Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy P, Glubb D, Rostamianfar A, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551:92–4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50:928–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang K-l, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C, Paczkowska M, Reynolds S, Wyczalkowski MA, Oak N, et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell. 2018;173:355–370.
Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2:S4–11.
Article
CAS
PubMed
Google Scholar
Robertson KD. DNA methylation and human disease. Nat Rev Genet. 2005;6:597–610.
Article
CAS
PubMed
Google Scholar
Jones PA. DNA methylation and cancer. Oncogene. 2002;21:5358.
Article
CAS
PubMed
Google Scholar
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101:5–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng P, Zhao Y, Qian C, Zhang L, Zhang R, Gou J, Liu J, Liu L, Chen F. Statistical analysis for genome-wide association study. J Biomed Res. 2015;29:285–97.
PubMed
Google Scholar
Girirajan S. Missing heritability and where to find it. Genome Biol. 2017;18:89.
Article
PubMed
PubMed Central
Google Scholar
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Gregersen PK, Worthington J, Klareskog L, Raychaudhuri S. Quantifying missing heritability at known GWAS loci. PLoS Genet. 2013;9:e1003993.
Article
PubMed
PubMed Central
CAS
Google Scholar
Young AI. Solving the missing heritability problem. PLoS Genet. 2019;15:e1008222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X. Powerful SNP-Set Analysis for Case-Control Genome-wide Association Studies. Am J Hum Genet. 2010;86:929–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test. Am J Hum Genet. 2011;89:82–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani David C, Wurfel Mark M, Lin X. Optimal Unified Approach for Rare-Variant Association Testing with Application to Small-Sample Case-Control Whole-Exome Sequencing Studies. Am J Hum Genet. 2012;91:224–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SLR, Peyser PA, Lin X. SNP Set Association Analysis for Familial Data. Genet Epidemiol. 2012;36:797–810.
PubMed
PubMed Central
Google Scholar
Wang X, Lee S, Zhu X, Redline S, Lin X. GEE-Based SNP Set Association Test for Continuous and Discrete Traits in Family-Based Association Studies. Genet Epidemiol. 2013;37:778–86.
Article
PubMed
PubMed Central
Google Scholar
Wu MC, Maity A, Lee S, Simmons EM, Harmon QE, Lin X, Engel SM, Molldrem JJ, Armistead PM. Kernel Machine SNP-Set Testing Under Multiple Candidate Kernels. Genet Epidemiol. 2013;37:267–75.
Article
PubMed
PubMed Central
Google Scholar
Lee S, Abecasis Gonçalo R, Boehnke M, Lin X. Rare-Variant Association Analysis: Study Designs and Statistical Tests. Am J Hum Genet. 2014;95:5–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgenthaler S, Thilly W. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res. 2007;615:28–56.
Article
CAS
PubMed
Google Scholar
Li B, Leal SS. Novel methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet. 2008;83:311–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng P, Zhao Y, Liu J, Liu L, Zhang L, Wang T, Huang S, Chen F. Likelihood ratio tests in rare variant detection for continuous phenotypes. Ann Hum Genet. 2014;78:320–32.
Article
PubMed
Google Scholar
Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su YR, Di C, Bien S, Huang L, Dong X, Abecasis G, Berndt S, Bezieau S, Brenner H, Caan B, et al. A Mixed-Effects Model for Powerful Association Tests in Integrative Functional Genomics. Am J Hum Genet. 2018;102:904–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu C, Pan W. Integrating eQTL data with GWAS summary statistics in pathway-based analysis with application to schizophrenia. Genet Epidemiol. 2018;42:303–16.
Article
PubMed
PubMed Central
Google Scholar
Xue H, Pan W, for the Alzheimer's Disease Neuroimaging I. Some statistical consideration in transcriptome-wide association studies. Genet Epidemiol. 2020;44:221–232.
Sun J, Zheng Y, Hsu L. A unified mixed-effects model for rare-variant association in sequencing studies. Genet Epidemiol. 2013;37:334–44.
Article
PubMed
PubMed Central
Google Scholar
Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Consortium GT, Nicolae DL, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, de Geus EJC, Boomsma DI, Wright FA, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Cai T, Wu MC, Zhou Q, Liu G, Christiani DC, Lin X. Kernel machine SNP-set analysis for censored survival outcomes in genome-wide association studies. Genet Epidemiol. 2011;35:620–31.
