Aoun Sebaiti M, Hainselin M, Gounden Y, Sirbu CA, Sekulic S, Lorusso L, Nacul L, Authier FJ. Systematic review and meta-analysis of cognitive impairment in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Sci Rep. 2022;12(1):2157. https://doi.org/10.1038/s41598-021-04764-w.
Article
CAS
Google Scholar
Nacul LC, Lacerda EM, Pheby D, Campion P, Molokhia M, Fayyaz S, Leite JC, Poland F, Howe A, Drachler ML. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: a repeated cross-sectional study in primary care. BMC Med. 2011;9:91. https://doi.org/10.1186/1741-7015-9-91.
Article
Google Scholar
Cortes Rivera M, Mastronardi C, Silva-Aldana CT, Arcos-Burgos M, Lidbury BA. Myalgic encephalomyelitis/chronic fatigue syndrome: a comprehensive review. Diagnostics (Basel). 2019;9(3):91. https://doi.org/10.3390/diagnostics9030091.
Article
CAS
Google Scholar
Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G. Immunological aspects of chronic fatigue syndrome. Autoimmun Rev. 2009;8(4):287–91. https://doi.org/10.1016/j.autrev.2008.08.003.
Article
CAS
Google Scholar
Ruiz-Pablos M, Paiva B, Montero-Mateo R, Garcia N, Zabaleta A. Epstein-Barr virus and the origin of myalgic encephalomyelitis or chronic fatigue syndrome. Front Immunol. 2021;12: 656797. https://doi.org/10.3389/fimmu.2021.656797.
Article
CAS
Google Scholar
Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, Scheibenbogen C, Murovska M, Prusty BK. On behalf of the European Network on ME/CFS (EUROMEME) Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med. 2018;10:268. https://doi.org/10.1186/s12967-018-1644-y.
Article
CAS
Google Scholar
Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon SD, Reeves WC, Lloyd A. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006. https://doi.org/10.1136/bmj.38933.585764.AE.
Article
Google Scholar
Katz BZ, Shiraishi Y, Mears CJ, Binns HS, Taylor R. Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics. 2009;124:189–93. https://doi.org/10.1542/peds.2008-1879].
Article
Google Scholar
Chu L, Valencia IJ, Garvet DW, Montoya JG. Onset patterns and course of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Pediatr. 2019;7:12. https://doi.org/10.3389/fped.2019.00012.
Article
Google Scholar
Balinas C, Eaton-Fitch N, Maksoud R, Staines D, Marshall-Gradisnik S. Impact of life stressors on myalgic encephalomyelitis/chronic fatigue syndrome symptoms: an Australian longitudinal study. Int J Environ Res Public Health. 2021;18(20):10614. https://doi.org/10.3390/ijerph182010614.
Article
Google Scholar
Poenaru S, Abdallah SJ, Corrales-Medina V, Cowan J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: a narrative review. Ther Adv Infect Dis. 2021;8:20499361211009384. https://doi.org/10.1177/20499361211009385.
Article
CAS
Google Scholar
Ueland M, Hajdarevic R, Mella O, Strand EB, Sosa DD, Saugstad OD, Fluge Ø, Lie BA, Viken MK. No replication of previously reported association with genetic variants in the T cell receptor alpha (TRA) locus for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Transl Psychiatry. 2022;12(1):277. https://doi.org/10.1038/s41398-022-02046-1.
Article
CAS
Google Scholar
Albright F, Light K, Light A, Bateman L, Cannon-Albright LA. Evidence for a heritable predisposition to Chronic Fatigue Syndrome. BMC Neurol. 2011;11:62. https://doi.org/10.1186/1471-2377-11-62.
Article
Google Scholar
Dibble JJ, McGrath SJ, Ponting CP. Genetic risk factors of ME/CFS: a critical review. Hum Mol Genet. 2020;29(R1):R117–24. https://doi.org/10.1093/hmg/ddaa169.
Article
CAS
Google Scholar
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84. https://doi.org/10.1038/s41576-019-0127-1.
Article
CAS
Google Scholar
Horesh Bergquist S, Lobelo F. The limits and potential future applications of personalized medicine to prevent complex chronic disease. Public Health Rep. 2018;133(5):519–22. https://doi.org/10.1177/0033354918781568.
Article
Google Scholar
Strawbridge RJ, van Zuydam NR. Shared genetic contribution of type 2 diabetes and cardiovascular disease: implications for prognosis and treatment. Curr Diab Rep. 2018;18(8):59. https://doi.org/10.1007/s11892-018-1021-5.
