Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics. CA Cancer J Clin. 2021;71(2021):7–33. https://doi.org/10.3322/caac.21654.
Article
Google Scholar
Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. https://doi.org/10.1038/nrdp.2016.61.
Article
PubMed
PubMed Central
Google Scholar
Blagden S, Abdel Mouti M, Chettle J. Ancient and modern: hints of a core post-transcriptional network driving chemotherapy resistance in ovarian cancer. Wiley Interdiscip Rev RNA. 2018. https://doi.org/10.1002/wrna.1432.
Article
PubMed
Google Scholar
Narod S. Can advanced-stage ovarian cancer be cured? Nat Rev Clin Oncol. 2016;13:255–61. https://doi.org/10.1038/nrclinonc.2015.224.
Article
CAS
PubMed
Google Scholar
Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384:1376–88. https://doi.org/10.1016/S0140-6736(13)62146-7.
Article
PubMed
Google Scholar
Mohibi S, Chen X, Zhang J. Cancer the’RBP’eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther. 2019;203:107390. https://doi.org/10.1016/j.pharmthera.2019.07.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Busa R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene. 2007;26:4372–82. https://doi.org/10.1038/sj.onc.1210224.
Article
CAS
PubMed
Google Scholar
Yang G, Fu H, Zhang J, Lu X, Yu F, Jin L, Bai L, Huang B, Shen L, Feng Y, Yao L, Lu Z. RNA-binding protein quaking, a critical regulator of colon epithelial differentiation and a suppressor of colon cancer. Gastroenterology. 2010;138(231–240):e231-235. https://doi.org/10.1053/j.gastro.2009.08.001.
Article
CAS
Google Scholar
Janiszewska M, Suva ML, Riggi N, Houtkooper RH, Auwerx J, Clement-Schatlo V, Radovanovic I, Rheinbay E, Provero P, Stamenkovic I. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 2012;26:1926–44. https://doi.org/10.1101/gad.188292.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo Q, Wu Y, Guo X, Cao L, Xu F, Zhao H, Zhu J, Wen H, Ju X, Wu X. The RNA-Binding Protein CELF2 Inhibits Ovarian Cancer Progression by Stabilizing FAM198B. Mol Ther Nucleic Acids. 2021;23:169–84. https://doi.org/10.1016/j.omtn.2020.10.011.
Article
CAS
PubMed
Google Scholar
Sternburg EL, Karginov FV. Global approaches in studying rna-binding protein interaction networks. Trends Biochem Sci. 2020;45:593–603. https://doi.org/10.1016/j.tibs.2020.03.005.
Article
CAS
PubMed
Google Scholar
Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: old players and new actors, trends. Cancer. 2017;3:506–28. https://doi.org/10.1016/j.trecan.2017.05.003.
Article
CAS
Google Scholar
Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L, Sun J. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer. Oncotarget. 2016;7:12598–611. https://doi.org/10.18632/oncotarget.7181.
Article
PubMed
PubMed Central
Google Scholar
Sebestyen E, Singh B, Minana B, Pages A, Mateo F, Pujana MA, Valcarcel J, Eyras E. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res. 2016;26:732–44. https://doi.org/10.1101/gr.199935.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai Y, Qiu GR, Zhou F, Gong LY, Gao F, Sun KL. Overexpression of DICER1 induced by the upregulation of GATA1 contributes to the proliferation and apoptosis of leukemia cells. Int J Oncol. 2013;42:1317–24. https://doi.org/10.3892/ijo.2013.1831.
Article
CAS
PubMed
Google Scholar
Abdelmohsen K, Tominaga-Yamanaka K, Srikantan S, Yoon JH, Kang MJ, Gorospe M. RNA-binding protein AUF1 represses Dicer expression. Nucleic Acids Res. 2012;40:11531–44. https://doi.org/10.1093/nar/gks930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149:1393–406. https://doi.org/10.1016/j.cell.2012.04.031.
