Friedman J, Nunnari J. Mitochondrial form and function. Nature. 2014;505:335–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sherratt D. Bacterial plasmids. Cell. 1974;3:189–95.
Article
CAS
PubMed
Google Scholar
Shi Y, Zheng M. Hepatitis B virus persistence and reactivation. BMJ Clin Res. 2020;370:m2200.
Google Scholar
Hotta Y, Bassel A. Molecular size and circularity of DNA in cells of mammals and higher plants. Proc Natl Acad Sci USA. 1965;53:356–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox D, Yuncken C, Spriggs A. Minute chromatin bodies in malignant tumours of childhood. Lancet. 1965;1:55–8.
Article
CAS
PubMed
Google Scholar
Gaubatz J. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat Res. 1990;237:271–92.
Article
CAS
PubMed
Google Scholar
Cohen S, Regev A, Lavi S. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene. 1997;14:977–85.
Article
CAS
PubMed
Google Scholar
Tomaska L, Nosek J, Kramara J, Griffith J. Telomeric circles: universal players in telomere maintenance? Nat Struct Mol Biol. 2009;16:1010–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillon L, Kumar P, Shibata Y, Wang Y, Willcox S, Griffith J, Pommier Y, Takeda S, Dutta A. Production of extrachromosomal MicroDNAs is linked to mismatch repair pathways and transcriptional activity. Cell Rep. 2015;11:1749–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar P, Dillon L, Shibata Y, Jazaeri A, Jones D, Dutta A. Normal and cancerous tissues release extrachromosomal circular DNA (eccDNA) into the circulation. Mol Cancer Res. 2017;15:1197–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verhaak R, Bafna V, Mischel P. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer. 2019;19:283–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Z, Jiang W, Ye L, Li T, Yu X, Liu L. Classification of extrachromosomal circular DNA with a focus on the role of extrachromosomal DNA (ecDNA) in tumor heterogeneity and progression. Biochimica et biophysica acta Reviews on cancer. 2020;1874:188392.
Article
CAS
PubMed
Google Scholar
Ain Q, Schmeer C, Wengerodt D, Witte O, Kretz A. Extrachromosomal circular DNA: current knowledge and implications for CNS aging and neurodegeneration. Int J Mol Sci. 2020;21:2477.
Article
CAS
PubMed Central
Google Scholar
Carlton B, Helinski D. Heterogeneous circular DNA elements in vegetative cultures of Bacillus megaterium. Proc Natl Acad Sci USA. 1969;64:592–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinclair J, Stevens B, Sanghavi P, Rabinowitz M. Mitochondrial-satellite and circular DNA filaments in yeast. Science. 1967;156:1234–7.
Article
CAS
PubMed
Google Scholar
Shapiro L, Grossman L, Marmur J, Kleinschmidt A. Physical studies on the structure of yeast mitochondrial DNA. J Mol Biol. 1968;33:907–22.
Article
CAS
PubMed
Google Scholar
Radloff R, Bauer W, Vinograd J. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci USA. 1967;57:1514–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith C, Vinograd J. Small polydisperse circular DNA of HeLa cells. J Mol Biol. 1972;69:163–78.
Article
CAS
PubMed
Google Scholar
Møller H, Parsons L, Jørgensen T, Botstein D, Regenberg B. Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA. 2015;112:E3114-3122.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stanfield S, Lengyel J. Small circular DNA of Drosophila melanogaster: chromosomal homology and kinetic complexity. Proc Natl Acad Sci USA. 1979;76:6142–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunnerhagen P, Sjöberg R, Karlsson A, Lundh L, Bjursell G. Molecular cloning and characterization of small polydisperse circular DNA from mouse 3T6 cells. Nucleic Acids Res. 1986;14:7823–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alt F, Kellems R, Bertino J, Schimke R. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem. 1978;253:1357–70.
