Drossman DA, Hasler WL. Rome IV-Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology. 2016;150:1257–61. https://doi.org/10.1053/j.gastro.2016.03.035.
Article
PubMed
Google Scholar
Simren M, Palsson OS, Whitehead WE. Update on Rome IV Criteria for Colorectal Disorders: Implications for Clinical Practice. Curr Gastroenterol Rep. 2017;19:15. https://doi.org/10.1007/s11894-017-0554-0.
Article
PubMed
PubMed Central
Google Scholar
Barbara G, et al. The Intestinal Microenvironment and Functional Gastrointestinal Disorders. Gastroenterology. 2016. https://doi.org/10.1053/j.gastro.2016.02.028.
Article
PubMed
Google Scholar
Mari, A., Abu Baker, F., Mahamid, M., Sbeit, W. & Khoury, T. The Evolving Role of Gut Microbiota in the Management of Irritable Bowel Syndrome: An Overview of the Current Knowledge. J Clin Med 9, doi:https://doi.org/10.3390/jcm9030685 (2020).
Ford AC, Lacy BE, Talley NJ. Irritable Bowel Syndrome. N Engl J Med. 2017;376:2566–78. https://doi.org/10.1056/NEJMra1607547.
Article
CAS
PubMed
Google Scholar
Enck P, et al. Irritable bowel syndrome. Nat Rev Dis Primers. 2016;2:16014. https://doi.org/10.1038/nrdp.2016.14.
Article
PubMed
PubMed Central
Google Scholar
Gibson, P. R., Varney, J., Malakar, S. & Muir, J. G. Food components and irritable bowel syndrome. Gastroenterology 148, 1158–1174 e1154, doi:https://doi.org/10.1053/j.gastro.2015.02.005 (2015).
Moayyedi P, et al. Irritable bowel syndrome diagnosis and management: A simplified algorithm for clinical practice. United European Gastroenterol J. 2017;5:773–88. https://doi.org/10.1177/2050640617731968.
Article
PubMed
PubMed Central
Google Scholar
Lacy BE. Diagnosis and treatment of diarrhea-predominant irritable bowel syndrome. Int J Gen Med. 2016;9:7–17. https://doi.org/10.2147/IJGM.S93698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol 10, 712–721 e714, doi:https://doi.org/10.1016/j.cgh.2012.02.029 (2012).
Hungin AP, Whorwell PJ, Tack J, Mearin F. The prevalence, patterns and impact of irritable bowel syndrome: an international survey of 40,000 subjects. Aliment Pharmacol Ther. 2003;17:643–50. https://doi.org/10.1046/j.1365-2036.2003.01456.x.
Article
CAS
PubMed
Google Scholar
Olafsdottir LB, Gudjonsson H, Jonsdottir HH, Thjodleifsson B. Stability of the irritable bowel syndrome and subgroups as measured by three diagnostic criteria - a 10-year follow-up study. Aliment Pharmacol Ther. 2010;32:670–80. https://doi.org/10.1111/j.1365-2036.2010.04388.x.
Article
CAS
PubMed
Google Scholar
Halder SL, et al. Natural history of functional gastrointestinal disorders: a 12-year longitudinal population-based study. Gastroenterology. 2007;133:799–807. https://doi.org/10.1053/j.gastro.2007.06.010.
Article
PubMed
Google Scholar
Lovell RM, Ford AC. Effect of gender on prevalence of irritable bowel syndrome in the community: systematic review and meta-analysis. Am J Gastroenterol. 2012;107:991–1000. https://doi.org/10.1038/ajg.2012.131.
Article
PubMed
Google Scholar
Frank, L. et al. Health-related quality of life associated with irritable bowel syndrome: comparison with other chronic diseases. Clin Ther 24, 675–689; discussion 674, doi:https://doi.org/10.1016/s0149-2918(02)85143-8 (2002).
Canavan C, West J, Card T. Review article: the economic impact of the irritable bowel syndrome. Aliment Pharmacol Ther. 2014;40:1023–34. https://doi.org/10.1111/apt.12938.
Article
CAS
PubMed
Google Scholar
Bushnell DM, Martin ML, Ricci JF, Bracco A. Performance of the EQ-5D in patients with irritable bowel syndrome. Value Health. 2006;9:90–7. https://doi.org/10.1111/j.1524-4733.2006.00086.x.
