Yan K, Gao LN, Cui YL, Zhang Y, Zhou X. The cyclic AMP signaling pathway: exploring targets for successful drug discovery (Review). Mol Med Rep. 2016;13(5):3715–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13(4):290–314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivani P, Usharani D, Jemmis ED, Sastry GN. Subtype selectivity in phosphodiesterase 4 (PDE4): a bottleneck in rational drug design. Curr Pharm Des. 2008;14(36):3854–72.
Article
CAS
PubMed
Google Scholar
Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M. Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol. 2008;39(2):127–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther. 2019;1(197):225–42.
Article
CAS
Google Scholar
Facchinetti F, Civelli M, Singh D, Papi A, Emirova A, Govoni M. Tanimilast, a novel inhaled PDE4 inhibitor for the treatment of asthma and chronic obstructive pulmonary disease. Front Pharmacol. 2021;12:3262.
Article
CAS
Google Scholar
Moretto N, Caruso P, Bosco R, Marchini G, Pastore F, Armani E, et al. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration. J Pharmacol Exp Ther. 2015;352(3):559–67.
Article
PubMed
CAS
Google Scholar
Singh D, Leaker B, Boyce M, Nandeuil MA, Collarini S, Mariotti F, et al. A novel inhaled phosphodiesterase 4 inhibitor (CHF6001) reduces the allergen challenge response in asthmatic patients. Pulm Pharmacol Ther. 2016;40:1–6.
Article
CAS
PubMed
Google Scholar
Singh D, Beeh KM, Colgan B, Kornmann O, Leaker B, Watz H, et al. Effect of the inhaled PDE4 inhibitor CHF6001 on biomarkers of inflammation in COPD. Respir Res. 2019;20(1):180.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh D, Watz H, Beeh KM, Kornmann O, Leaker B, Colgan B, et al. COPD sputum eosinophils: relationship to blood eosinophils and the effect of inhaled PDE4 inhibition. Eur Respir J. 2020. https://doi.org/10.1183/13993003.00237-2020.
Article
PubMed
PubMed Central
Google Scholar
Singh D, Bassi M, Balzano D, Lucci G, Emirova A, Anna Nandeuil M, et al. COPD patients with chronic bronchitis and higher sputum eosinophil counts show increased type-2 and PDE4 gene expression in sputum. J Cell Mol Med. 2021;25(2):905–18.
Article
CAS
PubMed
Google Scholar
Chiesi Farmaceutici S.p.A. A 52-week, randomized, double-blind, double-dummy, placebo- and active- controlled (Roflumilast, Daliresp® 500µg), parallel group, study to evaluate the efficacy and safety of two doses of CHF6001 DPI add-on to maintenance triple therapy in subjects with chronic obstructive pulmonary disease (COPD) and chronic bronchitis. clinicaltrials.gov; 2021. Report No. NCT04636814. https://clinicaltrials.gov/ct2/show/NCT04636814. Accessed 20 Jan 2022.
Chiesi Farmaceutici S.p.A. A 52-week, randomized, double-blind, placebo-controlled, parallel-group, study to evaluate the efficacy and safety of two doses of CHF6001 DPI add-on to maintenance triple therapy in subjects with chronic obstructive pulmonary disease (COPD) and chronic bronchitis. clinicaltrials.gov; 2021. Report No. NCT04636801. https://clinicaltrials.gov/ct2/show/NCT04636801. Accessed 20 Jan 2022.
Govoni M, Bassi M, Vezzoli S, Lucci G, Emirova A, Nandeuil MA, et al. Sputum and blood transcriptomics characterisation of the inhaled PDE4 inhibitor CHF6001 on top of triple therapy in patients with chronic bronchitis. Respir Res. 2020;21(1):72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mariotti F, Govoni M, Lucci G, Santoro D, Nandeuil MA. Safety, tolerability, and pharmacokinetics of single and repeat ascending doses of CHF6001, a novel inhaled phosphodiesterase-4 inhibitor: two randomized trials in healthy volunteers. Int J Chron Obstruct Pulm Dis. 2018;18(13):3399–410.
Article
Google Scholar
Edwards MR, Facchinetti F, Civelli M, Villetti G, Johnston SL. Anti-inflammatory effects of the novel inhaled phosphodiesterase type 4 inhibitor CHF6001 on virus-inducible cytokines. Pharmacol Res Perspect. 2016;4(1): e00202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Villetti G, Carnini C, Battipaglia L, Preynat L, Bolzoni PT, Bassani F, et al. CHF6001 II: a novel phosphodiesterase 4 inhibitor, suitable for topical pulmonary administration—in vivo preclinical pharmacology profile defines a potent anti-inflammatory compound with a wide therapeutic window. J Pharmacol Exp Ther. 2015;352(3):568–78.
Article
PubMed
CAS
Google Scholar
Gianello V, Salvi V, Parola C, Moretto N, Facchinetti F, Civelli M, et al. The PDE4 inhibitor CHF6001 modulates pro-inflammatory cytokines, chemokines and Th1- and Th17-polarizing cytokines in human dendritic cells. Biochem Pharmacol. 2019;1(163):371–80.