Article
CAS
Google Scholar
Abell NS, DeGorter MK, Gloudemans MJ, Greenwald E, Smith KS, He Z, Montgomery SB. Multiple causal variants underlie genetic associations in humans. Science. 2022;375(6586):1247–54. https://doi.org/10.1126/science.abj5117.
Article
CAS
Google Scholar
Chang YC, Wu JT, Hong MY, Tung YA, Hsieh PH, Yee SW, Giacomini KM, Oyang YJ, Chen CY; Alzheimer’s Disease Neuroimaging Initiative. GenEpi: gene-based epistasis discovery using machine learning. BMC Bioinform. 2020;21(1):68. https://doi.org/10.1186/s12859-020-3368-2.
Moore JH, Williams SM. Epistasis and its implications for personal genetics. Am J Hum Genet. 2009;85(3):309–20. https://doi.org/10.1016/j.ajhg.2009.08.006.
Article
CAS
Google Scholar
Wray NR, Wijmenga C, Sullivan PF, Yang J, Visscher PM. Common disease is more complex than implied by the core gene omnigenic model. Cell. 2018;173(7):1573–80. https://doi.org/10.1016/j.cell.2018.05.051.
Article
CAS
Google Scholar
Visscher PM, Yengo L, Cox NJ, Wray NR. Discovery and implications of polygenicity of common diseases. Science. 2021;373(6562):1468–73. https://doi.org/10.1126/science.abi8206.
Article
CAS
Google Scholar
Gardner, S. Combinatorial analytics: an essential tool for the delivery of precision medicine and precision agriculture. Artif Intell Life Sci. 2021;1:100003. https://doi.org/10.1016/j.ailsci.2021.100003
Koefoed P, Andreassen OA, Bennike B, Dam H, Djurovic S, Hansen T, Jorgensen MB, Kessing LV, Melle I, Møller GL, et al. Combinations of SNPs related to signal transduction in bipolar disorder. PLoS ONE. 2011;6: e23812. https://doi.org/10.1371/journal.pone.0023812.
Article
CAS
Google Scholar
Das S, Pearson M, Taylor K, Bouchet V, Møller GL, Hall TO, Strivens M, Tzeng KT, Gardner S. Combinatorial analysis of phenotypic and clinical risk factors associated with hospitalized COVID-19 patients. Front Digit Health. 2021;3: 660809. https://doi.org/10.3389/fdgth.2021.660809.
Article
Google Scholar
Taylor K, Das S, Pearson M, Kozubek J, Strivens M, Gardner S. Systematic drug repurposing to enable precision medicine: a case study in breast cancer. Digit Med. 2019;5:180. https://doi.org/10.4103/digm.digm_28_19.
Article
Google Scholar
Taylor K, Das S, Pearson M, Kozubek J, Pawlowski M, Jensen CE, Skowron Z, Møller GL, Strivens M, Gardner S. Analysis of genetic host response risk factors in severe COVID-19 patients. Preprint at medRxiv. 2020. https://doi.org/10.1101/2020.06.17.20134015.
Article
Google Scholar
Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Sonmez T, Coker D, Symons A, Esparza-Gordillo J; 23andMe COVID-19 Team, Aslibekyan S, Auton A. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet. 2021;53(6):801–8. https://doi.org/10.1038/s41588-021-00854-7.
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–7. https://doi.org/10.1038/s41586-021-03767-x.
Cadegiani FA, McCoy J, Gustavo Wambier C, Goren A. Early antiandrogen therapy with dutasteride reduces viral shedding, inflammatory responses, and time-to-remission in males with COVID-19: a randomized, double-blind, placebo-controlled interventional trial (EAT-DUTA AndroCoV Trial - Biochemical). Cureus. 2021;13(2): e13047. https://doi.org/10.7759/cureus.13047.
Article
Google Scholar
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9. https://doi.org/10.1038/s41586-018-0579-z.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J R Stat Soc B. 1995;57:289–300.
Google Scholar
Hajdarevic R, Lande A, Mehlsen J, Rydland A, Sosa DD, Strand EB, Mella O, Pociot F, Fluge Ø, Lie BA, Viken MK. Genetic association study in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) identifies several potential risk loci. Brain Behav Immun. 2022;102:362–9. https://doi.org/10.1016/j.bbi.2022.03.010.