Article
PubMed
Google Scholar
Ballou, S. & Keefer, L. The impact of irritable bowel syndrome on daily functioning: Characterizing and understanding daily consequences of IBS. Neurogastroenterol Motil 29, doi:https://doi.org/10.1111/nmo.12982 (2017).
Drossman DA, et al. International survey of patients with IBS: symptom features and their severity, health status, treatments, and risk taking to achieve clinical benefit. J Clin Gastroenterol. 2009;43:541–50. https://doi.org/10.1097/MCG.0b013e318189a7f9.
Article
PubMed
PubMed Central
Google Scholar
Shorey S, Demutska A, Chan V, Siah KTH. Adults living with irritable bowel syndrome (IBS): A qualitative systematic review. J Psychosom Res. 2021;140: 110289. https://doi.org/10.1016/j.jpsychores.2020.110289.
Article
PubMed
Google Scholar
Nellesen D, Yee K, Chawla A, Lewis BE, Carson RT. A systematic review of the economic and humanistic burden of illness in irritable bowel syndrome and chronic constipation. J Manag Care Pharm. 2013;19:755–64. https://doi.org/10.18553/jmcp.2013.19.9.755.
Article
PubMed
Google Scholar
Flacco ME, et al. Costs of irritable bowel syndrome in European countries with universal healthcare coverage: a meta-analysis. Eur Rev Med Pharmacol Sci. 2019;23:2986–3000. https://doi.org/10.26355/eurrev_201904_17580.
Article
CAS
PubMed
Google Scholar
Zhang F, Xiang W, Li CY, Li SC. Economic burden of irritable bowel syndrome in China. World J Gastroenterol. 2016;22:10450–60. https://doi.org/10.3748/wjg.v22.i47.10450.
Article
PubMed
PubMed Central
Google Scholar
Black CJ, Ford AC. Global burden of irritable bowel syndrome: trends, predictions and risk factors. Nat Rev Gastroenterol Hepatol. 2020;17:473–86. https://doi.org/10.1038/s41575-020-0286-8.
Article
PubMed
Google Scholar
Chey WD, Kurlander J, Eswaran S. Irritable bowel syndrome: a clinical review. JAMA. 2015;313:949–58. https://doi.org/10.1001/jama.2015.0954.
Article
CAS
PubMed
Google Scholar
Holtmann GJ, Ford AC, Talley NJ. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol Hepatol. 2016;1:133–46. https://doi.org/10.1016/S2468-1253(16)30023-1.
Article
PubMed
Google Scholar
Saito YA, et al. Familial aggregation of irritable bowel syndrome: a family case-control study. Am J Gastroenterol. 2010;105:833–41. https://doi.org/10.1038/ajg.2010.116.
Article
PubMed
PubMed Central
Google Scholar
Waehrens R, Ohlsson H, Sundquist J, Sundquist K, Zoller B. Risk of irritable bowel syndrome in first-degree, second-degree and third-degree relatives of affected individuals: a nationwide family study in Sweden. Gut. 2015;64:215–21. https://doi.org/10.1136/gutjnl-2013-305705.
Article
PubMed
Google Scholar
Bengtson MB, Ronning T, Vatn MH, Harris JR. Irritable bowel syndrome in twins: genes and environment. Gut. 2006;55:1754–9. https://doi.org/10.1136/gut.2006.097287.
Article
PubMed
PubMed Central
Google Scholar
Eijsbouts C, et al. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat Genet. 2021;53:1543–52. https://doi.org/10.1038/s41588-021-00950-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin DC, et al. Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome. World J Gastroenterol. 2016;22:8137–48. https://doi.org/10.3748/wjg.v22.i36.8137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Zheng G, Hu Z. Association between SERT insertion/deletion polymorphism and the risk of irritable bowel syndrome: A meta-analysis based on 7039 subjects. Gene. 2018;679:133–7. https://doi.org/10.1016/j.gene.2018.08.059.
Article
CAS
PubMed
Google Scholar
Bonfiglio F, et al. Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology. 2018;155:168–79. https://doi.org/10.1053/j.gastro.2018.03.064.
