Miller AJ, Mihm MC: Melanoma. N Engl J Med. 2006, 355: 51-65.
CAS
PubMed
Google Scholar
Wolchok JD, Saenger YM: Current topics in melanoma. Curr Opin Oncol. 2007, 19: 116-20.
PubMed
Google Scholar
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho J, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-54.
CAS
PubMed
Google Scholar
The Melanoma Molecular Map Project at. [http://www.mmmp.org/MMMP]
Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC: Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005, 353: 2135-47.
CAS
PubMed
Google Scholar
Mooi WJ, Peeper DS: Oncogene-induced cell senescence--halting on the road to cancer. New Engl J Med. 2006, 355: 1037-46.
CAS
PubMed
Google Scholar
Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre' M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d'Adda di Fagagna F: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006, 444: 638-642.
CAS
PubMed
Google Scholar
Hong SK, Pusapati RV, Powers JT, Johnson DG: Oncogenes and the DNA damage response - Myc and E2F1 engage the ATM signaling pathway to activate p53 and induce apoptosis. Cell Cycle. 2006, 5: 801-803.
CAS
PubMed
Google Scholar
Di Micco R, Cicalese A, Fumagalli M, Dobreva M, Verrecchia A, Pelicci PG, di Fagagna F: DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle. 2008, 7: 3601-3606.
CAS
PubMed
Google Scholar
Bennett DC: Familial melanoma genes, melanocyte immortalization and melanoma initiation. Melanocytes to Melanoma: The Progression to Malignancy. Edited by: Hearing VJ, Leong SPL. 2006, New Jersey: Humana Press, 183-96.
Google Scholar
Thompson JF, Scolyer RA, Kefford RF: Cutaneous melanoma. The Lancet. 2005, 365: 687-701.
CAS
Google Scholar
Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V: Genetic alterations in signaling pathways in melanoma. Clin Cancer Res. 2006, 12: 2301s-7s.
CAS
PubMed
Google Scholar
Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA: The Ink4a tumor suppressor gene product, 19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998, 92: 713-23.
CAS
PubMed
Google Scholar
Soengas MS, Lowe SW: Apoptosis and melanoma chemoresistance. Oncogene. 2003, 22: 3138-51.
CAS
PubMed
Google Scholar
Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D: Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol. 2003, 120: 48-55.
CAS
PubMed
Google Scholar
Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF: Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005, 41: 45-60.
PubMed
Google Scholar
Gilchrest BA, Eller MS, Geller AC, Yaar M: The pathogenesis of melanoma induced by ultraviolet radiation. New Engl J Med. 1999, 340: 1341-8.
CAS
PubMed
Google Scholar
Jhappan C, Noonan FP, Merlino G: Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 2003, 22: 3099-112.
CAS
PubMed
Google Scholar
Eide MJ, Weinstock MA: Association of UV index, latitude, and melanoma incidence in non-White populations--US surveillance, epidemiology, and end results (SEER) program, 1992 to 2001. Arch Dermatol. 2005, 141: 477-481.
PubMed
Google Scholar
De Fabo EC, Noonan FP, Fears T, Merlino G: Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 2004, 64: 6372-6.
CAS
PubMed
Google Scholar
Wang SQ, Setlow R, Berwick M, Polsky D, Marghoob AA, Kopf AW, Bart RS: Ultraviolet A and melanoma: a review. J Am Acad Dermatol. 2001, 44: 837-46.
CAS
PubMed
Google Scholar
Moan J, Dahlback A, Setlow RB: Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochem Photobiol. 1999, 70: 243-247.
CAS
PubMed
Google Scholar
Oliveria S, Dusza S, Berwick M: Issues in the epidemiology of melanoma. Expert Rev Anticancer Ther. 2001, 1: 453-9.
CAS
PubMed
Google Scholar
Garland C, Garland F, Gorham E: Epidemiologic evidence for different roles of ultraviolet A and B radiation in melanoma mortality rates. Ann Epidemiol. 2003, 13: 395-404.
PubMed
Google Scholar
Takata M, Saida T: Genetic alteration in melanocytic tumors. J Dermat Science. 2006, 43: 1-10.
CAS
Google Scholar
Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, Willemze R, Bavinck JN: Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001, 117: 294-300.
CAS
PubMed
Google Scholar
Beaumont KA, Shekar SN, Newton RA, James MR, Stow JL, Duffy DL, Sturm RA: Receptor function, dominant negative activity and phenotype correlations for MC1R variant alleles. Hum Mol Genet. 2007, 16: 2249-2260.