Article
CAS
Google Scholar
Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, et al. Ensembl 2021. Nucleic Acids Res. 2021;49(D1):D884–91. https://doi.org/10.1093/nar/gkaa942.
Article
CAS
Google Scholar
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.
Jung I, Schmitt A, Diao Y, Lee AJ, Liu T, Yang D, Tan C, Eom J, Chan M, Chee S, Chiang Z. A compendium of promoter-centered long-range chromatin interactions in the human genome. Nat Genet. 2019;51(10):1442–9.
Article
CAS
Google Scholar
Morgan P, Brown DG, Lennard S, Anderton MJ, Barrett JC, Eriksson U, Fidock M, Hamren B, Johnson A, March RE, Matcham J. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov. 2018;17(3):167–81.
Article
CAS
Google Scholar
Jin Y, Schäffer AA, Sherry ST, Feolo M. Quickly identifying identical and closely related subjects in large databases using genotype data. PLoS ONE. 2017;12(6): e0179106. https://doi.org/10.1371/journal.pone.0179106.
Article
CAS
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
Article
CAS
Google Scholar
Qie H, Li S, Dou Y, Xu J, Xiong Y, Gao Z. Isolate sets partition benefits community detection of parallel Louvain method. Sci Rep. 2022;12(1):8248. https://doi.org/10.1038/s41598-022-11987-y.
Article
CAS
Google Scholar
Neale lab, UK Biobank v2 (2018). https://www.nealelab.is/uk-biobank
Gardinassi LG. A cross-study biomarker signature of human bronchial epithelial cells infected with respiratory syncytial virus. Adv Virol. 2016;2016:3605302. https://doi.org/10.1155/2016/3605302.
Article
Google Scholar
Ansari IU, Longacre MJ, Paulusma CC, Stoker SW, Kendrick MA, MacDonald MJ. Characterization of P4 ATPase phospholipid translocases (flippases) in human and rat pancreatic beta cells: their gene silencing inhibits insulin secretion. J Biol Chem. 2015;290(38):23110–23. https://doi.org/10.1074/jbc.M115.655027.
Article
CAS
Google Scholar
Fazia T, Marzanati D, Carotenuto AL, Beecham A, Hadjixenofontos A, McCauley JL, Saddi V, Piras M, Bernardinelli L, Gentilini D. Homozygosity haplotype and whole-exome sequencing analysis to identify potentially functional rare variants involved in multiple sclerosis among sardinian families. Curr Issues Mol Biol. 2021;43(3):1778–93. https://doi.org/10.3390/cimb43030125.
Article
CAS
Google Scholar
Li XN, Herrington J, Petrov A, Ge L, Eiermann G, Xiong Y, Jensen MV, Hohmeier HE, Newgard CB, Garcia ML, Wagner M, Zhang BB, Thornberry NA, Howard AD, Kaczorowski GJ, Zhou YP. The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. J Pharmacol Exp Ther. 2013;344(2):407–16. https://doi.org/10.1124/jpet.112.199083
Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011;121(6):2133–41. https://doi.org/10.1172/JCI46043.
Article
CAS
Google Scholar
de Goede P, Wefers J, Brombacher EC, Schrauwen P, Kalsbeek A. Circadian rhythms in mitochondrial respiration. J Mol Endocrinol. 2018;60(3):R115–30. https://doi.org/10.1530/JME-17-0196.
Article
Google Scholar
Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15(2):75–89. https://doi.org/10.1038/s41574-018-0122-1.
Article
CAS
Google Scholar
Kobayashi T, Shimabukuro-Demoto S, Yoshida-Sugitani R, Furuyama-Tanaka K, Karyu H, Sugiura Y, Shimizu Y, Hosaka T, Goto M, Kato N, Okamura T, Suematsu M, Yokoyama S, Toyama-Sorimachi N. The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity. 2014;41(3):375–88. https://doi.org/10.1016/j.immuni.2014.08.011.
Article
CAS
Google Scholar
Kobayashi T, Nguyen-Tien D, Ohshima D, Karyu H, Shimabukuro-Demoto S, Yoshida-Sugitani R, Toyama-Sorimachi N. Human SLC15A4 is crucial for TLR-mediated type I interferon production and mitochondrial integrity. Int Immunol. 2021;33(7):399–406. https://doi.org/10.1093/intimm/dxab006.
