Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ. 2020;368:m1036. https://doi.org/10.1136/bmj.m1036.
Article
PubMed
Google Scholar
Chen Z, Hu J, Zhang Z, Jiang S, Wang T, Shi Z, et al. Caution: The clinical characteristics of COVID-19 patients at admission are changing. medRxiv preprint. https://doi.org/10.1101/2020.03.03.20030833.
Jin X, Xu K, Jiang L, Hao S, Yao H, Jia H, et al. Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site. Emerg Microbes Infect. 2020; 1-74. https://doi.org/10.1080/22221751.2020.1781551.
Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective Case Series. BMJ. 2020;368:m606. https://doi.org/10.1136/bmj.m606.
Article
PubMed
PubMed Central
Google Scholar
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease, (COVID-19) Outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2019. https://doi.org/10.1001/jama.2020.2648.
Article
PubMed
PubMed Central
Google Scholar
Istituto Superiore di Sanità. https//www.epicentro.iss.it/en/coronavirus/sars-cob-2-integrated surveillance-data.
Istituto Superiore di Sanità. Available from: https://www.epicentro.iss.it/coronavirus/bollettino/bollettino-sorveglianza-integrata-COVID-19_20-maggio-2020.pdf.
Holmes EC. The evolution and emergence of RNA viruses. Emerg Infect Dis. 2010;16(5):899. https://doi.org/10.3201/eid1605.100164.
Article
Google Scholar
Guo G, Ye L, Pan K, Chen Y, Xing D, Yan K, et al. New insights of emerging SARS-CoV-2: epidemiology, etiology, clinical features, clinical treatment, and prevention. Front Cell Dev Biol. 2020;8:410. https://doi.org/10.3389/fcell.2020.00410.
Article
PubMed
PubMed Central
Google Scholar
Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020. https://doi.org/10.1093/nsr/nwaa036.
Article
PubMed Central
PubMed
Google Scholar
Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng L, et al. Patient-derived mutations impact pathogenicity of SARS-CoV-2. MedRxiv preprint. https://doi.org/10.1101/2020.04.14.20060160.
Lau SY, Wang P, Mok BWY, Zhang AJ, Chu H, Lee ACY, et al. Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg Micr Infect. 2020;9(1):837–42. https://doi.org/10.1080/22221751.2020.1756700.
Article
CAS
Google Scholar
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71. https://doi.org/10.1038/s41422-020-0282-0.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kustin T, Ling G, Sharabi S, Ram D, Friedman N, Zuckerman N, et al. A method to identify respiratory virus infections in clinical samples using next-generation sequencing. Sci Rep. 2019;9(1):2606. https://doi.org/10.1038/s41598-018-37483-w.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257. https://doi.org/10.1186/s13059-019-1891-0.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langmead B, Salzberg LS. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–6. https://doi.org/10.1093/bib/bbx108.
Article
PubMed
CAS
Google Scholar
Laarson A. AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics. 2014;30(22):3276–8. https://doi.org/10.1093/bioinformatics/btu531.
Article
CAS
Google Scholar
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300.
Article
PubMed
CAS
Google Scholar
O’Toole Á, McCrone JT. Phylogenetic Assignment of Named Global Outbreak LINeages. 2020. https://github.com/hCoV-2019/pangolin.
Clementi N, Ferrarese R, Tonelli M, Amato V, Racca S, Locatelli M, et al. Lower nasopharyngeal viral load during the latest phase of COVID-19 pandemic in a Northen Italy University Hospital. Clin Chem Med. 2020. https://doi.org/10.1515/cclm-2020-0815.
Article
Google Scholar
Rambaut A, Holmes EC, Hill V, O’Toole Á, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology. bioRxiv. 2020. https://doi.org/10.1101/2020.04.17.046086.
Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5(6):e11147. https://doi.org/10.1371/journal.pone.0011147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. https://doi.org/10.1186/s12967-020-02344-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanjuán R, Domingo-Calap P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73(23):4433–48. https://doi.org/10.1007/s00018-016-2299-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol. 2020;83:104351. https://doi.org/10.1016/j.meegid.2020.104351.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holmes EC, Dudas G, Rambaut A, Andersen KG. The evolution of Ebola virus: insights from the 2013–2016 epidemic. Nature. 2016;538(7624):193–200. https://doi.org/10.1038/nature19790.
Article
PubMed
PubMed Central
CAS
Google Scholar
Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331(5):991–1004. https://doi.org/10.1016/s0022-2836(03)00865-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, et al. Discovery of an RNA Virus 3′- > 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A. 2006;103(13):5108–13. https://doi.org/10.1073/pnas.0508200103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, et al. Genomic diversity of SARS-CoV-2 in Coronavirus Disease 2019 patients. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa203.
