Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global Cancer Statistics. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;71(2021):209–49. https://doi.org/10.3322/caac.21660.
Article
Google Scholar
Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85. https://doi.org/10.3322/caac.21565.
Article
Google Scholar
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. https://doi.org/10.3322/caac.21654.
Article
Google Scholar
Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67:378–97. https://doi.org/10.3322/caac.21405.
Article
Google Scholar
Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss. Curr Obes Rep. 2019;8:156–64. https://doi.org/10.1007/s13679-019-00335-3.
Article
Google Scholar
Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10:143–56. https://doi.org/10.1038/nrendo.2013.256.
Article
CAS
Google Scholar
Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang X-M, Zhang D, Camporez J-PG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24:1384–94. https://doi.org/10.1038/s41591-018-0125-4.
Article
CAS
Google Scholar
Agius L, Ford BE, Chachra SS. The metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. Int J Mol Sci. 2020;21:E3240. https://doi.org/10.3390/ijms21093240.
Article
CAS
Google Scholar
Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6. https://doi.org/10.1038/nature13270.
Article
CAS
Google Scholar
Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–29. https://doi.org/10.1038/s41591-018-0222-4.
Article
CAS
Google Scholar
Patterson RE, Marinac CR, Sears DD, Kerr J, Hartman SJ, Cadmus-Bertram L, Villaseñor A, Flatt SW, Godbole S, Li H, Laughlin GA, Oratowski-Coleman J, Parker BA, Natarajan L. The effects of metformin and weight loss on biomarkers associated with breast cancer outcomes. JNCI J Natl Cancer Inst. 2018;110:1239–47. https://doi.org/10.1093/jnci/djy040.
Article
CAS
Google Scholar
Patterson RE, Marinac CR, Natarajan L, Hartman SJ, Cadmus-Bertram L, Flatt SW, Li H, Parker B, Oratowski-Coleman J, Villaseñor A, Godbole S, Kerr J. Recruitment strategies, design, and participant characteristics in a trial of weight-loss and metformin in breast cancer survivors. Contemp Clin Trials. 2016;47:64–71. https://doi.org/10.1016/j.cct.2015.12.009.
Article
Google Scholar
Geijsen AJMR, Brezina S, Keski-Rahkonen P, Baierl A, Bachleitner-Hofmann T, Bergmann MM, Boehm J, Brenner H, Chang-Claude J, van Duijnhoven FJB, Gigic B, Gumpenberger T, Hofer P, Hoffmeister M, Holowatyj AN, Karner-Hanusch J, Kok DE, Leeb G, Ulvik A, Robinot N, Ose J, Stift A, Schrotz-King P, Ulrich AB, Ueland PM, Kampman E, Scalbert A, Habermann N, Gsur A, Ulrich CM. Plasma metabolites associated with colorectal cancer: a discovery-replication strategy. Int J Cancer. 2019;145:1221–31. https://doi.org/10.1002/ijc.32146.
Article
CAS
Google Scholar
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9:432–41. https://doi.org/10.1093/biostatistics/kxm045.
Article
Google Scholar
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucl Acids Res. 2018;46:D608–17. https://doi.org/10.1093/nar/gkx1089.
Article
CAS
Google Scholar
Li L, Li R, Zhou J, Zuniga A, Stanislaus AE, Wu Y, Huan T, Zheng J, Shi Y, Wishart DS, Lin G. MyCompoundID: using an evidence-based metabolome library for metabolite identification. Anal Chem. 2013;85:3401–8. https://doi.org/10.1021/ac400099b.
Article
CAS
Google Scholar
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabol Off J Metabolomic Soc. 2007;3:211–21. https://doi.org/10.1007/s11306-007-0082-2.
Article
CAS
Google Scholar
Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, Lenoir GM, Baglietto L, His M, Boutron-Ruault MC, Trichopoulou A, Lagiou P, Katsoulis M, Kaaks R, Kühn T, Panico S, Pala V, Masala G, Bueno-de-Mesquita HB, Peeters PH, van Gils C, Hjartåker A, Standahl Olsen K, Borgund Barnung R, Barricarte A, Redondo-Sanchez D, Menéndez V, Amiano P, Wennberg M, Key T, Khaw KT, Merritt MA, Riboli E, Gunter MJ, Romieu I. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol Off J Eur Soc Med Oncol. 2017;28:2836–42. https://doi.org/10.1093/annonc/mdx482.
Article
Google Scholar
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58:267–88.