Article
CAS
PubMed
Google Scholar
He Q, Zhao L, Liu X, Zheng J, Liu Y, Liu L, Ma J, Cai H, Li Z, Xue Y. MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change. J Exp Clin Cancer Res. 2019;38:9. https://doi.org/10.1186/s13046-018-0990-1.
Article
PubMed
PubMed Central
Google Scholar
Selvanathan SP, Graham GT, Erkizan HV, Dirksen U, Natarajan TG, Dakic A, Yu S, Liu X, Paulsen MT, Ljungman ME, Wu CH, Lawlor ER, Uren A, Toretsky JA. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc Natl Acad Sci U S A. 2015;112:E1307-1316. https://doi.org/10.1073/pnas.1500536112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, Dospoy PD, Augustyn A. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest. 2016;126:3219–35.
Article
Google Scholar
Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, Brunton VG, Pilarsky C, Winkler TH, Brabletz S, Stemmler MP, Brabletz T. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cel Biol. 2017;19:518–29. https://doi.org/10.1038/ncb3513.
Article
CAS
Google Scholar
Zhang J, Cho SJ, Shu L, Yan W, Guerrero T, Kent M, Skorupski K, Chen H, Chen X. Translational repression of p53 by RNPC1, a p53 target overexpressed in lymphomas. Genes Dev. 2011;25:1528–43. https://doi.org/10.1101/gad.2069311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Jun S, Chen X. RNPC1, an RNA-binding protein and a target of the p53 family, regulates p63 expression through mRNA stability. Proc Natl Acad Sci USA. 2010;107:9614–9. https://doi.org/10.1073/pnas.0912594107.
Article
PubMed
PubMed Central
Google Scholar
Abdelmohsen K, Kim MM, Srikantan S, Mercken EM, Brennan SE, Wilson GM, Cabo R, Gorospe M. miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle. 2010;9:1354–9. https://doi.org/10.4161/cc.9.7.11164.
Article
CAS
PubMed
Google Scholar
Gao J, Dai C, Yu X, Yin XB, Zhou F. Long noncoding RNA LEF1-AS1 acts as a microRNA-10a-5p regulator to enhance MSI1 expression and promote chemoresistance in hepatocellular carcinoma cells through activating AKT signaling pathway. J Cell Biochem. 2021;122:86–99. https://doi.org/10.1002/jcb.29833.
Article
CAS
PubMed
Google Scholar
Yang LY, Song GL, Zhai XQ, Wang L, Liu QL, Zhou MS. MicroRNA-331 inhibits development of gastric cancer through targeting musashi1, World J Gastrointest. Oncol. 2019;11:705–16. https://doi.org/10.4251/wjgo.v11.i9.705.
Article
Google Scholar
Brown AS, Mohanty BK, Howe PH. Identification and characterization of an hnRNP E1 translational silencing motif. Nucleic Acids Res. 2016;44:5892–907. https://doi.org/10.1093/nar/gkw241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol. 2010;12:286–93. https://doi.org/10.1038/ncb2029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babic I, Jakymiw A, Fujita DJ. The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene. 2004;23:3781–9. https://doi.org/10.1038/sj.onc.1207484.
Article
CAS
PubMed
Google Scholar
Neelamraju Y, Hashemikhabir S, Janga SC. The human RBPome: from genes and proteins to human disease. J Proteomics. 2015;127:61–70. https://doi.org/10.1016/j.jprot.2015.04.031.
Article
CAS
PubMed
Google Scholar
Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15:829–45. https://doi.org/10.1038/nrg3813.
Article
CAS
PubMed
Google Scholar
Lunde BM, Moore C, Varani G. RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol. 2007;8:479–90. https://doi.org/10.1038/nrm2178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–49. https://doi.org/10.1146/annurev-biochem-060208-105251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore S, Jarvelin AI, Davis I, Bond GL, Castello A. Expanding horizons: new roles for non-canonical RNA-binding proteins in cancer. Curr Opin Genet Dev. 2018;48:112–20. https://doi.org/10.1016/j.gde.2017.11.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang D, Lee Y, Lee JS. RNA-binding proteins in cancer: functional and therapeutic perspectives. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12092699.