Article
CAS
Google Scholar
Kobayashi T, Nguyen-Tien D, Sorimachi Y, Sugiura Y, Suzuki T, Karyu H, Shimabukuro-Demoto S, Uemura T, Okamura T, Taguchi T, Ueki K, Kato N, Goda N, Dohmae N, Takubo K, Suematsu M, Toyama-Sorimachi N. SLC15A4 mediates M1-prone metabolic shifts in macrophages and guards immune cells from metabolic stress. Proc Natl Acad Sci U S A. 2021;118(33): e2100295118. https://doi.org/10.1073/pnas.2100295118.
Article
CAS
Google Scholar
Souren NY, Gerdes LA, Lutsik P, Gasparoni G, Beltrán E, Salhab A, Kümpfel T, Weichenhan D, Plass C, Hohlfeld R, Walter J. DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat Commun. 2019;10(1):2094. https://doi.org/10.1038/s41467-019-09984-3.
Article
CAS
Google Scholar
Chorąży M, Wawrusiewicz-Kurylonek N, Posmyk R, Zajkowska A, Kapica-Topczewska K, Krętowski AJ, Kochanowicz J, Kułakowska A. Analysis of chosen SNVs in GPC5, CD58 and IRF8 genes in multiple sclerosis patients. Adv Med Sci. 2019;64(2):230–4. https://doi.org/10.1016/j.advms.2018.12.004.
Article
Google Scholar
Mowry EM, Carey RF, Blasco MR, Pelletier J, Duquette P, Villoslada P, Malikova I, Roger E, Kinkel RP, McDonald J, Bacchetti P, Waubant E. Multiple sclerosis susceptibility genes: associations with relapse severity and recovery. PLoS ONE. 2013;8(10): e75416. https://doi.org/10.1371/journal.pone.0075416.PMID:24130709.
Article
CAS
Google Scholar
Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of Random Forests to a genome-wide association dataset: methodological considerations & new findings. BMC Genet. 2010;11:49. https://doi.org/10.1186/1471-2156-11-49.
Article
CAS
Google Scholar
Schiattarella GG, Cattaneo F, Carrizzo A, Paolillo R, Boccella N, Ambrosio M, Damato A, Pironti G, Franzone A, Russo G, Magliulo F, Pirozzi M, Storto M, Madonna M, Gargiulo G, Trimarco V, Rinaldi L, De Lucia M, Garbi C, Feliciello A, Esposito G, Vecchione C, Perrino C. Akap1 regulates vascular function and endothelial cells behavior. Hypertension. 2018;71(3):507–17. https://doi.org/10.1161/HYPERTENSIONAHA.117.10185.
Article
CAS
Google Scholar
Narala VR, Fukumoto J, Hernández-Cuervo H, Patil SS, Krishnamurthy S, Breitzig M, Galam L, Soundararajan R, Lockey RF, Kolliputi N. Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2018;314(5):L860–70. https://doi.org/10.1152/ajplung.00365.2017.
Article
CAS
Google Scholar
Zenner HL, Yoshimura S, Barr FA, Crump CM. Analysis of Rab GTPase-activating proteins indicates that Rab1a/b and Rab43 are important for herpes simplex virus 1 secondary envelopment. J Virol. 2011;85(16):8012–21. https://doi.org/10.1128/JVI.00500-11.
Article
CAS
Google Scholar
Bae JH, Hong M, Jeong HJ, Kim H, Lee SJ, Ryu D, Bae GU, Cho SC, Lee YS, Krauss RS, Kang JS. Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration. J Cachexia Sarcopenia Muscle. 2020;11(4):1089-1103. doi: 10.1002/jcsm.12563. J Cachexia Sarcopenia Muscle. 2020;11(5):1381.
Google Scholar
Wang LC, Almazan G. Cdon, a cell surface protein, mediates oligodendrocyte differentiation and myelination. Glia. 2016;64(6):1021–33. https://doi.org/10.1002/glia.22980.
Article
Google Scholar
Shukla SK, Rose W, Schrodi SJ. Complex host genetic susceptibility to Staphylococcus aureus infections. Trends Microbiol. 2015;23(9):529–36. https://doi.org/10.1016/j.tim.2015.05.008.
Article
CAS
Google Scholar
Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J. 2014;61(7):B4890.
Google Scholar
Ye J, Wen Y, Chu X, Li P, Cheng B, Cheng S, Liu L, Zhang L, Ma M, Qi X, Liang C, Kafle OP, Jia Y, Wu C, Wang S, Wang X, Ning Y, Zhang F. Association between herpes simplex virus 1 exposure and the risk of depression in UK Biobank. Clin Transl Med. 2020;10(2): e108. https://doi.org/10.1002/ctm2.108.
