Knudsen ES, Shapiro GI, Keyomarsi K. Selective CDK4/6 inhibitors: biologic outcomes, determinants of sensitivity, mechanisms of resistance, combinatorial approaches, and pharmacodynamic biomarkers. Am Soc Clin Oncol Educ Book. 2020;40:115–26. https://doi.org/10.1200/EDBK_281085.
Article
PubMed
PubMed Central
Google Scholar
Liu M, Liu H, Chen J. Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment (Review). Oncol Rep. 2018;39(3):901–11. https://doi.org/10.3892/or.2018.6221.
Article
CAS
PubMed
Google Scholar
Wu Y, Zhang Y, Pi H, Sheng Y. Current therapeutic progress of CDK4/6 inhibitors in breast cancer. Cancer Manag Res. 2020;15(12):3477–87. https://doi.org/10.2147/CMAR.S250632.
Article
Google Scholar
Du Q, Guo X, Wang M, Li Y, Sun X, Li Q. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J Hematol Oncol. 2020;13(1):41. https://doi.org/10.1186/s13045-020-00880-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3(11):1427–38. https://doi.org/10.1158/1535-7163.1427.3.11.
Article
CAS
PubMed
Google Scholar
Elmi A, Makvandi M, Weng CC, Hou C, Clark AS, Mach RH, Mankoff DA. Cell-Proliferation imaging for monitoring response to CDK4/6 inhibition combined with endocrine-therapy in breast cancer: comparison of [18F] FLT and [18F]ISO-1 PET/CT. Clin Cancer Res. 2019;25(10):3063–73. https://doi.org/10.1158/1078-0432.CCR-18-2769.
Article
CAS
PubMed
Google Scholar
Ma G, Liu C, Lian W, Zhang Y, Yuan H, Zhang Y, Song S, Yang Z. 18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer. Ann Nucl Med. 2021;35(5):600–7. https://doi.org/10.1007/s12149-021-01603-w.
Article
CAS
PubMed
Google Scholar
Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, Luthra SK, Brady F, Price PM, Aboagye EO. 3’-deoxy-3’-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. 2003;63(13):3791–8.
CAS
PubMed
Google Scholar
Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH. [18F] FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31(12):1659–72. https://doi.org/10.1007/s00259-004-1687-6.
Article
PubMed
Google Scholar
Pan CX, Zhang H, Tepper CG, Lin TY, Davis RR, Keck J, Ghosh PM, Gill P, Airhart S, Bult C, Gandara DR, Liu E, de Vere White RW. Development and characterization of bladder cancer patient-derived xenografts for molecularly guided targeted therapy. PLoS ONE. 2015;10(8): e0134346. https://doi.org/10.1371/journal.pone.0134346.
Article
PubMed
PubMed Central
Google Scholar
Marchand P, Ouadi A, Pellicioli M, et al. Automated and efficient radiosynthesis of [18F]FLT using a low amount of precursor. Nucl Med Biol. 2016;43:520–7.
Article
CAS
Google Scholar
Magdics M, Szirmay-Kalos L, Toth B, Legradyy D, Cserkaszkyy A, Balkayz L, Domonkosx B, Volgyesx D, Patayx G, Majorx P, Lantosx J. Bukkix T Performance evaluation of scatter modeling of the GPU-based “Tera-Tomo” 3D PET reconstruction. IEEE Nuclear Science Symposium Conference Record. 2011;2011:4086–8. https://doi.org/10.1109/NSSMIC.2011.6153777.
Article
Google Scholar
Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31(6):496–505. https://doi.org/10.1053/j.sult.2010.10.001.
Article
PubMed
PubMed Central
Google Scholar
Lee JR, Madsen MT, Bushnel D, Menda Y. A threshold method to improve standardized uptake value reproducibility. Nuclear Med Commun. 2000;21:685–90.
Article
CAS
Google Scholar
Soloviev D, Lewis D, Honess D, Aboagye E. [(18F ] FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer. 2012;48(4):416–24. https://doi.org/10.1016/j.ejca.2011.11.035.
Article
CAS
PubMed
Google Scholar
Krystal GW, Alesi E, Tatum JL. Early FDG/PET scanning as a pharmacodynamic marker of anti-EGFR antibody activity in colorectal cancer. Mol Cancer Ther. 2012;11(7):1385–8.
Article
CAS
Google Scholar
Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, Clarke R, Knudsen ES. Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer. 2011;18(3):333–45. https://doi.org/10.1530/ERC-10-0262.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol Cancer Ther. 2020;19(8):1575–88. https://doi.org/10.1158/1535-7163.MCT-18-1161.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, Signoretti S, Look AT, Kung AL, von Boehmer H, Sicinski P. The requirement for cyclin D function in tumor maintenance. Cancer Cell. 2012;22(4):438–51. https://doi.org/10.1016/j.ccr.2012.09.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med. 2013;54(6):903–12. https://doi.org/10.2967/jnumed.112.112201.
Article
CAS
PubMed
Google Scholar
Schelhaas S, Heinzmann K, Bollineni VR, et al. Preclinical applications of 3’-Deoxy-3’-[18F]Fluorothymidine in oncology - a systematic review. Theranostics. 2017;7(1):40–50. https://doi.org/10.7150/thno.16676.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43(9):1210–7.
CAS
PubMed
Google Scholar
Sala R, Nguyen QD, Patel CB, Mann D, Steinke JH, Vilar R, Aboagye EO. Phosphorylation status of thymidine kinase 1 following antiproliferative drug treatment mediates 3’-deoxy-3’-[18F]-fluorothymidine cellular retention. PLoS ONE. 2014;9(7): e101366. https://doi.org/10.1371/journal.pone.0101366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grierson JR, Brockenbrough JS, Rasey JS, Wiens LW, Schwartz JL, Jordan R, Vesselle H. Evaluation of 5’-deoxy-5’-[F-18]fluorothymidine as a tracer of intracellular thymidine phosphorylase activity. Nucl Med Biol. 2007;34(5):471–8. https://doi.org/10.1016/j.nucmedbio.2007.03.004.
Article
CAS
PubMed
Google Scholar
Vijayaraghavan S, Karakas C, Doostan I, Chen X, Bui T, Yi M, Raghavendra AS, Zhao Y, Bashour SI, Ibrahim NK, Karuturi M, Wang J, Winkler JD, Amaravadi RK, Hunt KK, Tripathy D, Keyomarsi K. CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nat Commun. 2017;27(8):15916. https://doi.org/10.1038/ncomms15916.
Article
CAS
Google Scholar
Viel T, Schelhaas S, Wagner S, Wachsmuth L, Schwegmann K, Kuhlmann M, Faber C, Kopka K, Schäfers M, Jacobs AH. Early assessment of the efficacy of temozolomide chemotherapy in experimental glioblastoma using [18F]FLT-PET imaging. PLoS ONE. 2013;8(7): e67911. https://doi.org/10.1371/journal.pone.0067911.
Article
CAS
PubMed
PubMed Central
Google Scholar