Google Scholar
Wei Y, Jasbi P, Shi X, Turner C, Hrovat J, Liu L, Rabena Y, Porter P, Gu H. Early breast cancer detection using untargeted and targeted metabolomics. J Proteome Res. 2021;20:3124–33. https://doi.org/10.1021/acs.jproteome.1c00019.
Article
CAS
Google Scholar
Zhang L, Han J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun. 2017;486:224–31. https://doi.org/10.1016/j.bbrc.2017.02.101.
Article
CAS
Google Scholar
Safai N, Suvitaival T, Ali A, Spégel P, Al-Majdoub M, Carstensen B, Vestergaard H, Ridderstråle M. CIMT Trial Group, effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. Diabet Med J Br Diabet Assoc. 2018;35:944–53. https://doi.org/10.1111/dme.13636.
Article
CAS
Google Scholar
Ye Z, Wang S, Zhang C, Zhao Y. Coordinated modulation of energy metabolism and inflammation by branched-chain amino acids and fatty acids. Front Endocrinol. 2020;11:617. https://doi.org/10.3389/fendo.2020.00617.
Article
Google Scholar
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11:102. https://doi.org/10.1038/s41467-019-13668-3.
Article
CAS
Google Scholar
Sonnet DS, O’Leary MN, Gutierrez MA, Nguyen SM, Mateen S, Hsu Y, Mitchell KP, Lopez AJ, Vockley J, Kennedy BK, Ramanathan A. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD. Sci Rep. 2016;6:28775. https://doi.org/10.1038/srep28775.
Article
CAS
Google Scholar
Peng H, Wang Y, Luo W. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene. 2020;39:6747–56. https://doi.org/10.1038/s41388-020-01480-z.
Article
CAS
Google Scholar
Xue P, Zeng F, Duan Q, Xiao J, Liu L, Yuan P, Fan L, Sun H, Malyarenko OS, Lu H, Xiu R, Liu S, Shao C, Zhang J, Yan W, Wang Z, Zheng J, Zhu F. BCKDK of BCAA catabolism cross-talking with the MAPK pathway promotes tumorigenesis of colorectal cancer. EBioMedicine. 2017;20:50–60. https://doi.org/10.1016/j.ebiom.2017.05.001.
Article
Google Scholar
Jasbi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu L, Wei Y, Raftery D, Gu H. Breast cancer detection using targeted plasma metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2019;1105:26–37. https://doi.org/10.1016/j.jchromb.2018.11.029.
Article
CAS
Google Scholar
Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt S-M. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267. https://doi.org/10.1038/ncomms15267.
Article
Google Scholar
Ha JR, Siegel PM, Ursini-Siegel J. The tyrosine kinome dictates breast cancer heterogeneity and therapeutic responsiveness. J Cell Biochem. 2016;117:1971–90. https://doi.org/10.1002/jcb.25561.
Article
CAS
Google Scholar
Takahashi H, Isogawa M. Management of breast cancer brain metastases. Chin Clin Oncol. 2018;7:30. https://doi.org/10.21037/cco.2018.05.06.
Article
Google Scholar
Arrieta O, Barrón F, Padilla M-ÁS, Avilés-Salas A, Ramírez-Tirado LA, Arguelles Jiménez MJ, Vergara E, Zatarain-Barrón ZL, Hernández-Pedro N, Cardona AF, Cruz-Rico G, Barrios-Bernal P, Yamamoto Ramos M, Rosell R. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5:e192553. https://doi.org/10.1001/jamaoncol.2019.2553.
Article
Google Scholar
Bendinelli B, Vignoli A, Palli D, Assedi M, Ambrogetti D, Luchinat C, Caini S, Saieva C, Turano P, Masala G. Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density. Sci Rep. 2021;11:13025. https://doi.org/10.1038/s41598-021-92508-1.
Article
CAS
Google Scholar
Breier M, Wahl S, Prehn C, Ferrari U, Sacco V, Weise M, Grallert H, Adamski J, Lechner A. Immediate reduction of serum citrulline but no change of steroid profile after initiation of metformin in individuals with type 2 diabetes. J Steroid Biochem Mol Biol. 2017;174:114–9. https://doi.org/10.1016/j.jsbmb.2017.08.004.
Article
CAS
Google Scholar
van de Poll MCG, Soeters PB, Deutz NEP, Fearon KCH, Dejong CHC. Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr. 2004;79:185–97. https://doi.org/10.1093/ajcn/79.2.185.
Article
Google Scholar
Li LO, Hu Y-F, Wang L, Mitchell M, Berger A, Coleman RA. Early hepatic insulin resistance in mice: a metabolomics analysis. Mol Endocrinol Baltim Md. 2010;24:657–66. https://doi.org/10.1210/me.2009-0152.