Article
PubMed Central
Google Scholar
Corley M, Burns MC, Yeo GW. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol Cell. 2020;78:9–29. https://doi.org/10.1016/j.molcel.2020.03.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17:19–32. https://doi.org/10.1038/nrg.2015.3.
Article
CAS
PubMed
Google Scholar
Baralle FE, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;18:437–51. https://doi.org/10.1038/nrm.2017.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med. 2012;18:472–82. https://doi.org/10.1016/j.molmed.2012.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anko ML. Regulation of gene expression programmes by serine-arginine rich splicing factors. Semin Cell Dev Biol. 2014;32:11–21. https://doi.org/10.1016/j.semcdb.2014.03.011.
Article
CAS
PubMed
Google Scholar
Muller-McNicoll M, Botti V, de JesusDomingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 2016;30:553–66. https://doi.org/10.1101/gad.276477.115.
Article
PubMed
PubMed Central
Google Scholar
Ortiz-Zapater E, Pineda D, Martinez-Bosch N, Fernandez-Miranda G, Iglesias M, Alameda F, Moreno M, Eliscovich C, Eyras E, Real FX, Mendez R, Navarro P. Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med. 2011;18:83–90. https://doi.org/10.1038/nm.2540.
Article
CAS
PubMed
Google Scholar
Lazzaretti D, Bono F. mRNA localization in metazoans: A structural perspective. RNA Biol. 2017;14:1473–84. https://doi.org/10.1080/15476286.2017.1338231.
Article
PubMed
PubMed Central
Google Scholar
Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, Richter JD. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893–901. https://doi.org/10.1038/onc.2015.350.
Article
CAS
PubMed
Google Scholar
Nagaoka K, Udagawa T, Richter JD. CPEB-mediated ZO-1 mRNA localization is required for epithelial tight-junction assembly and cell polarity. Nat Commun. 2012;3:675. https://doi.org/10.1038/ncomms1678.
Article
CAS
PubMed
Google Scholar
Chai Y, Liu J, Zhang Z, Liu L. HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med. 2016;5:1588–98. https://doi.org/10.1002/cam4.710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci. 2013;14:10015–41. https://doi.org/10.3390/ijms140510015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuma T, Nakagawa T, Ido K, Takeuchi H, Sato K, Kubota T. Expression of vascular endothelial growth factor-A and mRNA stability factor HuR in human meningiomas. J Neurooncol. 2008;88:143–55. https://doi.org/10.1007/s11060-008-9559-8.
Article
CAS
PubMed
Google Scholar
Mayr C. Regulation by 3’-Untranslated Regions. Annu Rev Genet. 2017;51:171–94. https://doi.org/10.1146/annurev-genet-120116-024704.
Article
CAS
PubMed
Google Scholar
Lal A, Mazan-Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J. 2004;23:3092–102. https://doi.org/10.1038/sj.emboj.7600305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kessler SM, Lederer E, Laggai S, Golob-Schwarzl N, Hosseini K, Petzold J, Schweiger C, Reihs R, Keil M, Hoffmann J, Mayr C, Kiesslich T, Pichler M, Kim KS, Rhee H, Park YN, Lax S, Obrist P, Kiemer AK, Haybaeck J. IMP2/IGF2BP2 expression, but not IMP1 and IMP3, predicts poor outcome in patients and high tumor growth rate in xenograft models of gallbladder cancer. Oncotarget. 2017;8:89736–45. https://doi.org/10.18632/oncotarget.21116.
Article
PubMed
PubMed Central
Google Scholar
Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 2013;70:2657–75. https://doi.org/10.1007/s00018-012-1186-z.
Article
CAS
PubMed
Google Scholar
Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 2009;11:257–68. https://doi.org/10.1038/ncb1833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobel M, Weidensdorfer D, Reinke C, Lederer M, Schmitt WD, Zeng K, Thomssen C, Hauptmann S, Huttelmaier S. Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma. Oncogene. 2007;26:7584–9. https://doi.org/10.1038/sj.onc.1210563.
