):4184–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards MH, Dennison EM, Aihie Sayer A, Fielding R, Cooper C. Osteoporosis and sarcopenia in older age. Bone. 2015;80:126–30.
Article
CAS
PubMed
PubMed Central
Google Scholar