Freud AG, Caligiuri MA. Human natural killer cell development. Immunol Rev. 2006;214(1):56–72.
Article
CAS
PubMed
Google Scholar
Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subselt. Blood. 2001;97(10):3146–51.
Article
CAS
PubMed
Google Scholar
Lieberman J. Anatomy of a murder: how cytotoxic T cells and NK cells are activated, develop, and eliminate their targets. Immunol Rev. 2010;235(1):5–9. doi:10.1111/j.0105-2896.2010.00914.x.
Article
CAS
PubMed
Google Scholar
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008;9(5):503–10. doi:10.1038/ni1582.
Article
CAS
PubMed
Google Scholar
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40 (S1471-4906(01)02060-9 [pii]).
Article
CAS
PubMed
Google Scholar
Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126(4):458–65. doi:10.1111/j.1365-2567.2008.03027.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapani JA. Granzymes: A Family of Lymphocyte Granule Serine Proteases. Genome Biol. 2001;2(12):3014.1–7.
Article
Google Scholar
Alter G, Malenfant JM, Altfeld M. CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods. 2004;294(1–2):15–22. doi:10.1016/j.jim.2004.08.008.
Article
CAS
PubMed
Google Scholar
Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med. 2005;202(7):1001–12. doi:10.1084/jem.20051143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryceson YT, Chiang SC, Darmanin S, Fauriat C, Schlums H, Theorell J, et al. Molecular mechanisms of natural killer cell activation. J Innate Immun. 2011;3(3):216–26. doi:10.1159/000325265.
Article
CAS
PubMed
Google Scholar
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495–502. doi:10.1038/ni1581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol. 2001;19:197–223. doi:10.1146/annurev.immunol.19.1.197.
Article
CAS
PubMed
Google Scholar
Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL. Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci USA. 2007;104(15):6329–34. doi:10.1073/pnas.0611655104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C, Ge B, Nicotra M, Stern JN, Kopcow HD, Chen X, et al. JNK MAP kinase activation is required for MTOC and granule polarization in NKG2D-mediated NK cell cytotoxicity. Proc Natl Acad Sci USA. 2008;105(8):3017–22. doi:10.1073/pnas.0712310105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trotta R, Fettucciari K, Azzoni L, Abebe B, Puorro KA, Eisenlohr LC, et al. Differential role of p38 and c-Jun N-terminal kinase 1 mitogen-activated protein kinases in NK cell cytotoxicity. J Immunol. 2000;165(4):1782–9.
Article
CAS
PubMed
Google Scholar
Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44. doi:10.1128/MMBR.68.2.320-344.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei S, Gamero AM, Liu JH, Daulton AA, Valkov NI, Trapani JA, et al. Control of lytic function by mitogen-activated protein kinase/extracellular regulatory kinase 2 (ERK2) in a human natural killer cell line: identification of perforin and granzyme B mobilization by functional ERK2. J Exp Med. 1998;187(11):1753–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jha SK, Jha NK, Kar R, Ambasta RK, Kumar P. p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease. Int J Mol Cell Med. 2015;4(2):67–86.
PubMed
PubMed Central
Google Scholar
Correa SA, Eales KL. The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct. 2012;2012:649079. doi:10.1155/2012/649079.
Article
PubMed
PubMed Central
Google Scholar
Jones CL, Gearheart CM, Fosmire S, Delgado-Martin C, Evensen NA, Bride K, et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood. 2015. doi:10.1182/blood-2015-04-639138.
Google Scholar
Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6. doi:10.1038/nature01137.
Article
CAS
PubMed
Google Scholar
Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, et al. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science. 2004;306(5701):1558–61. doi:10.1126/science.1101909.
Article
CAS
PubMed
Google Scholar
Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, et al. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Investig. 2001;108(1):73–81. doi:10.1172/JCI12466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu W, Song L, Li XM, Wang D, Guo XJ, Xu WG. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 2015;5:8733. doi:10.1038/srep08733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenu EW, Hardcastle SL, Atkinson GM, Driel ML, Kreijkamp-Kaspers S, Ashton KJ et al. Natural killer cells in patients with severe chronic fatigue syndrome. Auto Immun Highlights. 2013;4(3):1–12. doi:10.1007/s13317-013-0051-x.
Google Scholar
Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, et al. Role of adaptive and innate immune cells in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. Int Immunol. 2014. doi:10.1093/intimm/dxt068.
PubMed
Google Scholar
Brenu EW, Staines DR, Baskurt OK, Ashton KJ, Ramos SB, Christy RM, et al. Immune and hemorheological changes in chronic fatigue syndrome. J Transl Med. 2010;8(1):1–10. doi:10.1186/1479-5876-8-1.