Article
CAS
PubMed
Google Scholar
Liao S, Sun H, Xu C, Domain YTH. A Family of N(6)-methyladenosine (m(6)A) Readers. Genomics Proteomics Bioinformatics. 2018;16:99–107. https://doi.org/10.1016/j.gpb.2018.04.002.
Article
PubMed
PubMed Central
Google Scholar
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, Xiao H, Li L, Rao S, Wang F, Yu J, Yu J, Zou D, Yi P. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31. https://doi.org/10.1093/nar/gkaa048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11:792–804. https://doi.org/10.1038/nrc3139.
Article
CAS
PubMed
Google Scholar
Xu F, Li J, Ni M, Cheng J, Zhao H, Wang S, Zhou X, Wu X. FBW7 suppresses ovarian cancer development by targeting the N(6)-methyladenosine binding protein YTHDF2. Mol Cancer. 2021;20:45. https://doi.org/10.1186/s12943-021-01340-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I, Reich R, Davidson B. Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer. 2005;103:1631–43. https://doi.org/10.1002/cncr.20946.
Article
CAS
PubMed
Google Scholar
Prislei S, Martinelli E, Zannoni GF, Petrillo M, Filippetti F, Mariani M, Mozzetti S, Raspaglio G, Scambia G, Ferlini C. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer. Oncotarget. 2015;6:18966–79. https://doi.org/10.18632/oncotarget.3943.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Katayama A, Terami T, Han X, Nunoue T, Zhang D, Teshigawara S, Eguchi J, Nakatsuka A, Murakami K, Ogawa D, Furuta Y, Makino H, Wada J. Translocase of inner mitochondrial membrane 44 alters the mitochondrial fusion and fission dynamics and protects from type 2 diabetes. Metabolism. 2015;64:677–88. https://doi.org/10.1016/j.metabol.2015.02.004.
Article
CAS
PubMed
Google Scholar
Yu X, Li Y, Ding Y, Zhang H, Ding N, Lu M. HuR promotes ovarian cancer cell proliferation by regulating TIMM44 mRNA Stability. Cell Biochem Biophys. 2020;78:447–53. https://doi.org/10.1007/s12013-020-00939-w.
Article
CAS
PubMed
Google Scholar
Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer. 2009;9:785–97. https://doi.org/10.1038/nrc2696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang M, Xu Y, Zhang Y, Li B, Lou G. Circular RNA circE2F2 promotes malignant progression of ovarian cancer cells by upregulating the expression of E2F2 protein via binding to HuR protein. Cell Signal. 2021;84: 110014. https://doi.org/10.1016/j.cellsig.2021.110014.
Article
CAS
PubMed
Google Scholar
Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, Healy D, Hoang HD, Jensen JM, Diao IT, Lussier A, Dajadian C, Padmanabhan N, Wang W, Matta-Camacho E, Hearnden J, Smith EM, Tsukumo Y, Yanagiya A, Morita M, Petroulakis E, Gonzalez JL, Hernandez G, Alain T, Damgaard CK. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290:15996–6020. https://doi.org/10.1074/jbc.M114.621730.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, Mauri F, Jameson C, Sturge J, Gabra H, Bushell M, Willis AE, Curry E, Blagden SP. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene. 2015;34:5025–36. https://doi.org/10.1038/onc.2014.428.
Article
CAS
PubMed
Google Scholar
Hopkins TG, Mura M, Al-Ashtal HA, Lahr RM, Abd-Latip N, Sweeney K, Lu H, Weir J, El-Bahrawy M, Steel JH, Ghaem-Maghami S, Aboagye EO, Berman AJ, Blagden SP. The RNA-binding protein LARP1 is a post-transcriptional regulator of survival and tumorigenesis in ovarian cancer. Nucleic Acids Res. 2016;44:1227–46. https://doi.org/10.1093/nar/gkv1515.