CAS
PubMed
Google Scholar
Kanetsky PA, Rebbeck TR, Hummer AJ, Panossian S, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Culver HA, Zanetti R, Gallagher RP, Dwyer T, Busam K, From L, Mujumdar U, Wilcox H, Begg CB, Berwick M: Population-based study of natural variation in the melanocortin-1 receptor gene and melanoma. Cancer Res. 2006, 66: 9330-9337.
CAS
PubMed
Google Scholar
Raimondi S, Sera F, Gandini S, Iodice S, Caini S, Maisonneuve P, Fargnoli MC: MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer. 2008, 122: 2753-2760.
CAS
PubMed
Google Scholar
Box NF, Duffy DL, Irving RE, Russell A, Chen W, Griffyths LR, Parsons PG, Green AC, Sturm RA: Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol. 2001, 116: 224-229.
CAS
PubMed
Google Scholar
Giehl K: Oncogenic Ras in tumor progression and metastasis. Biol Chem. 2005, 386 (3): 193-205.
CAS
PubMed
Google Scholar
Campbell PM, Der CJ: Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol. 2004, 14 (2): 105-14.
CAS
PubMed
Google Scholar
Pritchard CA, Samuels ML, Bosch E, McMahon M: Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol. 1995, 15: 6430-42.
PubMed Central
CAS
PubMed
Google Scholar
Beeram M, Patnaik A, Rowinsky EK: Raf: a strategic target for therapeutic development against cancer. J Clin Oncol. 2005, 23 (27): 6771-90.
CAS
PubMed
Google Scholar
Emuss V, Garnett M, Mason C, Marais R: Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res. 2005, 65: 9719-26.
CAS
PubMed
Google Scholar
Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K, Janakiraman M, Linkesch W, Auner HW, Emberger W, Windpassinger C, Schimek MG, Hoefler G, Troppmair J, Sill H: Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res. 2006, 66: 3401-8.
CAS
PubMed
Google Scholar
Lee JW, Soung YH, Kim SY, Park WS, Nam SW, Min WS, Kim SH, Lee JY, Yoo NJ, Lee SH: Mutational analysis of the ARAF gene in human cancers. APMIS. 2005, 113: 54-7.
CAS
PubMed
Google Scholar
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA: High prevalence of BRAF mutations in papillary thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signalling pathway in papillary carcinoma. Cancer Res. 2003, 63 (7): 1454-7.
CAS
PubMed
Google Scholar
Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR, Weber BL: BRAF and Ras mutations in human lung cancer and melanoma. Cancer Res. 2002, 62 (23): 6997-7000.
CAS
PubMed
Google Scholar
Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, Hauss J, Wittekind C: Mutation of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003, 52 (5): 706-12.
PubMed Central
CAS
PubMed
Google Scholar
Palmieri G, Casula M, Sini MC, Ascierto PA, Cossu A: Issues affecting molecular staging in the management of patients with melanoma. J Cell Mol Med. 2007, 11: 1052-1068.
PubMed Central
CAS
PubMed
Google Scholar
Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R: Cancer Genome Project. Mechanism of activation of tha Ras-Erk signaling pathaway by oncogenic mutation on BRAF. Cell. 2004, 116: 855-867.
CAS
PubMed
Google Scholar
Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, Larue L, Goding CR: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005, 433: 764-9.
CAS
PubMed
Google Scholar
Casula M, Colombino M, Satta MP, Cossu A, Ascierto PA, Bianchi-Scarrà G, Castiglia D, Budroni M, Rozzo C, Manca A, Lissia A, Carboni A, Petretto E, Satriano SM, Botti G, Mantelli M, Ghiorzo P, Stratton MR, Tanda F, Palmieri G, Italian Melanoma Intergroup Study: Braf gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup study. J Clin Oncol. 2004, 22: 286-92.
CAS
PubMed
Google Scholar
Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS: High frequency of BRAF mutations in nevi. Nat Genet. 2003, 33 (1): 19-20.
CAS
PubMed
Google Scholar
Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z, Aaronson SA: BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 2003, 63 (14): 3883-5.
CAS
PubMed
Google Scholar
Greene VR, Johnson MM, Grimm EA, Ellerhorst JA: Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. J Invest Dermatol. 2009, 129: 1483-1488.
PubMed Central
CAS
PubMed
Google Scholar
Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI: BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005, 15: 249-54.
CAS
PubMed
Google Scholar
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, Horst van der CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005, 436: 720-724.
CAS
PubMed
Google Scholar
Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008, 132: 363-374.
PubMed Central
CAS
PubMed
Google Scholar
Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS: BRAF(E600) in benign and malignant human tumours. Oncogene. 2008, 27: 877-895.
CAS
PubMed
Google Scholar
Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R: Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009, 15: 294-303.
CAS
PubMed
Google Scholar
Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D, Bastian BC: MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006, 313: 521-2.