Article
PubMed
PubMed Central
Google Scholar
Brenu EW, van Driel ML, Staines DR, Ashton KJ, Hardcastle SL, Keane J, et al. Longitudinal investigation of natural killer cells and cytokines in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Transl Med. 2012;10:88. doi:10.1186/1479-5876-10-88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenu EW, van Driel ML, Staines DR, Ashton KJ, Ramos SB, Keane J, et al. Immunological abnormalities as potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J Transl Med. 2011;9:81. doi:10.1186/1479-5876-9-81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine PH, Whiteside TL, Friberg D, Bryant J, Colclough G, Herberman RB. Dysfunction of natural killer activity in a family with chronic fatigue syndrome. Clin Immunol Immunopathol. 1998;88(1):96–104.
Article
CAS
PubMed
Google Scholar
Ojo-Amaize EA, Conley EJ, Peter JB. Decreased natural killer cell activity is associated with severity of chronic fatigue immune dysfunction syndrome. Clin Infect Dis. 1994;18(Suppl 1):S157–9.
Article
PubMed
Google Scholar
Ornstein BW, Hill EB, Geurs TL, French AR. Natural killer cell functional defects in pediatric patients with severe and recurrent herpesvirus infections. J Infect Dis. 2013;207(3):458–68. doi:10.1093/infdis/jis701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whiteside TL, Friberg D. Natural killer cells and natural killer cell activity in chronic fatigue syndrome. Am J Med. 1998;105(3A):27S–34S.
Article
CAS
PubMed
Google Scholar
Curriu M, Carrillo J, Massanella M, Rigau J, Alegre J, Puig J, et al. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome. J Transl Med. 2013;11:68. doi:10.1186/1479-5876-11-68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maher KJ, Klimas NG, Fletcher MA. Chronic fatigue syndrome is associated with diminished intracellular perforin. Clin Exp Immunol. 2005;142(3):505–11. doi:10.1111/j.1365-2249.2005.02935.x.
CAS
PubMed
PubMed Central
Google Scholar
Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med. 1994;121(12):953–9.
Article
CAS
PubMed
Google Scholar
Krutzik PO, Irish JM, Nolan GP, Perez OD. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol. 2004;110(3):206–21. doi:10.1016/j.clim.2003.11.009.
Article
CAS
PubMed
Google Scholar
Montag DT, Lotze MT. Successful simultaneous measurement of cell membrane and cytokine induced phosphorylation pathways [CIPP] in human peripheral blood mononuclear cells. J Immunol Methods. 2006;313(1–2):48–60. doi:10.1016/j.jim.2006.03.014.
Article
CAS
PubMed
Google Scholar
Wu S, Jin L, Vence L, Radvanyi LG. Development and application of ‘phosphoflow’ as a tool for immunomonitoring. Expert Rev Vaccines. 2010;9(6):631–43. doi:10.1586/erv.10.59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aubry JP, Blaecke A, Lecoanet-Henchoz S, Jeannin P, Herbault N, Caron G, et al. Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry. 1999;37(3):197–204.
Article
CAS
PubMed
Google Scholar
Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004;104(9):2840–8. doi:10.1182/blood-2004-03-0859.
Article
CAS
PubMed
Google Scholar
Chattopadhyay PK, Betts MR, Price DA, Gostick E, Horton H, Roederer M, et al. The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol. 2009;85(1):88–97. doi:10.1189/jlb.0208107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reefman E, Kay JG, Wood SM, Offenhauser C, Brown DL, Roy S, et al. Cytokine secretion is distinct from secretion of cytotoxic granules in NK cells. J Immunol. 2010;184(9):4852–62. doi:10.4049/jimmunol.0803954.
Article
CAS
PubMed
Google Scholar
Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Current protocols in cytometry/editorial board. In: Paul Robinson J, editor. 2010; Chapter 10: Unit10 7. doi:10.1002/0471142956.cy1017s53.
Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773(8):1213–26. doi:10.1016/j.bbamcr.2006.10.005.
Article
CAS
PubMed
Google Scholar
Zhang M, March ME, Lane WS, Long EO. A signaling network stimulated by beta2 integrin promotes the polarization of lytic granules in cytotoxic cells. Sci Signal. 2014;7(346):ra96. doi:10.1126/scisignal.2005629.
Article
PubMed
PubMed Central
Google Scholar
Manna PR, Stocco DM. The role of specific mitogen-activated protein kinase signaling cascades in the regulation of steroidogenesis. J Signal Transduct. 2011;2011:821615. doi:10.1155/2011/821615.