Article
Google Scholar
Hassing HC, Surendran RP, Derudas B, Verrijken A, Francque SM, Mooij HL, Bernelot Moens SJ, Hart LM, Nijpels G, Dekker JM, Williams KJ, Stroes ES, Van Gaal LF, Staels B, Nieuwdorp M, Dallinga-Thie GM. SULF2 strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus. Obesity (Silver Spring). 2014;22(5):1309–16. https://doi.org/10.1002/oby.20682.
Article
CAS
Google Scholar
Narita M, Niikura K, Nanjo-Niikura K, Narita M, Furuya M, Yamashita A, Saeki M, Matsushima Y, Imai S, Shimizu T, Asato M, Kuzumaki N, Okutsu D, Miyoshi K, Suzuki M, Tsukiyama Y, Konno M, Yomiya K, Matoba M, Suzuki T. Sleep disturbances in a neuropathic pain-like condition in the mouse are associated with altered GABAergic transmission in the cingulate cortex. Pain. 2011;152(6):1358–72. https://doi.org/10.1016/j.pain.2011.02.016.
Article
CAS
Google Scholar
Yamashita A, Hamada A, Suhara Y, Kawabe R, Yanase M, Kuzumaki N, Narita M, Matsui R, Okano H, Narita M. Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse. 2014;68(6):235–47. https://doi.org/10.1002/syn.21733.
Article
CAS
Google Scholar
Kammel LG, Wei W, Jami SA, Voskuhl RR, O’Dell TJ. Enhanced GABAergic tonic inhibition reduces intrinsic excitability of hippocampal CA1 pyramidal cells in experimental autoimmune encephalomyelitis. Neuroscience. 2018;395:89–100. https://doi.org/10.1016/j.neuroscience.2018.11.003.
Article
CAS
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191–8.
Article
CAS
Google Scholar
Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon SD, Reeves WC, Lloyd A; Dubbo Infection Outcomes Study Group. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ. 2006;333(7568):575. https://doi.org/10.1136/bmj.38933.585764.AE
Raijmakers RPH, Roerink ME, Jansen AFM, Keijmel SP, Gacesa R, Li Y, Joosten LAB, van der Meer JWM, Netea MG, Bleeker-Rovers CP, Xu CJ. Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome. J Transl Med. 2020;18(1):448. https://doi.org/10.1186/s12967-020-02585-5.
Article
CAS
Google Scholar
Wong TL, Weitzer DJ. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)—a systemic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas). 2021;57(5):418. https://doi.org/10.3390/medicina57050418.
Article
Google Scholar
Morris G, Berk M, Galecki P, Maes M. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol. 2014;49(2):741–56. https://doi.org/10.1007/s12035-013-8553-0.
Article
CAS
Google Scholar
Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): an overview. J Clin Med. 2021;10(20):4786. https://doi.org/10.3390/jcm10204786.
Article
CAS
Google Scholar
Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, Scheibenbogen C, Murovska M, Prusty BK; European Network on ME/CFS (EUROMENE). Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 2018;16(1):268. https://doi.org/10.1186/s12967-018-1644-y
Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis. 2014;29(1):19–36. https://doi.org/10.1007/s11011-013-9435-x.
Article
CAS
Google Scholar
Barrera MJ, Aguilera S, Castro I, Carvajal P, Jara D, Molina C, González S, González MJ. Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: potential role in Sjögren’s syndrome. Autoimmun Rev. 2021;20(8): 102867. https://doi.org/10.1016/j.autrev.2021.102867.
Article
CAS
Google Scholar
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis. Front Immunol. 2021;12: 673916. https://doi.org/10.3389/fimmu.2021.673916.
Article
CAS
Google Scholar
Wang C, Ahlford A, Järvinen TM, Nordmark G, Eloranta ML, Gunnarsson I, Svenungsson E, Padyukov L, Sturfelt G, Jönsen A, Bengtsson AA, Truedsson L, Eriksson C, Rantapää-Dahlqvist S, Sjöwall C, Julkunen H, Criswell LA, Graham RR, Behrens TW, Kere J, Rönnblom L, Syvänen AC, Sandling JK. Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations. Eur J Hum Genet. 2013;21(9):994–9. https://doi.org/10.1038/ejhg.2012.277.