Article
CAS
Google Scholar
Skapenko A, Leipe J, Lipsky PE, Schulze-Koops H. The role of the T cell in autoimmune inflammation. Arthritis Res Ther. 2005;7(2):S4.
Article
PubMed
PubMed Central
Google Scholar
Sozzani S, Del Prete A, Bosisio D. Dendritic cell recruitment and activation in autoimmunity. J Autoimmun. 2017;85:126–40.
Article
CAS
PubMed
Google Scholar
Ricci F, Bassi M, McGeough CM, Jellema GL, Govoni M. A novel processing-free method for RNAseq analysis of spontaneous sputum in chronic obstructive pulmonary disease. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.704969.
Article
PubMed
PubMed Central
Google Scholar
Ponce-Gallegos MA, Ramírez-Venegas A, Falfán-Valencia R. Th17 profile in COPD exacerbations. Int J Chron Obstruct Pulmon Dis. 2017;22(12):1857–65.
Article
Google Scholar
Yu Y, Zhao L, Xie Y, Xu Y, Jiao W, Wu J, et al. Th1/Th17 cytokine profiles are associated with disease severity and exacerbation frequency in COPD patients. Int J Chron Obstruct Pulmon Dis. 2020;8(15):1287–99.
Article
Google Scholar
Peters M, Peters K, Bufe A. Regulation of lung immunity by dendritic cells: implications for asthma, chronic obstructive pulmonary disease and infectious disease. Innate Immun. 2019;25(6):326–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SJ, Kim G, Kim N, Chu H, Park BC, Yang JS, et al. Human CD141+ dendritic cells generated from adult peripheral blood monocytes. Cytotherapy. 2019;21(10):1049–63.
Article
CAS
PubMed
Google Scholar
Weiner P, Weiner M, Azgad Y, Zamir D. Inhaled budesonide therapy for patients with stable COPD. Chest. 1995;108(6):1568–71.
Article
CAS
PubMed
Google Scholar
Zhu C, Rao K, Xiong H, Gagnidze K, Li F, Horvath C, et al. Activation of the murine interleukin-12 p40 promoter by functional interactions between NFAT and ICSBP. J Biol Chem. 2003;278(41):39372–82.
Article
PubMed
CAS
Google Scholar
Bles N, Horckmans M, Lefort A, Libert F, Macours P, Housni HE, et al. Gene expression profiling defines ATP as a key regulator of human dendritic cell functions. J Immunol. 2007;179(6):3550–8.
Article
CAS
PubMed
Google Scholar
Bles N, Di Pietrantonio L, Boeynaems JM, Communi D. ATP confers tumorigenic properties to dendritic cells by inducing amphiregulin secretion. Blood. 2010;116(17):3219–26.
Article
CAS
PubMed
Google Scholar
Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Planès R, BenMohamed L, Leghmari K, Delobel P, Izopet J, Bahraoui E. HIV-1 Tat protein induces PD-L1 (B7-H1) expression on dendritic cells through tumor necrosis factor alpha- and toll-like receptor 4-mediated mechanisms. J Virol. 2014;88(12):6672–89.
Article
PubMed
PubMed Central
Google Scholar
Osterholzer JJ, Ames T, Polak T, Sonstein J, Moore BB, Chensue SW, et al. CCR2 and CCR6, but not endothelial selectins, mediate the accumulation of immature dendritic cells within the lungs of mice in response to particulate antigen. J Immunol. 2005;175(2):874–83.
Article
CAS
PubMed
Google Scholar
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018;154(1):3–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu C, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, et al. Human CD141(+) dendritic cells induce CD4(+) T cells to produce type 2 cytokines. J Immunol. 2014;193:6210.
Article
CAS
Google Scholar
Southworth T, Kaur M, Hodgson L, Facchinetti F, Villetti G, Civelli M, et al. Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine. 2019;113:68–73.
Article
CAS
PubMed
Google Scholar
Nguyen HO, Schioppa T, Tiberio L, Facchinetti F, Villetti G, Civelli M, et al. The PDE4 inhibitor tanimilast blunts proinflammatory dendritic cell activation by SARS-CoV-2 ssRNAs. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2021.797390.
Article
PubMed
PubMed Central
Google Scholar
Lloyd CM, Snelgrove RJ. Type 2 immunity: expanding our view. Sci Immunol. 2018;3(25): eaat1604.
Article
PubMed
Google Scholar
Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, Magistris MTD. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol. 2000;30(8):2394–403.
Article
CAS
PubMed
Google Scholar
Gosset P, Bureau F, Angeli V, Pichavant M, Faveeuw C, Tonnel AB, et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J Immunol. 2003;170(10):4943–52.
Article
CAS
PubMed
Google Scholar
Liu J, Guan X, Tamura T, Ozato K, Ma X. Synergistic activation of interleukin-12 p35 gene transcription by interferon regulatory factor-1 and interferon consensus sequence-binding protein. J Biol Chem. 2004;279(53):55609–17.