Article
CAS
PubMed
Google Scholar
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135:851–67. https://doi.org/10.1007/s00439-016-1683-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Wei Q, Tang Y, Yuanyuan W, Luo Q, Zhao H, He M, Wang H, Zeng Q, Lu W, Xu J, Liu T, Yi P. Loss of hnRNPA2B1 inhibits malignant capability and promotes apoptosis via down-regulating Lin28B expression in ovarian cancer. Cancer Lett. 2020;475:43–52. https://doi.org/10.1016/j.canlet.2020.01.029.
Article
CAS
PubMed
Google Scholar
Hsu KF, Shen MR, Huang YF, Cheng YM, Lin SH, Chow NH, Cheng SW, Chou CY, Ho CL. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer. Br J Cancer. 2015;113:414–24. https://doi.org/10.1038/bjc.2015.254.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell. 2009;33:591–601. https://doi.org/10.1016/j.molcel.2009.01.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Wu W, Li QH, Xie BM, Shen F, Du YP, Zong ZH, Wang LL, Wei XQ, Zhao Y. Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression. Cell Death Discov. 2021;7:22. https://doi.org/10.1038/s41420-020-00381-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–40. https://doi.org/10.1038/nature03120.
Article
CAS
PubMed
Google Scholar
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–9. https://doi.org/10.1038/nature01957.
Article
CAS
PubMed
Google Scholar
Han C, Liu Y, Wan G, Choi HJ, Zhao L, Ivan C, He X, Sood AK, Zhang X, Lu X. The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression. Cell Rep. 2014;8:1447–60. https://doi.org/10.1016/j.celrep.2014.07.058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Wu L, Pei M, Zhang Y. YTHDF2, a protein repressed by miR-145, regulates proliferation, apoptosis, and migration in ovarian cancer cells. J Ovarian Res. 2020;13:111. https://doi.org/10.1186/s13048-020-00717-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehlen A, Nodin B, Rexhepaj E, Brandstedt J, Uhlen M, Alvarado-Kristensson M, Ponten F, Brennan DJ, Jirstrom K. RBM3-regulated genes promote DNA integrity and affect clinical outcome in epithelial ovarian cancer. Transl Oncol. 2011;4:212–21. https://doi.org/10.1593/tlo.11106.
Article
PubMed
PubMed Central
Google Scholar
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27(Kip1) mRNA stability and translation. J Exp Clin Cancer Res. 2018;37:187. https://doi.org/10.1186/s13046-018-0840-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arslan O, Soylu NK, Akillilar PT, Tazebay UH. Coiled-coil domain-containing protein-124 (Ccdc124) is a novel RNA binding factor up-regulated in endometrial, ovarian, and urinary bladder cancers. Cancer Biomark. 2021;31:149–64. https://doi.org/10.3233/CBM-200802.
Article
CAS
PubMed
Google Scholar
Bi F, An Y, Sun T, You Y, Yang Q. PHGDH Is Upregulated at Translational Level and Implicated in Platin-Resistant in Ovarian Cancer Cells. Front Oncol. 2021;11: 643129. https://doi.org/10.3389/fonc.2021.643129.
Article
PubMed
PubMed Central
Google Scholar
Ni J, Chen L, Ling L, Wu M, Ren Q, Zhu W. MicroRNA-196a promotes cell proliferation and inhibits apoptosis in human ovarian cancer by directly targeting DDX3 and regulating the PTEN/PI3K/AKT signaling pathway. Mol Med Rep. 2020;22:1277–84. https://doi.org/10.3892/mmr.2020.11236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer. 1997;72:1–22. https://doi.org/10.1002/(sici)1097-0215(19970703)72:1%3c1::aid-ijc1%3e3.0.co;2-z.
Article
CAS
PubMed
Google Scholar
Koensgen D, Mustea A, Klaman I, Sun P, Zafrakas M, Lichtenegger W, Denkert C, Dahl E, Sehouli J. Expression analysis and RNA localization of PAI-RBP1 (SERBP1) in epithelial ovarian cancer: association with tumor progression. Gynecol Oncol. 2007;107:266–73. https://doi.org/10.1016/j.ygyno.2007.06.023.