Article
CAS
PubMed
Google Scholar
Kohl N, Kanda N, Schreck R, Bruns G, Latt S, Gilbert F, Alt F. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–67.
Article
CAS
PubMed
Google Scholar
Barreto S, Uppalapati M, Ray A. Small circular DNAs in human pathology. Malays J Med Sci. 2014;21:4–18.
PubMed
PubMed Central
Google Scholar
Shibata Y, Kumar P, Layer R, Willcox S, Gagan J, Griffith J, Dutta A. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012;336:82–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nathanson D, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, Wang J, Masui K, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343:72–6.
Article
CAS
PubMed
Google Scholar
Turner K, Deshpande V, Beyter D, Koga T, Rusert J, Lee C, Li B, Arden K, Ren B, Nathanson D, et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature. 2017;543:122–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Møller H, Mohiyuddin M, Prada-Luengo I, Sailani M, Halling J, Plomgaard P, Maretty L, Hansen A, Snyder M, Pilegaard H, et al. Circular DNA elements of chromosomal origin are common in healthy human somatic tissue. Nat Commun. 2018;9:1069.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu S, Turner K, Nguyen N, Raviram R, Erb M, Santini J, Luebeck J, Rajkumar U, Diao Y, Li B, et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature. 2019;575:699–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morton A, Dogan-Artun N, Faber Z, MacLeod G, Bartels C, Piazza M, Allan K, Mack S, Wang X, Gimple R, et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell. 2019;179:1330–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunisada T, Yamagishi H, Ogita Z, Kirakawa T, Mitsui Y. Appearance of extrachromosomal circular DNAs during in vivo and in vitro ageing of mammalian cells. Mech Ageing Dev. 1985;29:89–99.
Article
CAS
PubMed
Google Scholar
Cohen S, Mechali M. A novel cell-free system reveals a mechanism of circular DNA formation from tandem repeats. Nucleic Acids Res. 2001;29:2542–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones R, Potter S. L1 sequences in HeLa extrachromosomal circular DNA: evidence for circularization by homologous recombination. Proc Natl Acad Sci USA. 1985;82:1989–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varshavsky A. On the possibility of metabolic control of replicon “misfiring”: relationship to emergence of malignant phenotypes in mammalian cell lineages. Proc Natl Acad Sci USA. 1981;78:3673–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujimoto S, Yamagishi H. Isolation of an excision product of T-cell receptor alpha-chain gene rearrangements. Nature. 1987;327:242–3.
Article
CAS
PubMed
Google Scholar
Flavell A, Ish-Horowicz D. Extrachromosomal circular copies of the eukaryotic transposable element copia in cultured Drosophila cells. Nature. 1981;292:591–5.
Article
CAS
PubMed
Google Scholar
Flavell A, Ish-Horowicz D. The origin of extrachromosomal circular copia elements. Cell. 1983;34:415–9.
Article
CAS
PubMed
Google Scholar
Flavell A, Brierley C. The termini of extrachromosomal linear copia elements. Nucleic Acids Res. 1986;14:3659–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen Z, Bacharach E, Lavi S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway. Oncogene. 2006;25:4515–24.
Article
CAS
PubMed
Google Scholar
Cohen S, Lavi S. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol. 1996;16:2002–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shay J, Wright W. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20:299–309.
Article
CAS
PubMed
Google Scholar
Nosek J, Dinouël N, Kovac L, Fukuhara H. Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet MGG. 1995;247:61–72.
Article
CAS
PubMed
Google Scholar
Tomaska L, Nosek J, Makhov A, Pastorakova A, Griffith J. Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res. 2000;28:4479–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perrem K, Colgin L, Neumann A, Yeager T, Reddel R. Coexistence of alternative lengthening of telomeres and telomerase in hTERT-transfected GM847 cells. Mol Cell Biol. 2001;21:3862–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesare A, Griffith J. Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol. 2004;24:9948–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell. 2004;119:355–68.
