Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.
Article
PubMed
Google Scholar
American Cancer Society: Cancer Facts and Figures 2013. 2013. http://www.cancer.org/research/cancerfactsstatistics/cancerfactsfigures2013/.
Robert J. Biology of cancer metastasis. Bull Cancer. 2013;100:333–42.
CAS
PubMed
Google Scholar
Fidler IJ. The biology of cancer metastasis. Semin Cancer Biol. 2011;21:71.
Article
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
Article
CAS
PubMed
Google Scholar
Finke JH, Rayman PA, Ko JS, Bradley JM, Gendler SJ, Cohen PA. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J. 2013;19:353–64.
Article
CAS
PubMed
Google Scholar
Greenhalgh J, McLeod C, Bagust A, Boland A, Fleeman N, Dundar Y, Oyee J, Dickson R, Davis H, Green J, et al. Pemetrexed for the maintenance treatment of locally advanced or metastatic non-small cell lung cancer. Health Technol Assess. 2010;14:33–9.
CAS
PubMed
Google Scholar
Dickson R, Bagust A, Boland A, Blundell M, Davis H, Dundar Y, Hockenhull J, Martin Saborido C, Oyee J, Ramani VS, . Erlotinib monotherapy for the maintenance treatment of non-small cell lung cancer after previous platinum-containing chemotherapy: a NICE single technology appraisal. Pharmacoeconomics. 2011;29:1051–62.
Article
PubMed
Google Scholar
Jiang Y, Owonikoko TK, Ramalingam SS, Khuri FR, Belani CP. What is the role of maintenance therapy in the treatment of non-small cell lung cancer? Ther Adv Med Oncol. 2010;2:229–35.
Article
PubMed Central
PubMed
Google Scholar
Candido J, Hagemann T. Cancer-related inflammation. J Clin Immunol. 2013;33(Suppl 1):S79–84.
Article
PubMed
Google Scholar
Spano D, Zollo M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis. 2012;29:381–95.
Article
CAS
PubMed
Google Scholar
Jagannathan NR, Bhujwalla ZM. Tumor microenvironment in cancer treatment and metastasis. NMR Biomed. 2011;24:559–60.
PubMed Central
CAS
PubMed
Google Scholar
Heinrich EL, Walser TC, Krysan K, Liclican EL, Grant JL, Rodriguez NL, Dubinett SM. The inflammatory tumor microenvironment, epithelial mesenchymal transition and lung carcinogenesis. Cancer Microenviron. 2012;5:5–18.
Article
PubMed Central
CAS
PubMed
Google Scholar
de Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol. 2006;13:118–37.
Article
PubMed
Google Scholar
Mantovani A. Cancer: Inflaming metastasis. Nature. 2009;457:36–7.
Article
CAS
PubMed
Google Scholar
Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta. 2011;412:671–87.
Article
CAS
PubMed
Google Scholar
Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.
Article
CAS
PubMed
Google Scholar
Li C, Pan T, Li J, Wei X, Chen T, Hu M, Wang Y. Study of COX-2 expression and angiogenesis in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 2004;7:501–4.
CAS
PubMed
Google Scholar
Neil JR, Johnson KM, Nemenoff RA, Schiemann WP. Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. Carcinogenesis. 2008;29:2227–35.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu H, Yang Y, Xiao J, Lv Y, Liu Y, Yang H, Zhao L. COX-2-mediated regulation of VEGF-C in association with lymphangiogenesis and lymph node metastasis in lung cancer. Anat Rec (Hoboken). 2010;293:1838–46.
Article
CAS
Google Scholar
Shan Y, Zhang L, Bao Y, Li B, He C, Gao M, Feng X, Xu W, Zhang X, Wang S. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells. J Nutr Biochem. 2013;24:1062–9.
Article
CAS
PubMed
Google Scholar
Stasinopoulos I, Shah T, Penet MF, Krishnamachary B, Bhujwalla ZM. COX-2 in cancer: Gordian knot or Achilles heel? Front Pharmacol. 2013;4:34.
Article
PubMed Central
PubMed
Google Scholar
Hida T. Overexpression of COX-2 and a potential clinical application of its inhibitors in lung cancer. Nihon Rinsho. 2004;62:1357–62.
PubMed
Google Scholar
Spugnini EP, Porrello A, Citro G, Baldi A. COX-2 overexpression in canine tumors: potential therapeutic targets in oncology. Histol Histopathol. 2005;20:1309–12.
CAS
PubMed
Google Scholar
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.
Article
CAS
PubMed
Google Scholar
Giovannucci E, Egan KM, Hunter DJ, Stampfer MJ, Colditz GA, Willett WC, Speizer FE. Aspirin and the risk of colorectal cancer in women. N Engl J Med. 1995;333:609–14.
Article
CAS
PubMed
Google Scholar
North GL. Celecoxib as adjunctive therapy for treatment of colorectal cancer. Ann Pharmacother. 2001;35:1638–43.
Article
CAS
PubMed
Google Scholar
Tian X, Liu L. Effect and advantage of orally taking Chinese herbal medicine for treatment of lung cancer. Zhongguo Zhong Yao Za Zhi. 2010;35:2795–800.
PubMed
Google Scholar
Liu LS, Shen LP, Jiang Y, Han ZF, Hong J. Effect of integrated Chinese medical treatment (as maintenance therapy) on the survival time of patients with advanced non-small-cell lung cancer: a clinical study. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2014;34:526–30.