Article
CAS
PubMed
Google Scholar
Komuro H, et al. Corticotropin-Releasing Hormone Receptor 2 Gene Variants in Irritable Bowel Syndrome. PLoS ONE. 2016;11: e0147817. https://doi.org/10.1371/journal.pone.0147817.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato N, et al. Corticotropin-releasing hormone receptor 1 gene variants in irritable bowel syndrome. PLoS ONE. 2012;7: e42450. https://doi.org/10.1371/journal.pone.0042450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwille-Kiuntke J, Mazurak N, Enck P. Systematic review with meta-analysis: post-infectious irritable bowel syndrome after travellers’ diarrhoea. Aliment Pharmacol Ther. 2015;41:1029–37. https://doi.org/10.1111/apt.13199.
Article
CAS
PubMed
Google Scholar
Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology. 2009;136:1979–88. https://doi.org/10.1053/j.gastro.2009.02.074.
Article
PubMed
Google Scholar
Wadhwa A, et al. High risk of post-infectious irritable bowel syndrome in patients with Clostridium difficile infection. Aliment Pharmacol Ther. 2016;44:576–82. https://doi.org/10.1111/apt.13737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghoshal UC, Rahman MM. Post-infection irritable bowel syndrome in the tropical and subtropical regions: Vibrio cholerae is a new cause of this well-known condition. Indian J Gastroenterol. 2019;38:87–94. https://doi.org/10.1007/s12664-019-00959-2.
Article
PubMed
Google Scholar
Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: The incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:535–44. https://doi.org/10.1111/j.1365-2036.2007.03399.x.
Article
CAS
PubMed
Google Scholar
Francis CY, Whorwell PJ. Bran and irritable bowel syndrome: time for reappraisal. Lancet. 1994;344:39–40. https://doi.org/10.1016/s0140-6736(94)91055-3.
Article
CAS
PubMed
Google Scholar
Shepherd SJ, Parker FC, Muir JG, Gibson PR. Dietary triggers of abdominal symptoms in patients with irritable bowel syndrome: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol. 2008;6:765–71. https://doi.org/10.1016/j.cgh.2008.02.058.
Article
CAS
PubMed
Google Scholar
Elli L, et al. Evidence for the Presence of Non-Celiac Gluten Sensitivity in Patients with Functional Gastrointestinal Symptoms: Results from a Multicenter Randomized Double-Blind Placebo-Controlled Gluten Challenge. Nutrients. 2016;8:84. https://doi.org/10.3390/nu8020084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin, A. et al. Bowel functions, fecal unconjugated primary and secondary bile acids, and colonic transit in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol 11, 1270–1275 e1271, doi:https://doi.org/10.1016/j.cgh.2013.04.020 (2013).
Parthasarathy, G. et al. Relationship Between Microbiota of the Colonic Mucosa vs Feces and Symptoms, Colonic Transit, and Methane Production in Female Patients With Chronic Constipation. Gastroenterology 150, 367–379 e361, doi:https://doi.org/10.1053/j.gastro.2015.10.005 (2016).
Kassinen A, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133:24–33. https://doi.org/10.1053/j.gastro.2007.04.005.
Article
CAS
PubMed
Google Scholar
Zhuang X, Xiong L, Li L, Li M, Chen M. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis. J Gastroenterol Hepatol. 2017;32:28–38. https://doi.org/10.1111/jgh.13471.
Article
PubMed
Google Scholar
Carroll IM, Chang YH, Park J, Sartor RB, Ringel Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2010;2:19. https://doi.org/10.1186/1757-4749-2-19.
Article
PubMed
PubMed Central
Google Scholar
Kerckhoffs AP, et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol. 2009;15:2887–92. https://doi.org/10.3748/wjg.15.2887.
Article
PubMed
PubMed Central
Google Scholar
Rajilic-Stojanovic M, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141:1792–801. https://doi.org/10.1053/j.gastro.2011.07.043.
Article
CAS
PubMed
Google Scholar
Malinen E, et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol. 2005;100:373–82. https://doi.org/10.1111/j.1572-0241.2005.40312.x.
Article
CAS
PubMed
Google Scholar
Pittayanon R, et al. Gut Microbiota in Patients With Irritable Bowel Syndrome-A Systematic Review. Gastroenterology. 2019;157:97–108. https://doi.org/10.1053/j.gastro.2019.03.049.
Article
PubMed
Google Scholar
Jalanka-Tuovinen J, et al. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014;63:1737–45. https://doi.org/10.1136/gutjnl-2013-305994.