CAS
PubMed
Google Scholar
Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, Vegetti C, Nonaka D, Mortarini R, Parmiani G, Fais S, Anichini A: Mutually exclusive N-RasQ61R and BRAF V600E mutations at the single-cell level in the same human melanoma. Oncogene. 2006, 25: 3357-64.
CAS
PubMed
Google Scholar
Jiveskog S, Ragnarsson-Olding B, Platz A, Ringborg U: N-RAS mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J Invest Dermatol. 1998, 111: 757-761.
CAS
PubMed
Google Scholar
El Shabrawi Y, Radner H, Muellner K, Langmann G, Hoefler G: The role of UV-radiation in the development of conjunctival malignant melanoma. Acta Ophthalmol Scand. 1999, 77: 31-32.
CAS
PubMed
Google Scholar
Ashida A, Takata M, Murata H, Kido K, Saida T: Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer. 2009, 124: 862-868.
CAS
PubMed
Google Scholar
Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, Town A, Harlow A, Cruz F, Azar S, Rubin BP, Muller S, West R, Heinrich MC, Corless CL: KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008, 14: 6821-6828.
CAS
PubMed
Google Scholar
Stone S, Ping J, Dayananth P, Tavtigian SV, Katcher H, Parry D, Gordon P, Kamb A: Complex Structure and Regulation of the P16 (MTS1) Locus. Cancer Research. 1995, 55: 2988-2994.
CAS
PubMed
Google Scholar
Pho L, Grossman D, Laechman SA: Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma. Current Opinion in Oncology. 2006, 18: 173-9.
CAS
PubMed
Google Scholar
Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995, 83: 993-1000.
CAS
PubMed
Google Scholar
Pacifico A, Leone G: Role of p53 and CKN2A inactivation in human squamous cell carcinomas. J Biomed Biotechnol. 2007, 2007 (3): 43418-
PubMed Central
PubMed
Google Scholar
Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM: MDM2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000, 275 (12): 8945-51.
CAS
PubMed
Google Scholar
Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G: The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J. 1998, 17: 5001-5014.
PubMed Central
CAS
PubMed
Google Scholar
Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG: Low Prevalence of Germline CDKN2A and CDK4 Mutations in Patients With Early-Onset Melanoma. Arch Dermatol. 2000, 136: 1118-1122.
CAS
PubMed
Google Scholar
Piepkorn M: Melanoma genetics: An update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol. 2000, 42: 705-722.
CAS
PubMed
Google Scholar
Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 1997, 88: 323-331.
CAS
PubMed
Google Scholar
Box NF, Terzian T: The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 2008, 21: 525-533.
CAS
PubMed
Google Scholar
Goldstein AM, Landi MT, Tsang S, Fraser MC, Munroe DJ, Tucker MA: Association of MC1R Variants and Risk of Melanoma in Melanoma-Prone Families with CDKN2A Mutations. Cancer Epidemiol Biomarkers Prev. 2005, 14 (9):
Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, Chompret A, Ghiorzo P, Gruis N, Hansson J, Harland M, Hayward N, Holland EA, Mann GJ, Mantelli M, Nancarrow D, Platz A, Tucker MA, Melanoma Genetics Consortium: Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002, 94 (12): 894-903.
CAS
PubMed
Google Scholar
Chaudru V, Chompret A, Bressac-de Paillerets B, Spatz A, Avri MF, Demenais F: Influence of genes, nevi, and sun sensitivity on melanoma risk in a family sample unselected by family history and in melanoma-prone families. Journal of the National Cancer Institute. 2004, 96: 785-95.
PubMed
Google Scholar
Puig S, Malvehy J, Badenas C, Ruiz A, Jimenez D, Cuellar F, Azon A, Gonzàlez U, Castel T, Campoy A, Herrero J, Martí R, Brunet-Vidal J, Milà M: Role of the CDKN2A Locus in patients with multiple primary melanomas. J Clin Oncol. 2005, 23: 3043-3051.
CAS
PubMed
Google Scholar
Eliason MJ, Hansen CB, Hart M, Porter-Gill P, Chen W, Sturm RA, Bowen G, Florell SR, Harris RM, Cannon-Albright LA, Swinyer L, Leachman SA: Multiple primary melanomas in a CDKN2A mutation carrier exposed to ionizing radiation. Arch Dermatol. 2007, 143 (11): 1409-12.
CAS
PubMed
Google Scholar
Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275: 1943-1947.
CAS
PubMed
Google Scholar
Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM: Inhibition of cell migration, spreading, and focal adhesions by tumour suppressor PTEN. Science. 1998, 280: 1614-1617.
CAS
PubMed
Google Scholar
Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP: Impaired Fas response and autoimmunity in PTEN +/- mice. Science. 1999, 285: 2122-2125.
