Thomas DG, Gary ES: Diabetes mellitus and heart failure: basic mechanisms, clinical features, and therapeutic considerations. Cardiol Clin. 2004, 22: 553-568. 10.1016/j.ccl.2004.07.002.
Article
Google Scholar
Huxley R, Barzi F, Woodward M: Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006, 332 (7533): 73-78. 10.1136/bmj.38678.389583.7C.
Article
PubMed Central
PubMed
Google Scholar
From AM, Leibson CL, Bursi F, Redfield MM, Weston SA, Jacobsen SJ, Rodeheffer RJ, Roger VL: Diabetes in heart failure: prevalence and impact on outcome in the population. Am J Med. 2006, 119 (7): 591-599. 10.1016/j.amjmed.2006.05.024.
Article
PubMed
Google Scholar
Stratmann B, Tschöpe D: Atrial fibrillation and diabetes mellitus. correlation, co-existence, and coagulation therapy. Herz. 2012, 37 (3): 258-263. 10.1007/s00059-012-3600-6.
Article
CAS
PubMed
Google Scholar
Williams AR, Hare JM: Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011, 109 (8): 923-940. 10.1161/CIRCRESAHA.111.243147.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friis T, Haack-Sørensen M, Mathiasen AB, Ripa RS, Kristoffersen US, Jørgensen E, Hansen L, Bindslev L, Kjær A, Hesse B, Dickmeiss E, Kastrup J: Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scand Cardiovasc J. 2011, 45 (3): 161-168. 10.3109/14017431.2011.569571.
Article
PubMed
Google Scholar
Mathiasen AB, Haack-Sørensen M, Jørgensen E, Kastrup J: Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina–final 3-year follow-up. Int J Cardiol. 2013, 170 (2): 246-251. 10.1016/j.ijcard.2013.10.079.
Article
PubMed
Google Scholar
Bura A, Planat-Benard V, Bourin P, Silvestre JS, Gross F, Grolleau JL, Saint-Lebese B, Peyrafitte JA, Fleury S, Gadelorge M, Taurand M, Dupuis-Coronas S, Leobon B, Casteilla L: Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014, 16 (2): 245-257. 10.1016/j.jcyt.2013.11.011.
Article
CAS
PubMed
Google Scholar
Zimmerlin L, Donnenberg VS, Rubin JP, Donnenberg AD: Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013, 83 (1): 134-140. 10.1002/cyto.a.22227.
Article
PubMed Central
PubMed
Google Scholar
Lin CS, Xin ZC, Deng CH, Ning H, Lin G, Lue TF: Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol. 2010, 25 (6): 807-815.
PubMed
Google Scholar
Braun J, Kurtz A, Barutcu N, Bodo J, Thiel A, Dong J: Concerted regulation of CD34 and CD105 accompanies mesenchymal stromal cell derivation from human adventitial stromal cell. Stem Cells Dev. 2013, 22 (5): 815-827. 10.1089/scd.2012.0263.
Article
CAS
PubMed
Google Scholar
Valina C, Pinkernell K, Song YH, Bai X, Sadat S, Campeau RJ, Le Jemtel TH, Alt E: Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007, 28 (21): 2667-2677. 10.1093/eurheartj/ehm426.
Article
PubMed
Google Scholar
Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G: Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol. 2009, 297 (3): H1020-H1031. 10.1152/ajpheart.01082.2008.
Article
CAS
PubMed
Google Scholar
Madonna R, Geng YJ, De Caterina R: Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 2009, 29 (11): 1723-1729. 10.1161/ATVBAHA.109.187179.
Article
CAS
PubMed
Google Scholar
Hong SJ, Traktuev DO, March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant. 2010, 15 (1): 86-91. 10.1097/MOT.0b013e328334f074.
Article
PubMed
Google Scholar
Beeson W, Woods E, Agha R: Tissue engineering, regenerative medicine and rejuvenation in 2010: the role of adipose-derived stem cells. Facial Plast Surg. 2011, 27 (4): 378-387. 10.1055/s-0031-1283056.
Article
CAS
PubMed
Google Scholar
Gimble JM, Bunnell BA, Frazier T, Rowan B, Shah F, Thomas-Porch C, Wu X: Adipose-derived stromal/stem cells: a primer. Organogenesis. 2013, 9 (1): 3-10. 10.4161/org.24279.
Article
PubMed Central
PubMed
Google Scholar
Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P: Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther. 2013, 13 (10): 1357-1370. 10.1517/14712598.2013.823153.
Article
PubMed
Google Scholar
Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y: Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005, 25 (12): 2542-2547. 10.1161/01.ATV.0000190701.92007.6d.
Article
CAS
PubMed
Google Scholar
Rubina K, Kalinina N, Efimenko A, Lopatina T, Melikhova V, Tsokolaeva Z, Sysoeva V, Tkachuk V, Parfyonova Y: Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation. Tissue Eng Part A. 2009, 15 (8): 2039-2050. 10.1089/ten.tea.2008.0359.