CAS
PubMed
Google Scholar
Li SG, Chen HY, Ou-Yang CS, Wang XX, Yang ZJ, Tong Y, Cho WC. The efficacy of Chinese herbal medicine as an adjunctive therapy for advanced non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2013;8:e57604.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li W, Chen C, Saud SM, Geng L, Zhang G, Liu R, Hua B. Fei-Liu-Ping ointment inhibits lung cancer growth and invasion by suppressing tumor inflammatory microenvironment. BMC Complement Altern Med. 2014;14:153.
Article
PubMed Central
PubMed
Google Scholar
Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–11.
CAS
PubMed
Google Scholar
Oshima H, Oshima M. The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol. 2012;47:97–106.
Article
CAS
PubMed
Google Scholar
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.
Article
CAS
PubMed
Google Scholar
Nakanishi M, Gokhale V, Meuillet EJ, Rosenberg DW. mPGES-1 as a target for cancer suppression: A comprehensive invited review “Phospholipase A2 and lipid mediators”. Biochimie. 2010;92:660–4.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fushida S, Oyama K, Kinoshita J, Yagi Y, Okamoto K, Tajima H, Ninomiya I, Fujimura T, Ohta T. VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody. Onco Targets Ther. 2013;6:1445–51.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fredriksson L, Li H, Eriksson U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 2004;15:197–204.
Article
CAS
PubMed
Google Scholar
Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 2004;15:275–86.
Article
PubMed
Google Scholar
Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med. 2009;1:303–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol. 2012;48:1068–75.
Article
CAS
PubMed
Google Scholar
Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980;284:67–8.
Article
CAS
PubMed
Google Scholar
Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369:1742–57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.
Article
PubMed Central
CAS
PubMed
Google Scholar
Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer. 2000;36:1621–30.
Article
CAS
PubMed
Google Scholar
Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie. 2005;87:287–97.
Article
CAS
PubMed
Google Scholar
Piao BK, Tang WX, Zhang ZQ, Lin HS, Duan FW, Yu GQ. Clinical observation of Feiliuping ointment treatment for the advanced primary lung cancer: a clinical analysis of 339 cases. J Tradit Chin Med. 1991;32:21–3.
Google Scholar
Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.
Article
CAS
PubMed
Google Scholar
Yoshinaka R, Shibata MA, Morimoto J, Tanigawa N, Otsuki Y. COX-2 inhibitor celecoxib suppresses tumor growth and lung metastasis of a murine mammary cancer. Anticancer Res. 2006;26:4245–54.
CAS
PubMed
Google Scholar
Xin X, Majumder M, Girish GV, Mohindra V, Maruyama T, Lala PK. Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Invest. 2012;92:1115–28.
Article
CAS
PubMed
Google Scholar
Swamy MV, Herzog CR, Rao CV. Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53. Cancer Res. 2003;63:5239–42.
CAS
PubMed
Google Scholar
Walther Z. COX-2 and angiogenesis in gastric cancer. J Clin Gastroenterol. 2003;37:4–6.
Article
CAS
PubMed
Google Scholar
Katkoori VR, Manne K, Vital-Reyes VS, Rodriguez-Burford C, Shanmugam C, Sthanam M, Manne U, Chatla C, Abdulkadir SA, Grizzle WE. Selective COX-2 inhibitor (celecoxib) decreases cellular growth in prostate cancer cell lines independent of p53. Biotech Histochem. 2013;88:38–46.
Article
CAS
PubMed
Google Scholar
Aruajo AM, Mendez JC, Coelho AL, Sousa B, Barata F, Figueiredo A, Amaro T, Azevedo I, Soares M. Phase II study of celecoxib with cisplatin plus etoposide in extensive-stage small cell lung cancer. Cancer Invest. 2009;27:391–6.
Article
PubMed
Google Scholar
Argiris A, Kut V, Luong L, Avram MJ. Phase I and pharmacokinetic study of docetaxel, irinotecan, and celecoxib in patients with advanced non-small cell lung cancer. Invest New Drugs. 2006;24:203–12.
Article
CAS
PubMed
Google Scholar
Gasparini G, Meo S, Comella G, Stani SC, Mariani L, Gamucci T, Avallone A, Lo Vullo S, Mansueto G, Bonginelli P, et al. The combination of the selective cyclooxygenase-2 inhibitor celecoxib with weekly paclitaxel is a safe and active second-line therapy for non-small cell lung cancer: a phase II study with biological correlates. Cancer J. 2005;11:209–16.
Article
CAS
PubMed
Google Scholar
Agarwala A, Fisher W, Bruetman D, McClean J, Taber D, Titzer M, Juliar B, Yu M, Breen T, Einhorn LH, Hanna N. Gefitinib plus celecoxib in chemotherapy-naive patients with stage IIIB/IV non-small cell lung cancer: a phase II study from the Hoosier Oncology Group. J Thorac Oncol. 2008;3:374–9.
Article
PubMed
Google Scholar
Mutter R, Lu B, Carbone DP, Csiki I, Moretti L, Johnson DH, Morrow JD, Sandler AB, Shyr Y, Ye F, Choy H. A phase II study of celecoxib in combination with paclitaxel, carboplatin, and radiotherapy for patients with inoperable stage IIIA/B non-small cell lung cancer. Clin Cancer Res. 2009;15:2158–65.
Article
CAS
PubMed
Google Scholar