Article
PubMed
PubMed Central
Google Scholar
Cai T, Tonini G, Lin X. Kernel machine approach to testing the significance of multiple genetic markers for risk prediction. Biometrics. 2011;67:975–86.
Article
PubMed
PubMed Central
Google Scholar
Liu Y, Xie J. Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures. J Am Stat Assoc. 2020;115:393–402.
Article
CAS
PubMed
Google Scholar
Liu Y, Chen S, Li Z, Morrison AC, Boerwinkle E, Lin X. ACAT: A Fast and Powerful p Value Combination Method for Rare-Variant Analysis in Sequencing Studies. Am J Hum Genet. 2019;104:410–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–213.
Cox DR. Regression Models and Life-Tables. J Roy Stat Soc: Ser B (Methodol). 1972;34:187–220.
Google Scholar
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585.
Koziol JA, Perlman MD. Combining independent chi-squared tests. J Am Stat Assoc. 1978;73:753–63.
Article
Google Scholar
Fisher RA: Statistical Methods for Research Workers, 5th Edn. Biological monographs and manuals. Edinburgh: Oliver and Boyd Ltd; 1934.
Lappalainen T, Sammeth M, Friedländer MR, Pa TH, Monlong J, Rivas MA, Gonzàlezporta M, Kurbatova N, Griebel T, Ferreira PG. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Stat Med. 2005;24:1713–23.
Article
PubMed
Google Scholar
Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 2018;173:291–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Wang T, Huang S, Zeng P. How can gene expression information improve prognostic prediction in TCGA cancers: an empirical comparison study on regularization and mixed-effect survival models. Front Genetics. 2020;11:8.
Article
CAS
Google Scholar
Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6.
Article
CAS
PubMed
Google Scholar
McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piotrowski A, Benetkiewicz M, Menzel U, de Ståhl TD, Mantripragada K, Grigelionis G, Buckley PG, Jankowski M, Hoffman J, Bała D. Microarray-based survey of CpG islands identifies concurrent hyper-and hypomethylation patterns in tissues derived from patients with breast cancer. Genes Chromosom Cancer. 2006;45:656–67.
Article
CAS
PubMed
Google Scholar
Runkle KB, Meyerkord CL, Desai NV, Takahashi Y, Wang H-G. Bif-1 suppresses breast cancer cell migration by promoting EGFR endocytic degradation. Cancer Biol Ther. 2012;13:956–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Privat M, Rudewicz J, Sonnier N, Tamisier C, Ponelle-Chachuat F, Bignon Y-J. Antioxydation and cell migration genes are identified as potential therapeutic targets in basal-like and BRCA1 mutated breast cancer cell lines. Int J Med Sci. 2018;15:46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AK, Hofker MH, van der Zee AG, van de Sluis B, van Vugt MA. Nuclear COMMD1 is associated with cisplatin sensitivity in ovarian cancer. PLoS ONE. 2016;11:e0165385.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zeng P, Dai J, Jin S, Zhou X. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Hum Mol Genet. 2021;30:939–51.
Article
PubMed
Google Scholar
Zhu H, Zhou X. Transcriptome-wide association studies: a view from Mendelian randomization. Quant Biol. 2020;9:78.
Google Scholar
Yuan Z, Zhu H, Zeng P, Yang S, Sun S, Yang C, Liu J, Zhou X. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies. Nat Commun. 2020;11:3861.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A, Quertermous T, Hao K, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51:592–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao L, Yuan Z, Jin S, Wang T, Huang S, Zeng P. Multiple-tissue integrative transcriptome-wide association studies discovered new genes associated with amyotrophic lateral sclerosis. Front Genetics. 2020;11:587243.
Article
CAS
Google Scholar
Urrutia E, Lee S, Maity A, Zhao N, Shen J, Li Y, Wu MC. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT). Stat Interface. 2015;8:495–505.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Xing EP, Schaid DJ. Kernel methods for large-scale genomic data analysis. Brief Bioinform. 2014;16:183–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang H, Cao H, He T, Wang T, Cui Y. Multilevel heterogeneous omics data integration with kernel fusion. Brief Bioinform. 2020;21:156–70.
Google Scholar
Yang H, Li S, Cao H, Zhang C, Cui Y. Predicting disease trait with genomic data: a composite kernel approach. Brief Bioinform. 2016;18:591–601.
Google Scholar
He T, Li S, Zhong P-S, Cui Y. An optimal kernel-based U-statistic method for quantitative gene-set association analysis. Genet Epidemiol. 2019;43:137–49.
Article
PubMed
Google Scholar