Article
CAS
Google Scholar
Davis BJ, Xie Z, Viollet B, Zou M-H. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes. 2006;55:496–505. https://doi.org/10.2337/diabetes.55.02.06.db05-1064.
Article
CAS
Google Scholar
Irving BA, Carter RE, Soop M, Weymiller A, Syed H, Karakelides H, Bhagra S, Short KR, Tatpati L, Barazzoni R, Nair KS. Effect of insulin sensitizer therapy on amino acids and their metabolites. Metabolism. 2015;64:720–8. https://doi.org/10.1016/j.metabol.2015.01.008.
Article
CAS
Google Scholar
Batista MA, Nicoli JR, dos SantosMartins F, Nogueira Machado JA, Esteves Arantes RM, Pacífico Quirino IE, Davisson Correia MIT, Cardoso VN. Pretreatment with citrulline improves gut barrier after intestinal obstruction in mice. J Parenter Enter Nutr. 2012;36:69–76. https://doi.org/10.1177/0148607111414024.
Article
CAS
Google Scholar
Xu T, Brandmaier S, Messias AC, Herder C, Draisma HHM, Demirkan A, Yu Z, Ried JS, Haller T, Heier M, Campillos M, Fobo G, Stark R, Holzapfel C, Adam J, Chi S, Rotter M, Panni T, Quante AS, He Y, Prehn C, Roemisch-Margl W, Kastenmüller G, Willemsen G, Pool R, Kasa K, van Dijk KW, Hankemeier T, Meisinger C, Thorand B, Ruepp A, Hrabé de Angelis M, Li Y, Wichmann H-E, Stratmann B, Strauch K, Metspalu A, Gieger C, Suhre K, Adamski J, Illig T, Rathmann W, Roden M, Peters A, van Duijn CM, Boomsma DI, Meitinger T, Wang-Sattler R. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–67. https://doi.org/10.2337/dc15-0658.
Article
CAS
Google Scholar
Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, Fritsche A, Häring H-U, Hrabě de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48. https://doi.org/10.2337/db12-0495.
Article
CAS
Google Scholar
Kwee LC, Ilkayeva O, Muehlbauer MJ, Bihlmeyer N, Wolfe B, Purnell JQ, Xavier Pi-Sunyer F, Chen H, Bahnson J, Newgard CB, Shah SH, Laferrère B. Metabolites and diabetes remission after weight loss. Nutr Diabetes. 2021;11:10. https://doi.org/10.1038/s41387-021-00151-6.
Article
CAS
Google Scholar
Smith TAD, Phyu SM. Metformin decouples phospholipid metabolism in breast cancer cells. PLoS ONE. 2016;11:e0151179. https://doi.org/10.1371/journal.pone.0151179.
Article
CAS
Google Scholar
Kim E, Liu N-C, Yu I-C, Lin H-Y, Lee Y-F, Sparks JD, Chen L-M, Chang C. Metformin inhibits nuclear receptor TR4-mediated hepatic stearoyl-CoA desaturase 1 gene expression with altered insulin sensitivity. Diabetes. 2011;60:1493–503. https://doi.org/10.2337/db10-0393.
Article
CAS
Google Scholar
Zhao W, Sun L, Li X, Wang J, Zhu Y, Jia Y, Tong Z. SCD5 expression correlates with prognosis and response to neoadjuvant chemotherapy in breast cancer. Sci Rep. 2021;11:8976. https://doi.org/10.1038/s41598-021-88258-9.
Article
CAS
Google Scholar
Miklankova D, Markova I, Hüttl M, Zapletalova I, Poruba M, Malinska H. Metformin affects cardiac arachidonic acid metabolism and cardiac lipid metabolite storage in a prediabetic rat model. Int J Mol Sci. 2021;22:7680. https://doi.org/10.3390/ijms22147680.
Article
CAS
Google Scholar
Gandini S, Puntoni M, Heckman-Stoddard BM, Dunn BK, Ford L, DeCensi A, Szabo E. Metformin and cancer risk and mortality: a systematic review and meta-analysis taking into account biases and confounders. Cancer Prev Res Phila Pa. 2014;7:867–85. https://doi.org/10.1158/1940-6207.CAPR-13-0424.
Article
CAS
Google Scholar
Azrad M, Zhang K, Vollmer RT, Madden J, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner D, Hardy RW, Demark-Wahnefried W. Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism. PLoS ONE. 2012;7:e53104. https://doi.org/10.1371/journal.pone.0053104.