CAS
PubMed
Google Scholar
Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, Parsons R: The PTEN/MMAC1 tumour suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res. 1998, 58: 5667-5672.
CAS
PubMed
Google Scholar
Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Rulnd J, Penninger JM, Siderovski DP, Mak TW: Negative regulation of PKB/Akt-dependent cell survival by the tumour suppressor PTEN. Cell. 1998, 95: 29-39.
CAS
PubMed
Google Scholar
Datta SR, Brunet A, Greenberg ME: Cellular survival: A play in three Akts. Genes Dev. 1999, 13: 2905-2927.
CAS
PubMed
Google Scholar
Brazil DP, Park J, Hemmings BA: PKB binding proteins: getting in on the Akt. Cell. 2002, 111: 293-303.
CAS
PubMed
Google Scholar
Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signalling. 2002, 14: 381-95.
CAS
PubMed
Google Scholar
Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001, 15: 2203-8.
PubMed Central
CAS
PubMed
Google Scholar
Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB). Science. 2001, 292: 1728-31.
CAS
PubMed
Google Scholar
Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M: Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and beta-catenin pathways. Cancer Res. 2001, 61: 7318-24.
CAS
PubMed
Google Scholar
Dhawan P, Singh AB, Ellis DL, Richmond A: Constitutive Activation Akt/Protein kinase B in Melanoma Leads to Up-Regulation of Nuclear factor-kB and Tumor Progression. Cancer Res. 2002, 62: 7335-7342.
CAS
PubMed
Google Scholar
Stokoe D: Pten. Curr Biol. 2001, 11 (13): R502-
CAS
PubMed
Google Scholar
Dahia PL: PTEN, a unique tumor suppressor gene. Endocr Relat Cancer. 2000, 7: 115-129.
CAS
PubMed
Google Scholar
Kandel ES, Hay N: The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999, 253: 210-229.
CAS
PubMed
Google Scholar
Downward J: PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004, 15: 177-182.
CAS
PubMed
Google Scholar
Vivanco I, Sawyers CL: The phosphatidylinositol 3-kinase AKT pathwayin human cancer. Nat Rev Cancer. 2002, 2: 489-501.
CAS
PubMed
Google Scholar
Staal SP: Molecular cloning of the Akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natal Acad Sci. 1987, 84: 5034-7.
CAS
Google Scholar
Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G, Testa JR: Molecular alterations of the Akt2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995, 64: 280-5.
CAS
PubMed
Google Scholar
Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, Kester M, Sandirasegarane L, Robertson GP: Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004, 64: 7002-10.
CAS
PubMed
Google Scholar
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE: High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004, 304 (5670): 554-
CAS
PubMed
Google Scholar
Samuels Y, Diaz LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell. 2005, 7: 561-73.
CAS
PubMed
Google Scholar
Omholt K, Krockel D, Ringborg U, Hansson J: Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res. 2006, 16: 197-200.
CAS
PubMed
Google Scholar
Curtin JA, Stark MS, Pinkel D, Hayward NK, Bastian BC: PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol. 2006, 126: 1660-3.
CAS
PubMed
Google Scholar
Blume-Jensen P, Hunter T: Oncogenic kinase signalling. Nature. 2001, 411: 355-365.
CAS
PubMed
Google Scholar
Plas DR, Thompson CB: Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005, 24: 7435-7442.
CAS
PubMed
Google Scholar
Stiles B, Groszer M, Wang S, Jiao J, Wu H: PTENless means more. Dev Biol. 2004, 273: 175-184.
CAS
PubMed
Google Scholar
Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997, 91: 231-241.
CAS
PubMed
Google Scholar
Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998, 282: 1318-1321.
CAS
PubMed
Google Scholar
Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci. 2001, 98: 11598-11603.
PubMed Central
CAS
PubMed
Google Scholar
Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M: Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002, 21: 1299-1303.
CAS
PubMed
Google Scholar
Oren M, Damalas A, Gottlieb T, Michael D, Taplick J, Leal JF, Maya R, Moas M, Seger R, Taya Y, Ben-Ze'ev A: Regulation of p53: intricate loops and delicate balances. Biochem Pharmacol. 2002, 64: 865-871.
CAS
PubMed
Google Scholar
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999, 96: 857-868.
CAS
PubMed
Google Scholar
Romashkova JA, Makarov SS: NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999, 401: 86-90.
CAS
PubMed
Google Scholar
Wan YS, Wang ZQ, Shao Y, Voorhees JJ, Fisher GJ: Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int J Oncol. 2001, 18: 461-6.