Article
CAS
PubMed
Google Scholar
Zhong Y, Yang S, Wang W, Wei P, He S, Ma H, Yang J, Wang Q, Cao L, Xiong W, Zhou M, Li G, Shuai C, Peng S. The interaction of Lin28A/Rho associated coiled-coil containing protein kinase2 accelerates the malignancy of ovarian cancer. Oncogene. 2019;38:1381–97. https://doi.org/10.1038/s41388-018-0512-9.
Article
CAS
PubMed
Google Scholar
Lin X, Shen J, Dan P, He X, Xu C, Chen X, Tanyi JL, Montone K, Fan Y, Huang Q, Zhang L, Zhong X. RNA-binding protein LIN28B inhibits apoptosis through regulation of the AKT2/FOXO3A/BIM axis in ovarian cancer cells. Signal Transduct Target Ther. 2018;3:23. https://doi.org/10.1038/s41392-018-0026-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yong W, Yu D, Jun Z, Yachen D, Weiwei W, Midie X, Xingzhu J, Xiaohua W. Long noncoding RNA NEAT1, regulated by LIN28B, promotes cell proliferation and migration through sponging miR-506 in high-grade serous ovarian cancer. Cell Death Dis. 2018;9:861. https://doi.org/10.1038/s41419-018-0908-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CW. Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell. 2004;13:91–100. https://doi.org/10.1016/s1097-2765(03)00502-1.
Article
CAS
PubMed
Google Scholar
He X, Pool M, Darcy KM, Lim SB, Auersperg N, Coon JS, Beck WT. Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene. 2007;26:4961–8. https://doi.org/10.1038/sj.onc.1210307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller S, Glass M, Singh AK, Haase J, Bley N, Fuchs T, Lederer M, Dahl A, Huang H, Chen J, Posern G, Huttelmaier S. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 2019;47:375–90. https://doi.org/10.1093/nar/gky1012.
Article
CAS
PubMed
Google Scholar
He C, Huang F, Zhang K, Wei J, Hu K, Liang M. Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer. J Ovarian Res. 2021;14:27. https://doi.org/10.1186/s13048-021-00777-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Cheng J, Wu Y, Qiu J, Sun Y, Tong X. LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer. Mol Med Rep. 2016;14:2465–72. https://doi.org/10.3892/mmr.2016.5572.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prislei S, Martinelli E, Mariani M, Raspaglio G, Sieber S, Ferrandina G, Shahabi S, Scambia G, Ferlini C. MiR-200c and HuR in ovarian cancer. BMC Cancer. 2013;13:72. https://doi.org/10.1186/1471-2407-13-72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Zhang C, Chen R, Xiong H, Qiu F, Liu S, Zhang M, Wang F, Wang Y, Zhou X, Xiao G, Wang X, Jiang Q. Disrupting MALAT1/miR-200c sponge decreases invasion and migration in endometrioid endometrial carcinoma. Cancer Lett. 2016;383:28–40. https://doi.org/10.1016/j.canlet.2016.09.019.
Article
CAS
PubMed
Google Scholar
Weidle UH, Birzele F, Kollmorgen G, Ruger R. Long Non-coding RNAs and their Role in Metastasis. Cancer Genomics Proteomics. 2017;14:143–60. https://doi.org/10.21873/cgp.20027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu D, Ke Y, Xiao R, Liu J, Li Q, Wang Y. Long non-coding RNA GClnc1 knockdown suppresses progression of epithelial ovarian cancer by recruiting FOXC2 to disrupt the NOTCH1/NF-kappaB/Snail pathway. Exp Cell Res. 2021;399: 112422. https://doi.org/10.1016/j.yexcr.2020.112422.