Article
PubMed
Google Scholar
Jeffery IB, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61:997–1006. https://doi.org/10.1136/gutjnl-2011-301501.
Article
PubMed
Google Scholar
Tap, J. et al. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology 152, 111–123 e118, doi:https://doi.org/10.1053/j.gastro.2016.09.049 (2017).
Quigley EMM. Gut microbiome as a clinical tool in gastrointestinal disease management: are we there yet? Nat Rev Gastroenterol Hepatol. 2017;14:315–20. https://doi.org/10.1038/nrgastro.2017.29.
Article
PubMed
Google Scholar
Xu D, et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2019;114:1043–50. https://doi.org/10.14309/ajg.0000000000000198.
Article
PubMed
PubMed Central
Google Scholar
Ford, A. C. et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol 109, 1547–1561; quiz 1546, 1562, doi:https://doi.org/10.1038/ajg.2014.202 (2014).
Crouzet L, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil. 2013;25:e272-282. https://doi.org/10.1111/nmo.12103.
Article
CAS
PubMed
Google Scholar
Pimentel M, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. New Engl J Med. 2011;364:22–32. https://doi.org/10.1056/NEJMoa1004409.
Article
CAS
PubMed
Google Scholar
Klem F, et al. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis. Gastroenterology. 2017;152:1042. https://doi.org/10.1053/j.gastro.2016.12.039.
Article
PubMed
Google Scholar
Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. A Diet Low in FODMAPs Reduces Symptoms of Irritable Bowel Syndrome. Gastroenterology. 2014;146:67. https://doi.org/10.1053/j.gastro.2013.09.046.
Article
CAS
PubMed
Google Scholar
Staudacher HM, et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr. 2012;142:1510–8. https://doi.org/10.3945/jn.112.159285.
Article
CAS
PubMed
Google Scholar
Bohn L, et al. Diet Low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterology. 2015;149:1399. https://doi.org/10.1053/j.gastro.2015.07.054.
Article
CAS
PubMed
Google Scholar
Gibson PR, Varney J, Malakar S, Muir JG. Food components and irritable bowel syndrome. Gastroenterology. 2015;148:1158-U1111. https://doi.org/10.1053/j.gastro.2015.02.005.
Article
PubMed
Google Scholar
Altomare A, et al. Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients. 2021. https://doi.org/10.3390/nu13051506.
Article
PubMed
PubMed Central
Google Scholar
Linsalata M, et al. The Relationship between Low Serum Vitamin D Levels and Altered Intestinal Barrier Function in Patients with IBS Diarrhoea Undergoing a Long-Term Low-FODMAP Diet: Novel Observations from a Clinical Trial. Nutrients. 2021. https://doi.org/10.3390/nu13031011.
Article
PubMed
PubMed Central
Google Scholar
Xu DB, et al. Efficacy of Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. American Journal of Gastroenterology. 2019;114:1043–50. https://doi.org/10.14309/ajg.0000000000000198.
Article
PubMed
Google Scholar
Ianiro G, et al. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharm Ther. 2019;50:240–8. https://doi.org/10.1111/apt.15330.
Article
Google Scholar
Goodrich JK, et al. Human Genetics Shape the Gut Microbiome. Cell. 2014;159:789–99. https://doi.org/10.1016/j.cell.2014.09.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothschild D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210. https://doi.org/10.1038/nature25973.
Article
CAS
PubMed
Google Scholar
Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222. https://doi.org/10.1038/nature11053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claesson MJ, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178. https://doi.org/10.1038/nature11319.
Article
CAS
PubMed
Google Scholar
David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559. https://doi.org/10.1038/nature12820.
Article
CAS
PubMed
Google Scholar
Zeevi D, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–94. https://doi.org/10.1016/j.cell.2015.11.001.
Article
CAS
PubMed
Google Scholar
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36. https://doi.org/10.1038/nature10213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastro Hepat. 2019;16:35–56. https://doi.org/10.1038/s41575-018-0061-2.
Article
CAS
Google Scholar
Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8. https://doi.org/10.1126/science.1208344.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107:14691–6. https://doi.org/10.1073/pnas.1005963107.