Danchin A, Timmis K. SARS-CoV-2 variants: Relevance for symptom granularity, epidemiology, immunity (herd, vaccines), virus origin and containment? Environ Microbiol. 2020;22(6):2001–6. https://doi.org/10.1111/1462-2920.15053.
Article
PubMed
CAS
Google Scholar
Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol. 1968;2(10):955–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantlo E, Bukreyeva N, Maruyama J, Paessler S, Huang C. Potent Antiviral Activities of Type I Interferons to SARS-CoV-2 Infection. bioRxiv. 2020; https://doi.org/10.1101/2020.04.02.022764.
Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv. 2020; https://doi.org/10.1101/2020.03.07.982264.
Guo R, Shang P, Carrillo CA, Sun Z, Lakshmanappa YS, Yan X, et al. Double-stranded viral RNA persists in vitro and in vivo during prolonged infection of porcine reproductive and respiratory syndrome virus. Virology. 2018;524:78–89. https://doi.org/10.1016/j.virol.2018.08.006.
Article
PubMed
CAS
Google Scholar
Frisk G. Mechanisms of chronic enteroviral persistence in tissue. Curr Opin Infect Dis. 2001;14(3):251–6. https://doi.org/10.1097/00001432-200106000-00002.
Article
PubMed
CAS
Google Scholar
Alidjinou EK, Engelmann I, Bossu J, Villenet C, Figeac M, Romond MB, et al. Persistence of Coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes. Virulence. 2017;8(7):1229–44. https://doi.org/10.1080/21505594.2017.1284735.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pacciarini F, Ghezzi S, Canducci F, Sims A, Sampaolo M, Ferioli E, et al. Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein. J Virol. 2008;82(11):5137–44. https://doi.org/10.1128/JVI.00096-08.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, et al. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007;3(1):e5. https://doi.org/10.1371/journal.ppat.0030005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The Role of the nsp2 and nsp3 in Its Pathogenesis. J Med Virol. 2020;92(6):584–8. https://doi.org/10.1002/jmv.25719.
Article
PubMed
CAS
Google Scholar
Alhammad YMO, Fehr AR. The viral microdomain counters host antiviral ADP-Ribosylation. Viruses. 2020;12(4):384. https://doi.org/10.3390/v12040384.
Article
PubMed Central
CAS
Google Scholar
Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R. A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication–transcription complex. Virology. 2015;484:313–22. https://doi.org/10.1016/j.virol.2015.06.016.
Article
PubMed
CAS
Google Scholar
Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, et al. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio. 2016; 7(6):e01721-16. https://doi.org/10.1128/mbio.01721-16.
Eriksson KK, Cervantes-Barragán L, Ludewig B, Thiel V. Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1″-phosphatase, a viral function conserved in the alpha-like supergroup. J Virol. 2008;82(24):12325–34. https://doi.org/10.1128/JVI.02082-08.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fehr AR, Athmer J, Channappanavar R, Phillips JM, Meyerholz DK, Perlman S. The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis. J Virol. 2015;89(3):1523–36. https://doi.org/10.1128/JVI.02596-14.
Article
PubMed
CAS
Google Scholar
Ye Q, West AMV, Silletti S, Corbett KD. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci. 2020. https://doi.org/10.1002/pro.3909.10.1002/pro.3909.
Article
PubMed
PubMed Central
Google Scholar
Lai A, Bergna A, Caucci S, Clementi N, Vicenti I, Dragoni F, et al. Molecular tracing of SARS-CoV-2 in Italy in the first three months of the epidemic. Viruses. 2020;12(8):E798. https://doi.org/10.3390/v12080798.
Article
PubMed
CAS
Google Scholar
Surjit M, Kumar R, Mishra RN, Reddy MK, Chow VTK, Lal SK. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol. 2005;79(17):11476–86. https://doi.org/10.1128/JVI.79.17.11476-11486.2005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Surjit M, Liu B, Chow VTK, Lal SK. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J Biol Chem. 2006;281(16):10669–81. https://doi.org/10.1074/jbc.M509233200.
Article
PubMed
CAS
Google Scholar
Xie X, Muruato A, Lokugamage KG, Narayanan K, Zhang X, Zou J, et al. An Infectious cDNA Clone of SARS-CoV-2. Cell Host Microbe. 2020;27(5):841–848.e3. https://doi.org/10.1016/j.chom.2020.04.004.
Article
PubMed
PubMed Central
CAS
Google Scholar