Article
CAS
PubMed
Google Scholar
Laud P, Multani A, Bailey S, Wu L, Ma J, Kingsley C, Lebel M, Pathak S, DePinho R, Chang S. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 2005;19:2560–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar J, Wan B, Yin J, Vallabhaneni H, Horvath K, Kulikowicz T, Bohr V, Zhang Y, Lei M, Liu Y. SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Res. 2015;43:5912–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vannier J, Pavicic-Kaltenbrunner V, Petalcorin M, Ding H, Boulton S. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell. 2012;149:795–806.
Article
CAS
PubMed
Google Scholar
Cech T. Beginning to understand the end of the chromosome. Cell. 2004;116:273–9.
Article
CAS
PubMed
Google Scholar
McEachern M, Krauskopf A, Blackburn E. Telomeres and their control. Annu Rev Genet. 2000;34:331–58.
Article
CAS
PubMed
Google Scholar
Tomaska L, McEachern M, Nosek J. Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett. 2004;567:142–6.
Article
CAS
PubMed
Google Scholar
Paulsen T, Shibata Y, Kumar P, Dillon L, Dutta A. Small extrachromosomal circular DNAs, microDNA, produce short regulatory RNAs that suppress gene expression independent of canonical promoters. Nucleic Acids Res. 2019;47:4586–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benner S, Wahl G, Von Hoff D. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs. 1991;2:11–25.
Article
CAS
PubMed
Google Scholar
McGill J, Beitzel B, Nielsen J, Walsh J, Drabek S, Meador R, Von Hoff D. Double minutes are frequently found in ovarian carcinomas. Cancer Genet Cytogenet. 1993;71:125–31.
Article
CAS
PubMed
Google Scholar
Gebhart E, Brüderlein S, Tulusan A, von Maillot K, Birkmann J. Incidence of double minutes, cytogenetic equivalents of gene amplification, in human carcinoma cells. Int J Cancer. 1984;34:369–73.
Article
CAS
PubMed
Google Scholar
Rattner J, Lin C. Ultrastructural organization of double minute chromosomes and HSR regions in human colon carcinoma cells. Cytogenet Cell Genet. 1984;38:176–81.
Article
CAS
PubMed
Google Scholar
Haaf T, Schmid M. Analysis of double minutes and double minute-like chromatin in human and murine tumor cells using antikinetochore antibodies. Cancer Genet Cytogenet. 1988;30:73–82.
Article
CAS
PubMed
Google Scholar
Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.
Article
CAS
PubMed
Google Scholar
Fan Y, Mao R, Lv H, Xu J, Yan L, Liu Y, Shi M, Ji G, Yu Y, Bai J, et al. Frequency of double minute chromosomes and combined cytogenetic abnormalities and their characteristics. J Appl Genet. 2011;52:53–9.
Article
PubMed
Google Scholar
McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47.
Article
CAS
PubMed
Google Scholar
Vukovic B, Beheshti B, Park P, Lim G, Bayani J, Zielenska M, Squire J. Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer. Cytogenet Genome Res. 2007;116:1–11.
Article
CAS
PubMed
Google Scholar
Murnane J, Sabatier L. Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. BioEssays. 2004;26:1164–74.
Article
CAS
PubMed
Google Scholar
Barr F, Nauta L, Davis R, Schäfer B, Nycum L, Biegel J. In vivo amplification of the PAX3-FKHR and PAX7-FKHR fusion genes in alveolar rhabdomyosarcoma. Hum Mol Genet. 1996;5:15–21.
Article
CAS
PubMed
Google Scholar
Van Roy N, Vandesompele J, Menten B, Nilsson H, De Smet E, Rocchi M, De Paepe A, Påhlman S, Speleman F. Translocation-excision-deletion-amplification mechanism leading to nonsyntenic coamplification of MYC and ATBF1. Genes Chromosom Cancer. 2006;45:107–17.
