Wiedemeyer R, Brennan C, Heffernan TP, Xiao Y, Mahoney J, Protopopov A, Zheng H, Bignell G, Furnari F, Cavenee WK, Hahn WC, Ichimura K, Collins VP, Chu GC, Stratton MR, Ligon KL, Futreal PA, Chin L: Feedback circuit among INK4 tumor suppressors constrains human glioma development. Cancer Cell. 2008, 13: 355-64. 10.1016/j.ccr.2008.02.010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK: Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007, 21: 2683-2710. 10.1101/gad.1596707.
Article
CAS
PubMed
Google Scholar
Cancer Genome Atlas Research Network: Comprehensive genomic characterization defines human glioma genes and core pathways. Nat. 2008, 455: 1061-1068. 10.1038/nature07385.
Article
Google Scholar
Alonso MM, Fueyo J, Shay JW, Aldape KD, Jiang H, Lee OH, Johnson DG, Xu J, Kondo Y, Kanzawa T, Kyo S, Bekele BN, Zhou X, Nigro J, McDonald JM, Yung WK, Gomez-Manzano C: Expression of transcription factor E2F1 and telomerase in gliomas: mechanistic linkage and prognostic significance. J Natl Cancer Inst. 2005, 97: 1589-600. 10.1093/jnci/dji340.
Article
CAS
PubMed
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.
Article
CAS
PubMed
Google Scholar
Hwang HW, Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2007, 96 (Suppl): R40-44.
PubMed
Google Scholar
Jovanovic M, Hengartner MO: miRNAs and apoptosis: RNAs to die for. Oncogene. 2006, 25: 6176-6187. 10.1038/sj.onc.1209912.
Article
CAS
PubMed
Google Scholar
Kent OA, Mendell JT: A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006, 25: 6188-6196. 10.1038/sj.onc.1209913.
Article
CAS
PubMed
Google Scholar
Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006, 103: 2257-2261. 10.1073/pnas.0510565103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006, 6: 259-269.
Article
CAS
PubMed
Google Scholar
Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E: MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009, 125: 1407-1413. 10.1002/ijc.24522.
Article
CAS
PubMed
Google Scholar
Gorgoulis VG, Zacharatos P, Mariatos G, Kotsinas A, Bouda M, Kletsas D, Asimacopoulos PJ, Agnantis N, Kittas C, Papavassiliou AG: Transcription factor E2F-1 acts as a growth-promoting factor and is associated with adverse prognosis in non-small cell lung carcinomas. J Pathol. 2002, 198: 142-156. 10.1002/path.1121.
Article
CAS
PubMed
Google Scholar
Eymin B, Gazzeri S, Brambilla C, Brambilla E: Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene. 2001, 20: 1678-1687. 10.1038/sj.onc.1204242.
Article
CAS
PubMed
Google Scholar
Suh DS, Yoon MS, Choi KU, Kim JY: Significance of E2F-1 overexpression in epithelial ovarian cancer. Int J Gynecol Cancer. 2008, 18: 492-498. 10.1111/j.1525-1438.2007.01044.x.
Article
CAS
PubMed
Google Scholar
Real S, Meo-Evoli N, Espada L, Tauler A: E2F1 regulates cellular growth by mTORC1 signaling. PLoS One. 2011, 6: e16163-10.1371/journal.pone.0016163.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fueyo J, Gomez-Manzano C, Yung WK, Liu TJ, Alemany R, McDonnell TJ, Shi X, Rao JS, Levin VA, Kyritsis AP: Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Nat Med. 1998, 4: 685-690. 10.1038/nm0698-685.
Article
CAS
PubMed
Google Scholar
Shu HK, Julin CM, Furman F, Yount GL, Haas-Kogan D, Israel MA: Overexpression of E2F1 in glioma-derived cell lines induces a p53-independent apoptosis that is further enhanced by ionizing radiation. Neuro Oncol. 2000, 2: 16-21.
PubMed Central
CAS
PubMed
Google Scholar
Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M: miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 2011, 286: 16606-16614. 10.1074/jbc.M111.227611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zauli G, Voltan R, di Iasio MG, Bosco R, Melloni E, Sana ME, Secchiero P: miR-34a induces the downregulation of both E2F1 and B-Myb oncogenes in leukemic cells. Clin Cancer Res. 2011, 17: 2712-2724. 10.1158/1078-0432.CCR-10-3244.
Article
CAS
PubMed
Google Scholar
Ofir M, Hacohen D, Ginsberg D: MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol Cancer Res. 2011, 9: 440-447. 10.1158/1541-7786.MCR-10-0344.
Article
CAS
PubMed
Google Scholar
Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Müller HW, Wernet P: MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One. 2011, 6 (1): e1613-
Article
Google Scholar
O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nat. 2005, 435: 839-843. 10.1038/nature03677.
Article
Google Scholar
Yang G, Zhang R, Chen X, Mu Y, Ai J, Shi C, Liu Y, Shi C, Sun L, Rainov NG, Li H, Yang B, Zhao S: MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J Mol Med (Berl). 2011, 89: 1037-1050. 10.1007/s00109-011-0775-x.
Article
CAS
Google Scholar
Ernst A, Campos B, Meier J, Devens F, Liesenberg F, Wolter M, Reifenberger G, Herold-Mende C, Lichter P, Radlwimmer B: De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioma spheroid cultures. Oncogene. 2010, 29: 3411-3422. 10.1038/onc.2010.83.
Article
CAS
PubMed
Google Scholar
Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C: E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett. 2008, 263: 157-163. 10.1016/j.canlet.2008.02.001.
Article
CAS
PubMed
Google Scholar
Chaussepied M, Ginsberg D: Transcriptional regulation of AKT activation by E2F. Mol Cell. 2004, 16: 831-837. 10.1016/j.molcel.2004.11.003.
Article
CAS
PubMed
Google Scholar
Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D: Protein kinase B (PKB/Akt) activity is elevated in glioma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol. 1998, 8: 1195-1198. 10.1016/S0960-9822(07)00493-9.
Article
CAS
PubMed
Google Scholar
Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A, Inge L, Smith BL, Sawyers CL, Mischel PS: Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioma patients in vivo. Cancer Res. 2003, 63: 2742-2746.
CAS
PubMed
Google Scholar
Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998, 12: 3499-3511. 10.1101/gad.12.22.3499.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nat. 1995, 378: 785-789. 10.1038/378785a0.
Article
CAS
Google Scholar
Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH, Sawyers CL, Lichtenstein AK: AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem. 2004, 279: 2737-2746.
Article
CAS
PubMed
Google Scholar
Johnson DG, Walker CL: Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999, 39: 295-312. 10.1146/annurev.pharmtox.39.1.295.
Article
CAS
PubMed
Google Scholar
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001, 3: 973-982. 10.1038/ncb1101-973.
Article
CAS
PubMed
Google Scholar
LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E: New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997, 11: 847-862. 10.1101/gad.11.7.847.
Article
CAS
PubMed
Google Scholar
Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ: The p21(Cip1) and p27(Kip1) CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999, 18: 1571-1583. 10.1093/emboj/18.6.1571.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999, 13: 1501-1512. 10.1101/gad.13.12.1501.
Article
CAS
PubMed
Google Scholar