Article
CAS
Google Scholar
Shin JG, Kim HJ, Park BL, Bae JS, Kim LH, Cheong HS, Shin HD. Putative association of GPC5 polymorphism with the risk of inflammatory demyelinating diseases. J Neurol Sci. 2013;335(1–2):82–8. https://doi.org/10.1016/j.jns.2013.08.031.
Article
CAS
Google Scholar
Johnson BA, Wang J, Taylor EM, Caillier SJ, Herbert J, Khan OA, Cross AH, De Jager PL, Gourraud PA, Cree BC, Hauser SL, Oksenberg JR. Multiple sclerosis susceptibility alleles in African Americans. Genes Immun. 2010;11(4):343–50. https://doi.org/10.1038/gene.2009.81.
Article
CAS
Google Scholar
Jain V, Arunkumar A, Kingdon C, Lacerda E, Nacul L. Prevalence of and risk factors for severe cognitive and sleep symptoms in ME/CFS and MS. BMC Neurol. 2017;17(1):117. https://doi.org/10.1186/s12883-017-0896-0.
Article
Google Scholar
Tomas C, Brown A, Strassheim V, Elson JL, Newton J, Manning P. Cellular bioenergetics is impaired in patients with chronic fatigue syndrome. PLoS ONE. 2017;12(10): e0186802. https://doi.org/10.1371/journal.pone.0186802.
Article
CAS
Google Scholar
Liu Y, Merrill RA, Strack S. A-kinase anchoring protein 1: emerging roles in regulating mitochondrial form and function in health and disease. Cells. 2020;9(2):298. https://doi.org/10.3390/cells9020298.
Article
CAS
Google Scholar
Yoshinaka T, Kosako H, Yoshizumi T, Furukawa R, Hirano Y, Kuge O, Tamada T, Koshiba T. Structural basis of mitochondrial scaffolds by prohibition complexes: insight into a role of the coiled-coil region. iScience. 2019;19:1065–1078. https://doi.org/10.1016/j.isci.2019.08.056.
Xu X, Xu L, Zhang P, Ouyang K, Xiao Y, Xiong J, Wang D, Liang Y, Duan L. Effects of ATP9A on extracellular vesicle release and exosomal lipid composition. Oxid Med Cell Longev. 2020;2020:8865499. https://doi.org/10.1155/2020/8865499.
Article
CAS
Google Scholar
Nikolova-Karakashian MN, Reid MB. Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxid Redox Signal. 2011;15(9):2501–17. https://doi.org/10.1089/ars.2011.3940.
Article
CAS
Google Scholar
Che X, Brydges CR, Yu Y, Price A, Joshi S, Roy A, Lee B, Barupal DK, Cheng A, Palmer DM, Levine S, Peterson DL, Vernon SD, Bateman L, Hornig M, Montoya JG, Komaroff AL, Fiehn O, Lipkin WI. Evidence for peroxisomal dysfunction and dysregulation of the CDP-choline pathway in myalgic encephalomyelitis/chronic fatigue syndrome. medRxiv [Preprint]. 2022:2021.06.14.21258895. doi: https://doi.org/10.1101/2021.06.14.21258895
Nagy-Szakal D, Barupal DK, Lee B, Che X, Williams BL, Kahn EJR, Ukaigwe JE, Bateman L, Klimas NG, Komaroff AL, Levine S, Montoya JG, Peterson DL, Levin B, Hornig M, Fiehn O, Lipkin WI. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Sci Rep. 2018;8(1):10056. https://doi.org/10.1038/s41598-018-28477-9.
Article
CAS
Google Scholar
Allain TJ, Bearn JA, Coskeran P, Jones J, Checkley A, Butler J, Wessely S, Miell JP. Changes in growth hormone, insulin, insulinlike growth factors (IGFs), and IGF-binding protein-1 in chronic fatigue syndrome. Biol Psychiatry. 1997;41(5):567–73. https://doi.org/10.1016/s0006-3223(96)00074-1.
Article
CAS
Google Scholar
Wirth KJ, Scheibenbogen C. Pathophysiology of skeletal muscle disturbances in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J Transl Med. 2021;19(1):162. https://doi.org/10.1186/s12967-021-02833-2.
Article
CAS
Google Scholar
Choi CS, Kim YB, Lee FN, Zabolotny JM, Kahn BB, Youn JH. Lactate induces insulin resistance in skeletal muscle by suppressing glycolysis and impairing insulin signaling. Am J Physiol Endocrinol Metab. 2002;283(2):E233–40. https://doi.org/10.1152/ajpendo.00557.2001.