Article
PubMed
CAS
Google Scholar
Röijer E, Nordkvist A, Ström A, Ryd W, Behrendt M, Bullerdiek J, Mark J, Stenman G. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am J Pathol. 2002;160:433–40.
Article
PubMed
PubMed Central
Google Scholar
Carroll S, Gaudray P, De Rose M, Emery J, Meinkoth J, Nakkim E, Subler M, Von Hoff D, Wahl G. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Mol Cell Biol. 1987;7:1740–50.
CAS
PubMed
PubMed Central
Google Scholar
Carroll S, DeRose M, Gaudray P, Moore C, Needham-Vandevanter D, Von Hoff D, Wahl G. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol. 1988;8:1525–33.
CAS
PubMed
PubMed Central
Google Scholar
Storlazzi C, Fioretos T, Surace C, Lonoce A, Mastrorilli A, Strömbeck B, D’Addabbo P, Iacovelli F, Minervini C, Aventin A, et al. MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene. Hum Mol Genet. 2006;15:933–42.
Article
CAS
PubMed
Google Scholar
Storlazzi C, Lonoce A, Guastadisegni M, Trombetta D, D’Addabbo P, Daniele G, L’Abbate A, Macchia G, Surace C, Kok K, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20:1198–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephens P, Greenman C, Fu B, Yang F, Bignell G, Mudie L, Pleasance E, Lau K, Beare D, Stebbings L, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korbel J, Campbell P. Criteria for inference of chromothripsis in cancer genomes. Cell. 2013;152:1226–36.
Article
CAS
PubMed
Google Scholar
Notta F, Chan-Seng-Yue M, Lemire M, Li Y, Wilson G, Connor A, Denroche R, Liang S, Brown A, Kim J, et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature. 2016;538:378–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molenaar J, Koster J, Zwijnenburg D, van Sluis P, Valentijn L, van der Ploeg I, Hamdi M, van Nes J, Westerman B, van Arkel J, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483:589–93.
Article
CAS
PubMed
Google Scholar
Fraser M, Sabelnykova V, Yamaguchi T, Heisler L, Livingstone J, Huang V, Shiah Y, Yousif F, Lin X, Masella A, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature. 2017;541:359–64.
Article
CAS
PubMed
Google Scholar
Rausch T, Jones D, Zapatka M, Stütz A, Zichner T, Weischenfeldt J, Jäger N, Remke M, Shih D, Northcott P, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148:59–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
George J, Lim J, Jang S, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Itoh N, Shimizu N. DNA replication-dependent intranuclear relocation of double minute chromatin. J Cell Sci. 1998;111:3275–85.
Article
CAS
PubMed
Google Scholar
Shimizu N, Ochi T, Itonaga K. Replication timing of amplified genetic regions relates to intranuclear localization but not to genetic activity or G/R band. Exp Cell Res. 2001;268:201–10.
Article
CAS
PubMed
Google Scholar
Lee D, Hayes J, Pruss D, Wolffe A. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72:73–84.
Article
CAS
PubMed
Google Scholar
Sinclair D, Guarente L. Extrachromosomal rDNA circles–a cause of aging in yeast. Cell. 1997;91:1033–42.
Article
CAS
PubMed
Google Scholar
Libuda D, Winston F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature. 2006;443:1003–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meselson M, Stahl F. The replication of DNA in Escherichia coli. Proc Natl Acad Sci USA. 1958;44:671–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Shen Y, Draper W, Buenrostro J, Litzenburger U, Cho S, Satpathy A, Carter A, Ghosh R, East-Seletsky A, et al. ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat Methods. 2016;13:1013–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gall J, Pardue M. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA. 1969;63:378–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
John H, Birnstiel M, Jones K. RNA-DNA hybrids at the cytological level. Nature. 1969;223:582–7.
Article
CAS
PubMed
Google Scholar
Treangen T, Salzberg S. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13:36–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Firtina C, Alkan C. On genomic repeats and reproducibility. Bioinformatics. 2016;32:2243–7.