CAS
PubMed
Google Scholar
Waldmann V, Wacker J, Deichmann M: Mutations of the activation-associated phosphorylation sites at codons 308 and 473 of protein kinase B are absent in human melanoma. Arch Dermatol Res. 2001, 293: 368-72.
CAS
PubMed
Google Scholar
Waldmann V, Wacker J, Deichmann M: Absence of mutations in the pleckstrin homology (PH) domain of protein kinase B (PKB/Akt) in malignant melanoma. Melanoma Res. 2002, 12: 45-50.
CAS
PubMed
Google Scholar
Davies MA, Stemke-Hale K, Tellez C, Calderone TL, Deng W, Prieto VG, Lazar AJ, Gershenwald JE, Mills GB: A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer. 2008, 99: 1265-1268.
PubMed Central
CAS
PubMed
Google Scholar
Krasilnikov M, Adler V, Fuchs SY, Dong Z, Haimovitz-Friedman A, Herlyn M, Ronai Z: Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Mol Carcinog. 1999, 24: 64-9.
CAS
PubMed
Google Scholar
Simpson L, Parsons R: PTEN: life as a tumor suppressor. Exp Cell Res. 2001, 264: 29-41.
CAS
PubMed
Google Scholar
Maehama T, Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998, 273: 13375-13378.
CAS
PubMed
Google Scholar
Vazquez F, Sellers WR: The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta. 2000, 1470 (1): M21-35.
CAS
PubMed
Google Scholar
Bonneau D, Longy M: Mutations of the human PTEN gene. Hum Mutat. 2000, 16 (2): 109-22.
CAS
PubMed
Google Scholar
Maehama T, Taylor GS, Dixon JE: PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001, 70: 247-279.
CAS
PubMed
Google Scholar
Ali IU, Schriml LM, Dean M: Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Nat Cancer Inst. 1999, 91: 1922-1932.
CAS
PubMed
Google Scholar
Tsao H, Zhang X, Benoit E, Haluska FG: Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene. 1998, 16 (26): 3397-402.
CAS
PubMed
Google Scholar
Egger G, Liang G, Aparicio A, Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004, 429: 457-63.
CAS
PubMed
Google Scholar
Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H, Marsh DJ, Ritz J, Freedman A, Stiles C, Eng C: PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet. 1999, 8: 185-93.
CAS
PubMed
Google Scholar
Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S: PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer. 2001, 91 (1): 22-6.
CAS
PubMed
Google Scholar
Fuse N, Yasumoto K, Takeda K, Amae S, Yoshizawa M, Udono T, Takahashi K, Tamai M, Tomita Y, Tachibana M, Shibahara S: Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus. J Biochem. 1999, 126: 1043-1051.
CAS
PubMed
Google Scholar
Hodgkinson CA, Moore KJ, Nakayama A, Steingrímsson E, Copeland NG, Jenkins NA, Arnheiter H: Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993, 74: 395-404.
CAS
PubMed
Google Scholar
Hughes AE, Newton VE, Liu XZ, Read AP: A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nat Genet. 1994, 7: 509-512.
CAS
PubMed
Google Scholar
Bentley NJ, Eisen T, Goding CR: Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol. 1994, 14: 7996-8006.
PubMed Central
CAS
PubMed
Google Scholar
Hemesath TJ, Steingrímsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA, Fisher DE: Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994, 8: 2770-2780.
CAS
PubMed
Google Scholar
Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S: Micropthalmia-associated transcription factor as a regulator for melanocytespecific transcription of the human tyrosinase gene. Mol Cell Biol. 1994, 14: 8058-8070.
PubMed Central
CAS
PubMed
Google Scholar
Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S: Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997, 272: 503-509.
CAS
PubMed
Google Scholar
Steingrímsson E, Copeland NG, Jenkins NA: Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004, 38: 365-411.
PubMed
Google Scholar
Selzer E, Wacheck V, Lucas T, Heere-Ress E, Wu M, Weilbaecher KN, Schlegel W, Valent P, Wrba F, Pehamberger H, Fisher D, Jansen B: The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res. 2002, 62: 2098-2103.
CAS
PubMed
Google Scholar
Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H: Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the MITF basic-helix-loop-helix-zipper transcription factor. Development. 1997, 124: 2377-2386.
CAS
PubMed
Google Scholar
Wellbrock C, Marais R: Elevated expression of MITF counteracts B-RAF stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005, 170: 703-708.
PubMed Central
CAS
PubMed
Google Scholar
Hoek KS, Eichhoff OM, Schlegel NC, Döbbeling U, Kobert N, Schaerer L, Hemmi S, Dummer R: In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008, 68: 650-656.
CAS
PubMed
Google Scholar
Salti GI, Manougian T, Farolan M, Shilkaitis A, Majumdar D, Das Gupta TK: Microphthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 2000, 60: 5012-5016.