Article
CAS
PubMed
Google Scholar
Salem S, Salem D, Gros P. Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases. Hum Genet. 2020;139(6–7):707–21.
Article
CAS
PubMed
Google Scholar
Yoshida Y, Yoshimi R, Yoshii H, Kim D, Dey A, Xiong H, et al. The transcription factor IRF8 activates integrin-mediated TGF-β signaling and promotes neuroinflammation. Immunity. 2014;40(2):187–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Yang Y, Chen Y, Li S, Gong Y, Liang Y. The therapeutic effect of dendritic cells expressing indoleamine 2,3-dioxygenase (IDO) on an IgA nephropathy mouse model. Int Urol Nephrol. 2020;52(2):399–407.
Article
CAS
PubMed
Google Scholar
Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002;297(5588):1867–70.
Article
CAS
PubMed
Google Scholar
Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems JM, Communi D. Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood. 2005;106(12):3860–6.
Article
CAS
PubMed
Google Scholar
Dai K, Huang L, Chen J, Yang L, Gong Z. Amphiregulin promotes the immunosuppressive activity of intrahepatic CD4+ regulatory T cells to impair CD8+ T-cell immunity against hepatitis B virus infection. Immunology. 2015;144(3):506–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood. 2003;101(12):4878–86.
Article
CAS
PubMed
Google Scholar
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CGK, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med. 2002;166(10):1332–7.
Article
PubMed
Google Scholar
Zhao Y, Xiong Z, Lechner EJ, Klenotic PA, Hamburg BJ, Hulver M, et al. Thrombospondin-1 triggers macrophage IL-10 production and promotes resolution of experimental lung injury. Mucosal Immunol. 2014;7(2):440–8.
Article
CAS
PubMed
Google Scholar
Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H, Oriss TB, Fei M, Henry AC, Melgert BN, Chen L, et al. Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci USA. 2008;105(18):6690–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanazawa H, Yoshikawa J. Elevated oxidative stress and reciprocal reduction of vascular endothelial growth factor levels with severity of COPD. Chest. 2005;128(5):3191–7.
Article
CAS
PubMed
Google Scholar
Salvi V, Vermi W, Gianello V, Lonardi S, Gagliostro V, Naldini A, et al. Dendritic cell-derived VEGF-A plays a role in inflammatory angiogenesis of human secondary lymphoid organs and is driven by the coordinated activation of multiple transcription factors. Oncotarget. 2016;7(26):39256–69.
Article
PubMed
PubMed Central
Google Scholar
Hammad H, Charbonnier AS, Duez C, Jacquet A, Stewart GA, Tonnel AB, et al. Th2 polarization by Der p 1–pulsed monocyte-derived dendritic cells is due to the allergic status of the donors. Blood. 2001;98(4):1135–41.
Article
CAS
PubMed
Google Scholar
Jirapongsananuruk O, Hofer MF, Trumble AE, Norris DA, Leung DY. Enhanced expression of B7.2 (CD86) in patients with atopic dermatitis: a potential role in the modulation of IgE synthesis. J Immunol. 1998;160(9):4622–7.
CAS
PubMed
Google Scholar
Kuchroo VK, Prabhu Das M, Brown JA, Ranger AM, Zamvil SS, Sobel RA, et al. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995;80(5):707–18.
Article
CAS
PubMed
Google Scholar
Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y, Liang Y, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun. 2020;11(1):4835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cella M, Döhring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med. 1997;185(10):1743–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvi V, Vaira X, Gianello V, Vermi W, Bugatti M, Sozzani S, et al. TLR signalling pathways diverge in their ability to induce PGE2. Mediat Inflamm. 2016;2016:5678046.
Article
CAS
Google Scholar
Vlad G, Chang CC, Colovai AI, Vasilescu ER, Cortesini R, Suciu-Foca N. Membrane and soluble ILT3 are critical to the generation of T suppressor cells and induction of immunological tolerance. Int Rev Immunol. 2010;29(2):119–32.
Article
CAS
PubMed
Google Scholar
Kirshner S, Palmer L, Bodor J, Saji M, Kohn LD, Singer DS. Major histocompatibility class I gene transcription in thyrocytes: a series of interacting regulatory DNA sequence elements mediate thyrotropin/cyclic adenosine 3′,5′-monophosphate repression. Mol Endocrinol. 2000;14(1):82–98.
CAS
PubMed
Google Scholar
Olesch C, Sha W, Angioni C, Sha LK, Açaf E, Patrignani P, et al. MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget. 2015;6(12):10284–96.
Article
PubMed
PubMed Central
Google Scholar
Allen JE, Wynn TA. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLOS Pathog. 2011;7(5): e1002003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oishi K, Matsunaga K, Shirai T, Hirai K, Gon Y. Role of type2 inflammatory biomarkers in chronic obstructive pulmonary disease. J Clin Med. 2020;9(8):2670.
Article
CAS
PubMed Central
Google Scholar
Rennard SI, Calverley PM, Goehring UM, Bredenbröker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast—the importance of defining different subsets of patients with COPD. Respir Res. 2011;12(1):18.
Article
CAS
PubMed
PubMed Central
Google Scholar