Article
CAS
PubMed
Google Scholar
Laver T, Harrison J, O’Neill P, Moore K, Farbos A, Paszkiewicz K, Studholme D. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular detection and quantification. 2015;3:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson J, Steinmann K. Single molecule sequencing with a HeliScope genetic analysis system. Curr Protocols Mol Biol. 2010;92:7–10.
Article
Google Scholar
Flusberg B, Webster D, Lee J, Travers K, Olivares E, Clark T, Korlach J, Turner S. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7:461–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenrick K, Margolis J. Isoelectric focusing and gradient gel electrophoresis: a two-dimensional technique. Anal Biochem. 1970;33:204–7.
Article
CAS
PubMed
Google Scholar
Curreem S, Watt R, Lau S, Woo P. Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell. 2012;3:346–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Norman A, Hansen L, Sørensen S. Metamobilomics–expanding our knowledge on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. Clin Microbiol Infect. 2012;18:5–7.
CAS
PubMed
Google Scholar
Brown Kav A, Sasson G, Jami E, Doron-Faigenboim A, Benhar I, Mizrahi I. Insights into the bovine rumen plasmidome. Proc Natl Acad Sci USA. 2012;109:5452–7.
Article
PubMed
Google Scholar
Park P. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furey T. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13:840–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Zhang F, Du M, Zhang P, Fu S, Wang L. Molecular characterization of cell-free eccDNAs in human plasma. Sci Rep. 2017;7:10968.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gheldof N, Leleu M, Noordermeer D, Rougemont J, Reymond A. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method. Methods Mol Biol. 2012;786:211–25.
Article
CAS
PubMed
Google Scholar
van de Werken H, Landan G, Holwerda S, Hoichman M, Klous P, Chachik R, Splinter E, Valdes-Quezada C, Oz Y, Bouwman B, et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods. 2012;9:969–72.
Article
PubMed
CAS
Google Scholar
Fang R, Yu M, Li G, Chee S, Liu T, Schmitt A, Ren B. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 2016;26:1345–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juric I, Yu M, Abnousi A, Raviram R, Fang R, Zhao Y, Zhang Y, Qiu Y, Yang Y, Li Y, et al. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput Biol. 2019;15:e1006982.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buenrostro J, Giresi P, Zaba L, Chang H, Greenleaf W. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semenkovich N, Planer J, Ahern P, Griffin N, Lin C, Gordon J. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci USA. 2016;113:14805–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshpande V, Luebeck J, Nguyen N, Bakhtiari M, Turner K, Schwab R, Carter H, Mischel P, Bafna V. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun. 2019;10:392.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luebeck J, Coruh C, Dehkordi S, Lange J, Turner K, Deshpande V, Pai D, Zhang C, Rajkumar U, Law J, et al. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat Commun. 2020;11:4374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajkumar U, Turner K, Luebeck J, Deshpande V, Chandraker M, Mischel P, Bafna V. EcSeg: semantic segmentation of metaphase images containing extrachromosomal DNA. iScience. 2019;21:428–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen N, Deshpande V, Luebeck J, Mischel P, Bafna V. ViFi: accurate detection of viral integration and mRNA fusion reveals indiscriminate and unregulated transcription in proximal genomic regions in cervical cancer. Nucleic Acids Res. 2018;46:3309–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Starling S. Cancer genomics: ECdetect hunts extrachromosomal DNA. Nat Rev Genet. 2017;18:212.
Article
CAS
PubMed
Google Scholar
Mehanna P, Gagné V, Lajoie M, Spinella J, St-Onge P, Sinnett D, Brukner I, Krajinovic M. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines. PloS ONE. 2017;12:e0184365.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schwarzenbach H, Hoon D, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.
Article
CAS
PubMed
Google Scholar
Regev A, Cohen S, Cohen E, Bar-Am I, Lavi S. Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. Oncogene. 1998;17:3455–61.