CAS
PubMed
Google Scholar
Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF, Hersey P: Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol. 2007, 20: 416-426.
CAS
PubMed
Google Scholar
King R, Googe PB, Weilbaecher KN, Mihm MC, Fisher DE: Microphthalmia transcription factor. A sensitive and specific melanocyte marker for melanoma diagnosis. Am J Path. 1999, 155: 731-738.
PubMed Central
CAS
PubMed
Google Scholar
Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M: Micropthamia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am J Surg Pathol. 2001, 25: 205-211.
CAS
PubMed
Google Scholar
Chang KL, Folpe AL: Diagnostic utility of microphthalmia transcription factor in malignant melanoma and other tumors. Adv Anat Pathol. 2001, 8: 273-275.
CAS
PubMed
Google Scholar
Levy C, Khaled M, Fisher DE: MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006, 12: 406-14.
CAS
PubMed
Google Scholar
Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005, 436: 117-22.
CAS
PubMed
Google Scholar
Garraway LA, Sellers WR: Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006, 6: 593-602.
CAS
PubMed
Google Scholar
Loercher AE, Tank EM, Delston RB, Harbour JW: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005, 168: 35-40.
PubMed Central
CAS
PubMed
Google Scholar
Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE: Critical role of CDK2 for melanoma growth linked to its melanocytespecific transcriptional regulation by MITF. Cancer Cell. 2004, 6: 565-76.
CAS
PubMed
Google Scholar
McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002, 109: 707-18.
CAS
PubMed
Google Scholar
Goding CR: Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000, 14: 1712-1728.
CAS
PubMed
Google Scholar
Thomson JA, Murphy K, Baker E, Sutherland GR, Parsons PG, Sturm RA, Thomson F: The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene. 1995, 11: 691-700.
CAS
PubMed
Google Scholar
Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE: MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998, 391: 298-301.
CAS
PubMed
Google Scholar
Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R: Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998, 142: 827-835.
PubMed Central
CAS
PubMed
Google Scholar
Bertolotto C, Bille K, Ortonne JP, Ballotti R: Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmiagene product. Cell Sci. 1996, 134: 747-755.
CAS
Google Scholar
Polakis P: Wnt signaling and cancer. Genes Dev. 2000, 14: 1837-1851.
CAS
PubMed
Google Scholar
Dorsky RI, Moon RT, Raible DW: Control of neural crest cell fate by the Wnt signalling pathway. Nature. 1998, 396: 370-373.
CAS
PubMed
Google Scholar
Dorsky RI, Moon RT, Raible DW: Environmental signals and cell fate specification in premigratory neural crest. Bioessays. 2000, 22: 708-716.
CAS
PubMed
Google Scholar
Peifer M, Polakis P: Wnt signaling in oncogenesis and embryogenesisa look outside the nucleus. Science. 2000, 287: 1606-1609.
CAS
PubMed
Google Scholar
You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, Mikami I, Reguart N, McIntosh JK, Kashani-Sabet M, McCormick F, Jablons DM: An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 2004, 64: 5385-5389.
CAS
PubMed
Google Scholar
Kashani-Sabet M, Range J, Torabian S, Nosrati M, Simko J, Jablons DM, Moore DH, Haqq C, Miller III, Sagebiel RW: A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci USA. 2009, 106: 6268-6272.
PubMed Central
CAS
PubMed
Google Scholar
Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-1792.
CAS
PubMed
Google Scholar
Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER: Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am J Path. 1999, 154: 325-329.
PubMed Central
CAS
PubMed
Google Scholar
Morgan T: The theory of the gene. Am Nat. 1917, 51: 513-544.
Google Scholar
Robbins J, Blondel BJ, Gallahan D, Callahan R: Mouse mammary tumor gene int-3: a member of the Notch gene family transforms mammary epithelial cells. J Virol. 1992, 66: 2594-2599.
PubMed Central
CAS
PubMed
Google Scholar
Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G, Callahan R: Expression of an activated Notch-related int-3 trangene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 1992, 6: 345-355.
CAS
PubMed
Google Scholar
Lardelli M, Williams R, Lendahl U: Notch-related genes in animal development. Int J Dev Biol. 1995, 39: 769-780.
CAS
PubMed
Google Scholar
Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R: A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000, 5: 197-206.
CAS
PubMed
Google Scholar
Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israël A: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000, 5: 207-216.
CAS
PubMed
Google Scholar
Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature. 1995, 377: 355-358.
CAS
PubMed
Google Scholar
Lai EC: Protein degradation: four E3s for the notch pathway. Curr Biol. 2002, 12: R74-R78.
CAS
PubMed
Google Scholar
Lai EC: Notch signaling: control of cell communication and cell fate. Development. 2004, 131: 965-973.