Article
CAS
Google Scholar
Kim W, Deik A, Gonzalez C, Gonzalez ME, Fu F, Ferrari M, Churchhouse CL, Florez JC, Jacobs SBR, Clish CB, Rhee EP. Polyunsaturated fatty acid desaturation is a mechanism for glycolytic NAD+ recycling. Cell Metab. 2019;29:856-870.e7. https://doi.org/10.1016/j.cmet.2018.12.023.
Article
CAS
Google Scholar
Preethika A, Sonkusare S, Suchetha Kumari N. Single nucleotide polymorphism of fatty acid desaturase gene and breast cancer risk in estrogen receptor subtype. Gene. 2022;823:146330. https://doi.org/10.1016/j.gene.2022.146330.
Article
CAS
Google Scholar
McCarty MF, DiNicolantonio JJ. Minimizing membrane arachidonic acid content as a strategy for controlling cancer: a review. Nutr Cancer. 2018;70:840–50. https://doi.org/10.1080/01635581.2018.1470657.
Article
CAS
Google Scholar
Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8. https://doi.org/10.1038/nm.4345.
Article
CAS
Google Scholar
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas. 2017;103:45–53. https://doi.org/10.1016/j.maturitas.2017.06.025.
Article
CAS
Google Scholar
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70:1174–82. https://doi.org/10.1136/gutjnl-2020-323071.
Article
CAS
Google Scholar
Carrillo JA, Christensen M, Ramos SI, Alm C, Dahl ML, Benitez J, Bertilsson L. Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther Drug Monit. 2000;22:409–17. https://doi.org/10.1097/00007691-200008000-00008.
Article
CAS
Google Scholar
Metformin’s Effect on Drug Metabolism in Patients With Type 2 Diabetes—Full Text View—ClinicalTrials.gov, (n.d.). https://clinicaltrials.gov/ct2/show/NCT04504045 (accessed May 12, 2022).
Ayari I, Fedeli U, Saguem S, Hidar S, Khlifi S, Pavanello S. Role of CYP1A2 polymorphisms in breast cancer risk in women. Mol Med Rep. 2013;7:280–6. https://doi.org/10.3892/mmr.2012.1164.
Article
CAS
Google Scholar
Imene A, Maurice AJ, Arij M, Sofia P, Saad S. Breast cancer association with CYP1A2 activity and gene polymorphisms—a preliminary case-control study in Tunisia. Asian Pac J Cancer Prev APJCP. 2015;16:3559–63. https://doi.org/10.7314/apjcp.2015.16.8.3559.
Article
Google Scholar
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev. 2018;19:2057–70. https://doi.org/10.22034/APJCP.2018.19.8.2057.
Article
CAS
Google Scholar
Matzke GR, Frye RF, Early JJ, Straka RJ, Carson SW. Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy. 2000;20:182–90. https://doi.org/10.1592/phco.20.3.182.34775.
Article
CAS
Google Scholar
Urry E, Jetter A, Landolt H-P. Assessment of CYP1A2 enzyme activity in relation to type-2 diabetes and habitual caffeine intake. Nutr Metab. 2016;13:66. https://doi.org/10.1186/s12986-016-0126-6.
Article
CAS
Google Scholar
Kotsopoulos J, Ghadirian P, El-Sohemy A, Lynch HT, Snyder C, Daly M, Domchek S, Randall S, Karlan B, Zhang P, Zhang S, Sun P, Narod SA. The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2007;16:912–6. https://doi.org/10.1158/1055-9965.EPI-06-1074.
Article
CAS
Google Scholar
Westphal C, Konkel A, Schunck W-H. CYP-eicosanoids—a new link between omega-3 fatty acids and cardiac disease? Prostaglandins Other Lipid Mediat. 2011;96:99–108. https://doi.org/10.1016/j.prostaglandins.2011.09.001.
Article
CAS
Google Scholar
Zhang G, Kodani S, Hammock BD. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res. 2014;53:108–23. https://doi.org/10.1016/j.plipres.2013.11.003.
Article
CAS
Google Scholar
He J, Wang C, Zhu Y, Ai D. Soluble epoxide hydrolase: a potential target for metabolic diseases. J Diabetes. 2016;8:305–13. https://doi.org/10.1111/1753-0407.12358.
Article
CAS
Google Scholar
Vinaixa M, Samino S, Saez I, Duran J, Guinovart JJ, Yanes O. A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites. 2012;2:775–95. https://doi.org/10.3390/metabo2040775.
Article
CAS
Google Scholar