Article
CAS
PubMed
Google Scholar
Gordon MA, Babbs B, Cochrane DR, Bitler BG, Richer JK. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol Carcinog. 2019;58:196–205. https://doi.org/10.1002/mc.22919.
Article
CAS
PubMed
Google Scholar
Sanger JM, Wang J, Gleason LM, Chowrashi P, Dube DK, Mittal B, Zhukareva V, Sanger JW. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken). 2010;67:808–23. https://doi.org/10.1002/cm.20490.
Article
CAS
Google Scholar
Kimura A, Baumann CA, Chiang SH, Saltiel AR. The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc Natl Acad Sci U S A. 2001;98:9098–103. https://doi.org/10.1073/pnas.151252898.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Wang W, Huang S, Yang Z, Xu L, Yang Q, Zhou X, Wang J, Shen Q, Wang C, Le X, Feng M, Zhou N, Lau WB, Lau B, Yao S, Yi T, Wang X, Zhao X, Wei Y, Zhou S. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol. 2018;19:35. https://doi.org/10.1186/s13059-018-1412-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Yang Y, Xie Z, Luo Q, Yang D, Liu X, Zhao H, Wei Q, Liu Y, Li L, Wang Y, Wang F, Yu J, Xu J, Yu J, Yi P. The RNA binding protein QKI5 suppresses ovarian cancer via downregulating transcriptional coactivator TAZ. Mol Ther Nucleic Acids. 2021;26:388–400. https://doi.org/10.1016/j.omtn.2021.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weidensdorfer D, Stohr N, Baude A, Lederer M, Kohn M, Schierhorn A, Buchmeier S, Wahle E, Huttelmaier S. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA. 2009;15:104–15. https://doi.org/10.1261/rna.1175909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res. 2016;44:3989–4004. https://doi.org/10.1093/nar/gkw271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pellarin I, Dall’Acqua A, Gambelli A, Pellizzari I, D’Andrea S, Sonego M, Lorenzon I, Schiappacassi M, Belletti B, Baldassarre G. Splicing factor proline- and glutamine-rich (SFPQ) protein regulates platinum response in ovarian cancer-modulating SRSF2 activity. Oncogene. 2020;39:4390–403. https://doi.org/10.1038/s41388-020-1292-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Gan H, Zhao F, Ma X, Xie X, Huang R, Zhao J. CPEB4-Promoted Paclitaxel Resistance in Ovarian Cancer In Vitro Relies on Translational Regulation of CSAG2. Front Pharmacol. 2020;11: 600994. https://doi.org/10.3389/fphar.2020.600994.
Article
CAS
PubMed
Google Scholar
Yang X, Potts PR. CSAG2 is a cancer-specific activator of SIRT1. EMBO Rep. 2020;21: e50912. https://doi.org/10.15252/embr.202050912.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yahata H, Kobayashi H, Kamura T, Amada S, Hirakawa T, Kohno K, Kuwano M, Nakano H. Increased nuclear localization of transcription factor YB-1 in acquired cisplatin-resistant ovarian cancer. J Cancer Res Clin Oncol. 2002;128:621–6. https://doi.org/10.1007/s00432-002-0386-6.
Article
CAS
PubMed
Google Scholar
Danno S, Nishiyama H, Higashitsuji H, Yokoi H, Xue JH, Itoh K, Matsuda T, Fujita J. Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress. Biochem Biophys Res Commun. 1997;236:804–7. https://doi.org/10.1006/bbrc.1997.7059.
Article
CAS
PubMed
Google Scholar
Prawira A, Munusamy P, Yuan J, Chan CHT, Koh GL, Shuen TWH, Hu J, Yap YS, Tan MH, Ang P, Lee ASG. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res Treat. 2019;177:145–53. https://doi.org/10.1007/s10549-019-05286-w.