CAS
PubMed
Google Scholar
Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284: 770-776.
CAS
PubMed
Google Scholar
Jeffries S, Capobianco AJ: Neoplastic transformation by Notch requires nuclear localization. Mol Cell Biol. 2000, 20: 3928-3941.
PubMed Central
CAS
PubMed
Google Scholar
Allman D, Punt JA, Izon DJ, Aster JC, Pear WS: An invitation to T and more: notch signaling in lymphopoiesis. Cell. 2002, 109: S1-S11.
CAS
PubMed
Google Scholar
Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991, 66: 649-61.
CAS
PubMed
Google Scholar
Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW: Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 2001, 61: 3200-5.
CAS
PubMed
Google Scholar
Gestblom C, Grynfeld A, Ora I, Ortoft E, Larsson C, Axelson H, Sandstedt B, Cserjesi P, Olson EN, Påhlman S: The basic helix-loop-helix transcription factor dHAND, a marker gene for the developing human sympathetic nervous system, is expressed in both high- and low-stage neuroblastomas. Lab Invest. 1999, 79: 67-79.
CAS
PubMed
Google Scholar
Grynfeld A, Påhlman S, Axelson H: Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reduced HASH-1 expression, is inhibited by Notch1. Int J Cancer. 2000, 88: 401-10.
CAS
PubMed
Google Scholar
Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S: Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA. 1995, 92: 6414-8.
PubMed Central
CAS
PubMed
Google Scholar
Talora C, Sgroi DC, Crum CP, Dotto GP: Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002, 16: 2252-63.
PubMed Central
CAS
PubMed
Google Scholar
Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ: Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001, 61: 7291-7.
CAS
PubMed
Google Scholar
Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F: Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003, 33: 416-21.
CAS
PubMed
Google Scholar
Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, Miele L, Aguet M, Radtke F, Dotto GP: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001, 20: 3427-36.
PubMed Central
CAS
PubMed
Google Scholar
Lowell S, Jones P, Le Roux I, Dunne J, Watt FM: Stimulation of human epidermal differentiation by δ-notch signalling at the boundaries of stem-cell clusters. Curr Biol. 2000, 10: 491-500.
CAS
PubMed
Google Scholar
Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, Wu T, Niinobe M, Yoshikawa K, Hannigan GE, Halaban R: Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004, 64: 5270-82.
CAS
PubMed
Google Scholar
Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S, Leoncini G, Cirino G, Geppetti P, Santucci M: Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Modern Pathology. 2006, 19: 246-259.
CAS
PubMed
Google Scholar
Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ, Brafford PA, Xiao M, Himes B, Zabierowski SE, Yashiro-Ohtani Y, Nathanson KL, Bengston A, Pollock PM, Weeraratna AT, Nickoloff BJ, Pear WS, Capobianco AJ, Herlyn M: Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 2009, 69: 5312-5320.
PubMed Central
CAS
PubMed
Google Scholar
Kang DE, Soriano S, Xia X, Eberhart CG, De Strooper B, Zheng H, Koo EH: Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell. 2002, 110: 751-762.
CAS
PubMed
Google Scholar
Li G, Satyamoorthy K, Herlyn M: N-cadherin-mediated intercellular interactions promote survival and migration f melanoma cells. Cancer Res. 2001, 61: 3819-3825.
CAS
PubMed
Google Scholar
Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ, Miele L, Gabrilovich DI: Notch-1 regulates NF-kB activity in hemopoietic progenitor cells. J Immunol. 2001, 167: 4458-4467.
CAS
PubMed
Google Scholar
Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA: Notch1 augments Nf-kB activity by facilitating its nuclear retention. EMBO J. 2006, 25: 129-138.
PubMed Central
CAS
PubMed
Google Scholar
Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, Rudolf M, Siziopikou K, Kast WM, Miele L: Activation of Notch1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Na Med. 2002, 8: 979-986.
CAS
Google Scholar
Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A, Artavanis-Tsakonas S: Modulation of Notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol. 2004, 165: 695-705.
PubMed Central
CAS
PubMed
Google Scholar
Grimm EA, Ellerhorst J, Tang CH, Ekmekcioglu S: Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide. 2008, 19: 133-137.
PubMed Central
CAS
PubMed
Google Scholar
Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ, Mak TW, Taniguchi T, Vilcek J: Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science. 1994, 263: 1612-1615.
CAS
PubMed
Google Scholar
Martin E, Nathan C, Xie QW: Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med. 1994, 180: 977-984.
CAS
PubMed
Google Scholar
Xie QW, Kashiwabara Y, Nathan C: Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994, 269: 4705-4708.
CAS
PubMed
Google Scholar
Adcock IM, Brown CR, Kwon O, Barnes PJ: Oxidative stress induces NF kappa B DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun. 1994, 199: 1518-1524.