Article
PubMed
PubMed Central
Google Scholar
Hansen LBS, et al. A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat Commun. 2018;9:4630. https://doi.org/10.1038/s41467-018-07019-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker AW, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. Isme J. 2011;5:220–30. https://doi.org/10.1038/Ismej.2010.118.
Article
CAS
PubMed
Google Scholar
Tap J, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17:4954–64. https://doi.org/10.1111/1462-2920.13006.
Article
CAS
PubMed
Google Scholar
Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant Starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE. 2010;5:e15046. https://doi.org/10.1371/journal.pone.0015046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis LMG, Martinez I, Walter J, Goin C, Hutkins RW. Barcoded Pyrosequencing Reveals That Consumption of Galactooligosaccharides Results in a Highly Specific Bifidogenic Response in Humans. PLoS ONE. 2011;6:e25200. https://doi.org/10.1371/journal.pone.0025200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swiatecka D, Narbad A, Ridgway KP, Kostyra H. The study on the impact of glycated pea proteins on human intestinal bacteria (vol 145, pg 267, 2011). Int J Food Microbiol. 2011;151:340–340. https://doi.org/10.1016/j.ijfoodmicro.2011.08.017.
Article
Google Scholar
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–92. https://doi.org/10.1016/j.cell.2018.05.015.
Article
CAS
PubMed
Google Scholar
Cammarota G, et al. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat Rev Gastro Hepat. 2020;17:635–48. https://doi.org/10.1038/s41575-020-0327-3.
Article
Google Scholar
James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning with applications in r introduction. Springer Texts Stat. 2013;103:1–14. https://doi.org/10.1007/978-1-4614-7138-7_1.
Article
Google Scholar
Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare J. 2019;6:94–8. https://doi.org/10.7861/futurehosp.6-2-94.
Article
Google Scholar
Peterson J, et al. The NIH Human Microbiome Project. Genome Res. 2009;19:2317–23. https://doi.org/10.1101/gr.096651.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. Plos Comput Biol. 2016;12: e1004977. https://doi.org/10.1371/journal.pcbi.1004977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korem T, et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 2017;25:1243. https://doi.org/10.1016/j.cmet.2017.05.002.
Article
CAS
PubMed
Google Scholar
Stokes JM, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180:688. https://doi.org/10.1016/j.cell.2020.01.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shoaie S, et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 2015;22:320–31. https://doi.org/10.1016/j.cmet.2015.07.001.
Article
CAS
PubMed
Google Scholar
Bauer E, Thiele I. From metagenomic data to personalized in silico microbiotas: predicting dietary supplements for Crohn’s disease. Npj Syst Biol Appl. 2018;4:27. https://doi.org/10.1038/s41540-018-0063-2.
Article
PubMed
PubMed Central
Google Scholar
Gazouli M, et al. Lessons learned–resolving the enigma of genetic factors in IBS. Nat Rev Gastroenterol Hepatol. 2016;13:77–87. https://doi.org/10.1038/nrgastro.2015.206.
Article
CAS
PubMed
Google Scholar
Moayyedi P, Simren M, Bercik P. Evidence-based and mechanistic insights into exclusion diets for IBS. Nat Rev Gastro Hepat. 2020;17:406–13. https://doi.org/10.1038/s41575-020-0270-3.
Article
CAS
Google Scholar
Luthra P, et al. Efficacy of drugs in chronic idiopathic constipation: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2019;4:831–44. https://doi.org/10.1016/S2468-1253(19)30246-8.
Article
PubMed
Google Scholar
Black CJ, Burr NE, Ford AC. Relative efficacy of tegaserod in a systematic review and network meta-analysis of licensed therapies for irritable bowel syndrome with constipation. Clin Gastroenterol Hepatol. 2020;18:1238–9. https://doi.org/10.1016/j.cgh.2019.07.007.
Article
PubMed
Google Scholar
Chey WD, Lembo AJ, Rosenbaum DP. Efficacy of tenapanor in treating patients with irritable bowel syndrome with constipation: a 12-week, placebo-controlled phase 3 trial (T3MPO-1). Am J Gastroenterol. 2020;115:281–93. https://doi.org/10.14309/ajg.0000000000000516.
Article
PubMed
PubMed Central
Google Scholar
Nakajima A, et al. Safety and efficacy of elobixibat for chronic constipation: results from a randomised, double-blind, placebo-controlled, phase 3 trial and an open-label, single-arm, phase 3 trial. Lancet Gastroenterol Hepatol. 2018;3:537–47. https://doi.org/10.1016/S2468-1253(18)30123-7.