Article
CAS
Google Scholar
Weyrauch LA, McMillin SL, Witczak CA. Insulin resistance does not impair mechanical overload-stimulated glucose uptake, but does alter the metabolic fate of glucose in mouse muscle. Int J Mol Sci. 2020;21(13):4715. https://doi.org/10.3390/ijms21134715.
Article
CAS
Google Scholar
Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, Patti ME. Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep. 2016;6:22788. https://doi.org/10.1038/srep22788.
Article
CAS
Google Scholar
Hernandez-Rabaza V, Cabrera-Pastor A, Taoro-Gonzalez L, Gonzalez-Usano A, Agusti A, Balzano T, Llansola M, Felipo V. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. J Neuroinflammation. 2016;13(1):83. https://doi.org/10.1186/s12974-016-0549-z.
Narita M, Niikura K, Nanjo-Niikura K, Narita M, Furuya M, Yamashita A, Saeki M, Matsushima Y, Imai S, Shimizu T, et al. Sleep disturbances in a neuropathic pain-like condition in the mouse are associated with altered GABAergic transmission in the cingulate cortex. Pain. 2011;152(6):1358–72. https://doi.org/10.1016/j.pain.2011.02.016.
Article
CAS
Google Scholar
Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA. Reduced expression of GABA transporter GAT3 in helpless rats, an animal model of depression. Neurochem Res. 2009;34(9):1584–93. https://doi.org/10.1007/s11064-009-9947-2.
Article
CAS
Google Scholar
Albrecht A, Ivens S, Papageorgiou IE, Çalışkan G, Saiepour N, Brück W, Richter-Levin G, Heinemann U, Stork O. Shifts in excitatory/inhibitory balance by juvenile stress: A role for neuron-astrocyte interaction in the dentate gyrus. Glia. 2016;64(6):911–22. https://doi.org/10.1002/glia.22970.
Article
Google Scholar
Kalus I, Rohn S, Puvirajesinghe TM, Guimond SE, Eyckerman-Kölln PJ, Ten Dam G, van Kuppevelt TH, Turnbull JE, Dierks T. Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS ONE. 2015;10(10): e0139853. https://doi.org/10.1371/journal.pone.0139853.
Article
CAS
Google Scholar
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D’Hooge R, Dierks T. Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity. J Cell Mol Med. 2009;13(11–12):4505–21. https://doi.org/10.1111/j.1582-4934.2008.00558.x.
Article
CAS
Google Scholar
Joy MT, Vrbova G, Dhoot GK, Anderson PN. Sulf1 and Sulf2 expression in the nervous system and its role in limiting neurite outgrowth in vitro. Exp Neurol. 2015;263:150–60. https://doi.org/10.1016/j.expneurol.2014.10.011.
Article
CAS
Google Scholar
Zhou W, Nielsen JB, Fritsche LG, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50(9):1335–41. https://doi.org/10.1038/s41588-018-0184-y.
Article
CAS
Google Scholar
Bae JH, Hong M, Jeong HJ, Kim H, Lee SJ, Ryu D, Bae GU, Cho SC, Lee YS, Krauss RS, Kang JS. Satellite cell-specific ablation of Cdon impairs integrin activation, FGF signalling, and muscle regeneration. J Cachexia Sarcopenia Muscle. 2020;11(4):1089–103. https://doi.org/10.1002/jcsm.12563.
Article
Google Scholar
Verwey M, Grant A, Meti N, Adye-White L, Torres-Berrío A, Rioux V, Lévesque M, Charron F, Flores C. Mesocortical dopamine phenotypes in mice lacking the sonic hedgehog receptor Cdon. eNeuro. 2016;3(3). https://doi.org/10.1523/ENEURO.0009-16.2016
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, Frank S, Brown SA, Eckert A. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 2018;27(3):657-666.e5. https://doi.org/10.1016/j.cmet.2018.01.011.
Article
CAS
Google Scholar
Oosterman JE, Wopereis S, Kalsbeek A. The circadian clock, shift work, and tissue-specific insulin resistance. Endocrinology. 2020;161(12):bqaa180. https://doi.org/10.1210/endocr/bqaa180.