CAS
PubMed
Google Scholar
Meyskens FL, McNulty SE, Buckmeier JA, Tohidian NB, Spillane TJ, Kahlon RS, Gonzalez RI: Aberrant redox regulation in human metastatic melanoma cells compared to normal melanocytes. Free Radic Biol Med. 2001, 31: 799-808.
CAS
PubMed
Google Scholar
Zhang J, Peng B, Chen X: Expression of nuclear factor kappaB, inducible nitric oxide syntheses, and vascular endothelial growth tactor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res. 2005, 11: 7334-7343.
CAS
PubMed
Google Scholar
MacMicking J, Xie QW, Nathan C: Nitric oxide and macrophage function. Rev Immunol. 1997, 15: 323-350.
CAS
Google Scholar
Bredt DS: Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res. 1999, 31: 577-596.
CAS
PubMed
Google Scholar
Geller DA, Billiar TR: Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998, 17: 7-23.
CAS
PubMed
Google Scholar
Massi D, Franchi A, Sardi I, Magnelli L, Paglierani M, Borgognoni L, Maria Reali U, Santucci M: Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001, 194: 194-200.
CAS
PubMed
Google Scholar
Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, Fidler IJ: Transfection with the inducible nitric oxide syntheses gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med. 1995, 181: 1333-1343.
CAS
PubMed
Google Scholar
Xie K, Wang Y, Huang S, Xu L, Bielenberg D, Salas T, McConkey DJ, Jiang W, Fidler IJ: Nitric oxide-mediated apoptosis of K-1735 melanoma cells is associated with downregulation of Bcl-2. Oncogene. 1997, 15 (7): 771-9.
CAS
PubMed
Google Scholar
Messmer UK, Ankarcrona M, Nicotera P, Brüne B: p53 expression in nitric oxide induced apoptosis. FEBS Lett. 1994, 355: 23-26.
CAS
PubMed
Google Scholar
Rudin CM, Thompson CB: Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu Rev Med. 1997, 48: 267-281.
CAS
PubMed
Google Scholar
Williams GT, Smith CA: Molecular regulation of apoptosis: genetic controls on cell death. Cell. 1993, 74: 777-779.
CAS
PubMed
Google Scholar
Krammer PH: The CD95(APO-1/Fas)/CD95L system. Toxicol Lett. 1998, 102-103: 131-137.
CAS
PubMed
Google Scholar
Reed JC: Dysregulation of apoptosis in cancer. J Clin Oncol. 1999, 17: 2941-2953.
CAS
PubMed
Google Scholar
Frisch SM, Screaton RA: Anoikis mechanisms. Curr Opin Cell Biol. 2001, 13: 555-562.
CAS
PubMed
Google Scholar
Brune B, Mohr S, Messmer UK: Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. Rev Physiol Biochem Pharmacol. 1996, 127: 1-30.
CAS
PubMed
Google Scholar
Tschugguel W, Pustelnik T, Lass H, Mildner M, Weninger W, Schneeberger C, Jansen B, Tschachler E, Waldhör T, Huber JC, Pehamberger H: Inducible nitric oxide synthase (iNOS) expression may predict distant metastasis in human melanoma. Br J Cancer. 1999, 79: 1609-1612.
PubMed Central
CAS
PubMed
Google Scholar
Ahmed B, Oord Van den JJ: Expression of the inducible isoform of nitric oxide synthase in pigment cell lesions of the skin. Br J Dermatol. 2000, 142: 432-40.
CAS
PubMed
Google Scholar
Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA: Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res. 2000, 6: 4768-75.
CAS
PubMed
Google Scholar
Ahmed B, Oord Van Den JJ: Expression of the neuronal isoform of nitric oxide synthase (nNOS) and its inhibitor, protein inhibitor of nNOS, in pigment cell lesions of the skin. Br J Dermatol. 1999, 141: 12-19.
CAS
PubMed
Google Scholar
Tang CH, Grimm EA: Depletion of endogenous nitric oxide enhances cisplatin-induced apoptosis in a p53-dependent manner in melanoma cell lines. J Biol Chem. 2004, 279: 288-98.
CAS
PubMed
Google Scholar
Bevona C, Goggins W, Quinn T: Cutaneous melanomas associated with nevi. Arch Dermatol. 2003, 139: 1620-1624.
PubMed
Google Scholar
Rasheed S, Mao Z, Chan JMC, Chan LS: Is melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells. J Transl Med. 2005, 3: 14-
PubMed Central
PubMed
Google Scholar
Zabierowski SE, Herlyn M: Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008, 26: 2890-2894.
PubMed
Google Scholar