Article
PubMed
Google Scholar
Brenner DM, et al. Efficacy, safety, and tolerability of plecanatide in patients with irritable bowel syndrome with constipation: results of two phase 3 randomized clinical trials. Am J Gastroenterol. 2018;113:735–45. https://doi.org/10.1038/s41395-018-0026-7.
Article
CAS
PubMed
Google Scholar
Barish CF, Griffin P. Safety and tolerability of plecanatide in patients with chronic idiopathic constipation: long-term evidence from an open-label study. Curr Med Res Opin. 2018;34:751–5. https://doi.org/10.1080/03007995.2018.1430024.
Article
CAS
PubMed
Google Scholar
Chapman RW, Stanghellini V, Geraint M, Halphen M. Randomized clinical trial: macrogol/PEG 3350 plus electrolytes for treatment of patients with constipation associated with irritable bowel syndrome. Am J Gastroenterol. 2013;108:1508–15. https://doi.org/10.1038/ajg.2013.197.
Article
CAS
PubMed
Google Scholar
Chey WD, et al. Safety and patient outcomes with lubiprostone for up to 52 weeks in patients with irritable bowel syndrome with constipation. Aliment Pharmacol Ther. 2012;35:587–99. https://doi.org/10.1111/j.1365-2036.2011.04983.x.
Article
CAS
PubMed
Google Scholar
Vijayvargiya P, et al. Effects of colesevelam on bowel symptoms, biomarkers, and colonic mucosal gene expression in patients with bile acid diarrhea in a randomized trial. Clin Gastroenterol Hepatol. 2020;18:2962–70. https://doi.org/10.1016/j.cgh.2020.02.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajor A, Tornblom H, Rudling M, Ung KA, Simren M. Increased colonic bile acid exposure: a relevant factor for symptoms and treatment in IBS. Gut. 2015;64:84–92. https://doi.org/10.1136/gutjnl-2013-305965.
Article
CAS
PubMed
Google Scholar
Black CJ, et al. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis. Gut. 2020;69:74–82. https://doi.org/10.1136/gutjnl-2018-318160.
Article
CAS
PubMed
Google Scholar
Andresen V, et al. Effects of 5-hydroxytryptamine (serotonin) type 3 antagonists on symptom relief and constipation in nonconstipated irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials. Clin Gastroenterol Hepatol. 2008;6:545–55. https://doi.org/10.1016/j.cgh.2007.12.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menees SB, Maneerattannaporn M, Kim HM, Chey WD. The efficacy and safety of rifaximin for the irritable bowel syndrome: a systematic review and meta-analysis. Am J Gastroenterol. 2012;107:28–35. https://doi.org/10.1038/ajg.2011.355.
Article
CAS
PubMed
Google Scholar
Black CJ, et al. Efficacy of soluble fibre, antispasmodic drugs, and gut-brain neuromodulators in irritable bowel syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol. 2020;5:117–31. https://doi.org/10.1016/S2468-1253(19)30324-3.
Article
PubMed
Google Scholar
Khanna R, MacDonald JK, Levesque BG. Peppermint oil for the treatment of irritable bowel syndrome: a systematic review and meta-analysis. J Clin Gastroenterol. 2014;48:505–12. https://doi.org/10.1097/MCG.0b013e3182a88357.
Article
PubMed
Google Scholar
Ford AC, et al. Effect of antidepressants and psychological therapies, including hypnotherapy, in irritable bowel syndrome: systematic review and meta-analysis. Am J Gastroenterol. 2014;109:1350–65. https://doi.org/10.1038/ajg.2014.148.
Article
CAS
PubMed
Google Scholar
Quartero AO, Meineche-Schmidt V, Muris J, Rubin G, de Wit N. Bulking agents, antispasmodic and antidepressant medication for the treatment of irritable bowel syndrome. Cochrane Database Syst Rev. 2005;1:CD003460. https://doi.org/10.1002/14651858.CD003460.pub2.
Article
Google Scholar
Ford AC, et al. Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ. 2008;337: a2313. https://doi.org/10.1136/bmj.a2313.
Article
PubMed
PubMed Central
Google Scholar