Article
PubMed
PubMed Central
Google Scholar
Sacks DB. The role of scaffold proteins in MEK/ERK signalling. Biochem Soc Trans. 2006;34(Pt 5):833–6. doi:10.1042/BST0340833.
Article
CAS
PubMed
Google Scholar
Herreros L, Rodriguez-Fernandez JL, Brown MC, Alonso-Lebrero JL, Cabanas C, Sanchez-Madrid F, et al. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J Biol Chem. 2000;275(34):26436–40. doi:10.1074/jbc.M003970200.
Article
CAS
PubMed
Google Scholar
Robertson LK, Ostergaard HL. Paxillin associates with the microtubule cytoskeleton and the immunological synapse of CTL through its leucine-aspartic acid domains and contributes to microtubule organizing center reorientation. J Immunol. 2011;187(11):5824–33. doi:10.4049/jimmunol.1003690.
Article
CAS
PubMed
Google Scholar
Mace EM, Dongre P, Hsu HT, Sinha P, James AM, Mann SS, et al. Cell biological steps and checkpoints in accessing NK cell cytotoxicity. Immunol Cell Biol. 2014;92(3):245–55. doi:10.1038/icb.2013.96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Shepherd EG, Nelin LD. MAPK phosphatases-regulating the immune response. Nat Rev Immunol. 2007;7(3):202–12. doi:10.1038/nri2035.
Article
CAS
PubMed
Google Scholar
Mentlik AN, Sanborn KB, Holzbaur EL, Orange JS. Rapid lytic granule convergence to the MTOC in natural killer cells is dependent on dynein but not cytolytic commitment. Mol Biol Cell. 2010;21(13):2241–56. doi:10.1091/mbc.E09-11-0930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Xu L, Yang F, Li D, Gong F, Xu T. Rapid biogenesis and sensitization of secretory lysosomes in NK cells mediated by target-cell recognition. Proc Natl Acad Sci USA. 2005;102(1):123–7. doi:10.1073/pnas.0405737102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Martina JA, Wu XS, Hammer JA 3rd, Long EO. Two modes of lytic granule fusion during degranulation by natural killer cells. Immunol Cell Biol. 2011;89(6):728–38. doi:10.1038/icb.2010.167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardcastle SL, Brenu E, Wong N, Johnston S, Nguyen T, Huth T, et al. Serum cytokines in patients with moderate and severe Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). Cytokine. 2014;70(1):45. doi:10.1016/j.cyto.2014.07.081.
Article
Google Scholar
Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD, et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol. 2007;179(1):89–94.
Article
CAS
PubMed
Google Scholar
Domaica CI, Fuertes MB, Uriarte I, Girart MV, Sardanons J, Comas DI, et al. Human natural killer cell maturation defect supports in vivo CD56(bright) to CD56(dim) lineage development. PLoS ONE. 2012;7(12):e51677. doi:10.1371/journal.pone.0051677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. Natural killer cell-produced IFN-gamma and TNF-alpha induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol. 2012;91(2):299–309. doi:10.1189/jlb.0611308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gronberg A, Ferm MT, Ng J, Reynolds CW, Ortaldo JR. IFN-gamma treatment of K562 cells inhibits natural killer cell triggering and decreases the susceptibility to lysis by cytoplasmic granules from large granular lymphocytes. J Immunol. 1988;140(12):4397–402.
CAS
PubMed
Google Scholar
Reiter Z. Interferon–a major regulator of natural killer cell-mediated cytotoxicity. J Interferon Res. 1993;13(4):247–57.
Article
CAS
PubMed
Google Scholar
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773(8):1358–75. doi:10.1016/j.bbamcr.2007.03.010.
Article
CAS
PubMed
Google Scholar
Frevel MA, Bakheet T, Silva AM, Hissong JG, Khabar KS, Williams BR. p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol. 2003;23(2):425–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavropoulos A, Sully G, Cope AP, Clark AR. Stabilization of IFN-gamma mRNA by MAPK p38 in IL-12- and IL-18-stimulated human NK cells. Blood. 2005;105(1):282–8. doi:10.1182/blood-2004-07-2782.
Article
CAS
PubMed
Google Scholar
Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S, et al. IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol. 2000;165(3):1307–13.
Article
CAS
PubMed
Google Scholar
Mainiero F, Gismondi A, Soriani A, Cippitelli M, Palmieri G, Jacobelli J, et al. Integrin-mediated ras-extracellular regulated kinase (ERK) signaling regulates interferon gamma production in human natural killer cells. J Exp Med. 1998;188(7):1267–75.
Article
CAS
PubMed
PubMed Central
Google Scholar