Article
CAS
PubMed
Google Scholar
Kachgal S, Putnam AJ: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 2011, 14 (1): 47-59. 10.1007/s10456-010-9194-9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sheng L, Yang M, Li H, Du Z, Yang Y, Li Q: Transplantation of adipose stromal cells promotes neovascularization of random skin flaps. Tohoku J Exp Med. 2011, 24 (3): 229-234. 10.1620/tjem.224.229.
Article
Google Scholar
Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, Kastrup J: Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012, 7 (3): 421-428. 10.2217/rme.12.17.
Article
CAS
PubMed
Google Scholar
Perin EC, Sanz-Ruiz R, Sánchez PL, Lasso J, Pérez-Cano R, Alonso-Farto JC, Pérez-David E, Fernández-Santos ME, Serruys PW, Duckers HJ, Kastrup J, Chamuleau S, Zheng Y, Silva GV, Willerson JT, Fernández-Avilés F: Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the precise trial. Am Heart J. 2014, 168 (1): 88-95. 10.1016/j.ahj.2014.03.022. e2
Article
CAS
PubMed
Google Scholar
Cawthon RM: Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30 (10): e47-10.1093/nar/30.10.e47.
Article
PubMed Central
PubMed
Google Scholar
Aranda E, Owen GI: A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res. 2009, 42 (3): 377-389. 10.4067/S0716-97602009000300012.
Article
PubMed
Google Scholar
Dominici M, Le Blanc K, Mueller I, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. the International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8 (4): 315-317. 10.1080/14653240600855905.
Article
CAS
PubMed
Google Scholar
Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH: Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. 2005, 54: 132-141. 10.2302/kjm.54.132.
Article
CAS
PubMed
Google Scholar
Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J: Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 2012, 21 (14): 2724-2752. 10.1089/scd.2011.0722.
Article
CAS
PubMed
Google Scholar
Madonna R, De Caterina R: In vitro neovasculogenic potential of resident adipose tissue precursors. Am J Physiol Cell Physiol. 2008, 295 (5): 1271-1280. 10.1152/ajpcell.00186.2008.
Article
Google Scholar
Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H: Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013, 2 (6): 455-463. 10.5966/sctm.2012-0184.
Article
PubMed Central
PubMed
Google Scholar
Efimenko AY, Starostina EE, Rubina KA, Kalinina NI, Parfenova EV: Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow in hypoxia and inflammation in vitro. Tsitologiia. 2010, 52 (2): 144-154.
CAS
PubMed
Google Scholar
Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001, 89: E1-E7. 10.1161/hh1301.093953.
Article
CAS
PubMed
Google Scholar
Hill J, Zalos G, Halcox JP: Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003, 348: 593-600. 10.1056/NEJMoa022287.
Article
PubMed
Google Scholar
Choi JH, Hur J, Yoon CH: Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem. 2004, 279 (47): 4943-4948.
Google Scholar
Madonna R, Renna FV, Cellini C, Cotellese R, Picardi N, Francomano F, Innocenti P, De Caterina R: Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest. 2011, 41 (2): 126-133. 10.1111/j.1365-2362.2010.02384.x.
Article
PubMed
Google Scholar
Efimenko A, Dzhoyashvili N, Kalinina N, Kochegura T, Akchurin R, Tkachuk V, Parfyonova Y: Adipose-derived stromal cells (ADSC) from aged patients with coronary artery disease keep MSC properties but exhibit age markers and have an impaired angiogenic potential. Stem Cells Translational Medicine. 2014, 3 (1): 32-41. 10.5966/sctm.2013-0014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takahashi M, Izawa A, Ishigatsubo Y, Fujimoto K, Miyamoto M, Horie T, Aizawa Y, Amano J, Minota S, Murohara T, Matsubara H, Ikeda U: Therapeutic neovascularization by implantation of autologous mononuclear cells for patients with connective tissue diseases. Curr Pharm Des. 2009, 15 (24): 2778-2783. 10.2174/138161209788923813.
Article
CAS
PubMed
Google Scholar
Harris LJ, Zhang P, Abdollahi H, Tarola NA, DiMatteo C, McIlhenny SE, Tulenko TN, DiMuzio PJ: Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res. 2010, 163 (2): e105-e112. 10.1016/j.jss.2010.04.025.
Article
PubMed Central
PubMed
Google Scholar
Gu JH, Lee JS, Kim DW, Yoon ES, Dhong ES: Neovascular potential of adipose-derived stromal cells (ASCs) from diabetic patients. Wound Repair Regen. 2012, 20: 243-252. 10.1111/j.1524-475X.2012.00765.x.
Article
PubMed
Google Scholar
Oñate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Díez-Caballero A, Ballesta-López C, Moscatiello F, Herrero J, Badimon L: The subcutaneous adipose tissue reservoir of functionally active stem cells is reduced in obese patients. FASEB J. 2012, 26: 4327-4336. 10.1096/fj.12-207217.