Sweetman E, Ryan M, Edgar C, MacKay A, Vallings R, Tate W. Changes in the transcriptome of circulating immune cells of a New Zealand cohort with myalgic encephalomyelitis/chronic fatigue syndrome. Int J Immunopathol Pharmacol. 2019. https://doi.org/10.1177/2058738418820402.
Natelson BH. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: definitions, similarities, and differences. Clin Ther. 2019;41(4):612–8. https://doi.org/10.1016/j.clinthera.2018.12.016.
Article
Google Scholar
Gatto N, Dos Santos SC, Shaw AC, Bell SM, Myszczynska MA, Powers S, Meyer K, Castelli LM, Karyka E, Mortiboys H, Azzouz M, Hautbergue GM, Márkus NM, Shaw PJ, Ferraiuolo L. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell. 2021;20(1): e13281. https://doi.org/10.1111/acel.13281.
Article
CAS
Google Scholar
Ochoa D, Hercules A, Carmona M, Suveges D, Gonzalez-Uriarte A, Malangone C, Miranda A, Fumis L, Carvalho-Silva D, Spitzer M, et al. Open Targets Platform: supporting systematic drug-target identification and prioritisation. Nucleic Acids Res. 2021;49(D1):D1302–10. https://doi.org/10.1093/nar/gkaa1027.
Article
CAS
Google Scholar
Jason LA, Ohanian D, Brown A, Sunnquist M, McManimen S, Klebek L, Fox P, Sorenson M. Differentiating multiple sclerosis from myalgic encephalomyelitis and chronic fatigue syndrome. Insights Biomed. 2017;2(2).
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Kamal MA, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res. 2021.
Marshall-Gradisnik S, Eaton-Fitch N. Understanding myalgic encephalomyelitis. Science. 2022;377(6611):1150–1.
Article
CAS
Google Scholar
Bakken IJ, Tveito K, Gunnes N, Ghaderi S, Stoltenberg C, Trogstad L, Håberg SE, Magnus P. Two age peaks in the incidence of chronic fatigue syndrome/myalgic encephalomyelitis: a population-based registry study from Norway 2008–2012. BMC Med. 2014;12:167. https://doi.org/10.1186/s12916-014-0167-5.
Article
Google Scholar
Hewitt J, Walters M, Padmanabhan S, Dawson J. Cohort profile of the UK Biobank: diagnosis and characteristics of cerebrovascular disease. BMJ Open. 2016;6(3): e009161. https://doi.org/10.1136/bmjopen-2015-009161.
Article
CAS
Google Scholar
Taylor AE, Jones HJ, Sallis H, Euesden J, Stergiakouli E, Davies NM, Zammit S, Lawlor DA, Munafò MR, Davey Smith G, Tilling K. Exploring the association of genetic factors with participation in the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2018;47(4):1207–16. https://doi.org/10.1093/ije/dyy060.
Article
Google Scholar
Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, Elledge SJ, Niebuhr DW, Scher AI, Munger KL, Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301. https://doi.org/10.1126/science.abj8222.
Article
CAS
Google Scholar
Komaroff AL, Bateman L. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? Front Med (Lausanne). 2021;7: 606824. https://doi.org/10.3389/fmed.2020.606824.
Article
Google Scholar
Kusama Y, Fukui S, Maruyama M, Kamimura K, Maihara T. Myalgic encephalomyelitis/chronic fatigue syndrome post coronavirus disease 2019. Pediatr Int. 2022;64(1): e14976. https://doi.org/10.1111/ped.14976.
Article
Google Scholar
COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600:472–7.
https://www.decodeme.org.uk/
Devereux-Cooke A, Leary S, McGrath SJ, Northwood E, Redshaw A, Shepherd C, Stacey P, Tripp C, Wilson J, Mar M, Boobyer D, Bromiley S, Chowdhury S, Dransfield C, Almas M, Almelid Ø, Buchanan D, Garcia D, Ireland J, Kerr SM, Lewis I, McDowall E, Migdal M, Murray P, Perry D, Ponting CP, Vitart V, Wolfe JC. DecodeME: community recruitment for a large genetics study of myalgic encephalomyelitis/chronic fatigue syndrome. BMC Neurol. 2022;22(1):269. https://doi.org/10.1186/s12883-022-02763-6.
Article
Google Scholar
Das S, Taylor K, Beaulah S, Gardner S. Systematic indication extension for drugs using patient stratification insights generated by combinatorial analytics. Patterns (N Y). 2022;3(6): 100496. https://doi.org/10.1016/j.patter.2022.100496.
Article
Google Scholar