Article
CAS
PubMed
Google Scholar
Sin S, Ji L, Deng J, Jiang P, Cheng S, Heung M, Lau C, Leung T, Chan K, Chiu R, Lo Y. Characteristics of fetal extrachromosomal circular DNA in maternal plasma: methylation status and clearance. Clin Chem. 2021;67:788–96.
Article
PubMed
Google Scholar
Helmsauer K, Valieva M, Ali S, Chamorro González R, Schöpflin R, Röefzaad C, Bei Y, Dorado Garcia H, Rodriguez-Fos E, Puiggròs M, et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat Commun. 2020;11:5823.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koche R, Rodriguez-Fos E, Helmsauer K, Burkert M, MacArthur I, Maag J, Chamorro R, Munoz-Perez N, Puiggròs M, Dorado Garcia H, et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat Genet. 2020;52:29–34.
Article
CAS
PubMed
Google Scholar
Zhou Y, Chen Y, Hu Y, Yu L, Tran K, Giedzinski E, Ru N, Gau A, Pan F, Qiao J, et al. The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy. Oncotarget. 2017;8:80853–68.
Article
PubMed
PubMed Central
Google Scholar
Nikolaev S, Santoni F, Garieri M, Makrythanasis P, Falconnet E, Guipponi M, Vannier A, Radovanovic I, Bena F, Forestier F, et al. Extrachromosomal driver mutations in glioblastoma and low-grade glioma. Nat Commun. 2014;5:5690.
Article
CAS
PubMed
Google Scholar
Morales C, García M, Ribas M, Miró R, Muñoz M, Caldas C, Peinado M. Dihydrofolate reductase amplification and sensitization to methotrexate of methotrexate-resistant colon cancer cells. Mol Cancer Ther. 2009;8:424–32.
Article
CAS
PubMed
Google Scholar
Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, Chen F, Guo H, Li J, Zhao Y, et al. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet. 2015;52:135–44.
Article
CAS
PubMed
Google Scholar
Jia X, Guan R, Cui X, Zhu J, Liu P, Zhang L, Wang D, Zhang Y, Dong K, Wu J, et al. Molecular structure and evolution mechanism of two populations of double minutes in human colorectal cancer cells. J Cell Mol Med. 2020;24:14205–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Liu Z, Cao W, Ma X, Fan Y, Yu Y, Bai J, Chen F, Rosales J, Lee K, Fu S. Novel functional MAR elements of double minute chromosomes in human ovarian cells capable of enhancing gene expression. PloS ONE. 2012;7:e30419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vicario R, Peg V, Morancho B, Zacarias-Fluck M, Zhang J, Martínez-Barriocanal Á, Navarro Jiménez A, Aura C, Burgues O, Lluch A, et al. Patterns of HER2 Gene Amplification and Response to Anti-HER2 Therapies. PloS one 2015;10:e0129876.
Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8:761–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabbri M. MicroRNAs and miRceptors: a new mechanism of action for intercellular communication. Philos Trans Royal Soc London Series B Biol Sci. 2018;373:20160486.
Article
CAS
Google Scholar
Pegtel D, Gould S. Exosomes. Annu Rev Biochem. 2019;88:487–514.
Article
CAS
PubMed
Google Scholar
Sepich-Poore G, Zitvogel L, Straussman R, Hasty J, Wargo J, Knight R. The microbiome and human cancer. Science. 2021;371:eabc4552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller L, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020;368:973–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atreya C, Turnbaugh P. Probing the tumor micro(b)environment. Science. 2020;368:938–9.
Article
CAS
PubMed
Google Scholar
Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C, Barnea E, Ketelaars S, Cheng K, Vervier K, Shental N, et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature. 2021;592:138–43.
Article
CAS
PubMed
Google Scholar
Riemer A. Bacterial peptides presented on tumour cells could be immunotherapy targets. Nature. 2021;592:28–9.
Article
CAS
Google Scholar