Article
PubMed
Google Scholar
Vecellio M, Spallotta F, Nanni S, Colussi C, Cencioni C, Derlet A, Bassetti B, Tilenni M, Carena MC, Farsetti A, Sbardella G, Castellano S, Mai A, Martelli F, Pompilio G, Capogrossi MC, Rossini A, Dimmeler S, Zeiher A, Gaetano C: The histone acetylase activator Pentadecylidenemalonate 1b rescues proliferation and differentiation in human cardiac Mesenchymal cells of type 2 diabetic patients. Diabetes. 2014, 63 (6): 2132-2147. 10.2337/db13-0731.
Article
CAS
PubMed
Google Scholar
Lawler PR, Lawler J: Molecular basis for the regulation of angiogenesis by thrombospondin-1 and −2. Cold Spring Harb Perspect Med. 2012, 2 (5): a006627-10.1101/cshperspect.a006627.
Article
PubMed Central
PubMed
Google Scholar
Dua MM, Miyama N, Azuma J, Schultz GM, Sho M, Morser J, Dalman RL: Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery. 2010, 148: 429-435. 10.1016/j.surg.2010.05.014.
Article
PubMed Central
PubMed
Google Scholar
Gabriely I, Yang XM, Cases JA, Ma XH, Rossetti L, Barzilai N: Hyperglycemia induces PAI-1 gene expression in adipose tissue by activation of the hexosamine biosynthetic pathway. Atherosclerosis. 2002, 160: 115-122. 10.1016/S0021-9150(01)00574-3.
Article
CAS
PubMed
Google Scholar
Weiss TW, Seljeflot I, Hjerkinn EM, Arnesen H: Adipose tissue pro-inflammatory gene expression is associated with cardiovascular disease. Int J Clin Pract. 2011, 65: 939-944. 10.1111/j.1742-1241.2011.02717.x.
Article
CAS
PubMed
Google Scholar
Acosta L, Hmadcha A, Escacena N: Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes. 2013, 62 (12): 4266-4269. 10.2337/db13-0896.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parfyonova YV, Plekhanova OS, Tkachuk VA: Plasminogen activators in vascular remodeling and angiogenesis. Biochemistry (Mosc). 2002, 67: 119-134. 10.1023/A:1013964517211.
Article
CAS
Google Scholar
Tashiro Y, Nishida C, Sato-Kusubata K, Ohki-Koizumi M, Ishihara M, Sato A, Gritli I, Komiyama H, Sato Y, Dan T, Miyata T, Okumura K, Tomiki Y, Sakamoto K, Nakauchi H, Heissig B, Hattori K: Inhibition of PAI-1 induces neutrophil-driven neoangiogenesis and promotes tissue regeneration via production of angiocrine factors in mice. Blood. 2012, 119: 6382-6393. 10.1182/blood-2011-12-399659.
Article
CAS
PubMed
Google Scholar
El-Ftesi S, Chang EI, Longaker MT, Gurtner GC: Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg. 2009, 123 (2): 475-485. 10.1097/PRS.0b013e3181954d08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cianfarani F, Toietta G, Di Rocco G, Cesareo E, Zambruno G, Odorisio T: Diabetes impairs adipose tissue-derived stem cell function and efficiency in promoting wound healing. Wound Repair Regen. 2013, 21 (4): 545-553. 10.1111/wrr.12051.
Article
PubMed
Google Scholar
Yan J, Tie G, Xu TY, Cecchini K, Messina LM: Mesenchymal stem cells as a treatment for peripheral arterial disease: current status and potential impact of type II diabetes on their therapeutic efficacy. Stem Cell Rev. 2013, 9 (3): 360-372. 10.1007/s12015-013-9433-8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Akopyan ZA, Sharonov GV, Kochegura TN, Kalinina NI, Parfyonova YV: The influence of high glucose concentration on the ability of mesenchymal stromal cells to stimulate blood vessel growth. Diabetes Mellitus. 2011, 2: 32-36. 10.14341/2072-0351-5631.
Article
Google Scholar
Davey GC, Patil SB, O’Loughlin A, O'Brien T: Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol (Lausanne). 2014, 5: 86-
Google Scholar
Ratcliffe E, Glen KE, Naing MW, Williams DJ: Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. British Medical Bulletin. 2013, 108: 1-21. 10.1093/bmb/ldt034.
Article
Google Scholar
Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV: Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med. 2013, 11: 138-10.1186/1479-5876-11-138.
Article
PubMed Central
CAS
PubMed
Google Scholar
Efimenko A, Starostina E, Kalinina N, Stolzing A: Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 2011, 9 (1): 10-22. 10.1186/1479-5876-9-10.
Article
PubMed Central
CAS
PubMed
Google Scholar