Article
CAS
PubMed
Google Scholar
Manoharan R, Seong HA, Ha H. Dual Roles of Serine-Threonine Kinase Receptor-Associated Protein (STRAP) in Redox-Sensitive Signaling Pathways Related to Cancer Development. Oxid Med Cell Longev. 2018;2018:5241524. https://doi.org/10.1155/2018/5241524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antony F, Deantonio C, Cotella D, Soluri MF, Tarasiuk O, Raspagliesi F, Adorni F, Piazza S, Ciani Y, Santoro C, Macor P, Mezzanzanica D, Sblattero D. High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids. Oncoimmunology. 2019;8: e1614856. https://doi.org/10.1080/2162402X.2019.1614856.
Article
PubMed
PubMed Central
Google Scholar
Visconte V. Mutations in splicing factor genes in myeloid malignancies: significance and impact on clinical features. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11121844.
Article
Google Scholar
Millstein J, Budden T, Goode EL, Anglesio MS, Talhouk A, Intermaggio MP, Leong HS, Chen S, Elatre W, Gilks B, Nazeran T, Volchek M, Bentley RC, Wang C, Chiu DS, Kommoss S, Leung SCY, Senz J, Lum A, Chow V, Sudderuddin H, Mackenzie R, George J, Fereday S, Hendley J, Traficante N, Steed H, Koziak JM, Kobel M, McNeish IA, Goranova T, Ennis D, Macintyre G, Silva D, Ramon YCT, Garcia-Donas J, HernandoPolo S, Rodriguez GC, Cushing-Haugen KL, Harris HR, Greene CS, Zelaya RA, Behrens S, Fortner RT, Sinn P, Herpel E, Lester J, Lubinski J, Oszurek O, Toloczko A, Cybulski C, Menkiszak J, Pearce CL, Pike MC, Tseng C, Alsop J, Rhenius V, Song H, Jimenez-Linan M, Piskorz AM, Gentry-Maharaj A, Karpinskyj C, Widschwendter M, Singh N, Kennedy CJ, Sharma R, Harnett PR, Gao B, Johnatty SE, Sayer R, Boros J, Winham SJ, Keeney GL, Kaufmann SH, Larson MC, Luk H, Hernandez BY, Thompson PJ, Wilkens LR, Carney ME, Trabert B, Lissowska J, Brinton L, Sherman ME, Bodelon C, Hinsley S, Lewsley LA, Glasspool R, Banerjee SN, Stronach EA, Haluska P, Ray-Coquard I, Mahner S, Winterhoff B, Slamon D, Levine DA, Kelemen LE, Benitez J, Chang-Claude J, Gronwald J, Wu AH, Menon U, Goodman MT, Schildkraut JM, Wentzensen N, Brown R, Berchuck A, Chenevix-Trench G, Fazio A, Gayther SA, Garcia MJ, Henderson MJ, Rossing MA, Beeghly-Fadiel A, Fasching PA, Orsulic S, Karlan BY, Konecny GE, Huntsman DG, Bowtell DD, Brenton JD, Doherty JA, Pharoah PDP, Ramus SJ. Prognostic gene expression signature for high-grade serous ovarian cancer. Ann Oncol. 2020;31:1240–50. https://doi.org/10.1016/j.annonc.2020.05.019.
Article
CAS
PubMed
Google Scholar
Wang K, Li L, Fu L, Yuan Y, Dai H, Zhu T, Zhou Y, Yuan F. Integrated Bioinformatics Analysis the Function of RNA Binding Proteins (RBPs) and their prognostic value in breast cancer. Front Pharmacol. 2019;10:140. https://doi.org/10.3389/fphar.2019.00140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Gao LN, Song PP, You CG. Development and validation of a RNA binding protein-associated prognostic model for lung adenocarcinoma. Aging. 2020;12:3558–73. https://doi.org/10.18632/aging.102828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Cao J, Hu K, Wang P, Li G, He X, Tong T, Han L. RNA-binding protein RPS3 contributes to hepatocarcinogenesis by post-transcriptionally up-regulating SIRT1. Nucleic Acids Res. 2019;47:2011–28. https://doi.org/10.1093/nar/gky1209.
Article
CAS
PubMed
Google Scholar
Zhang Z, Wang L, Wang Q, Zhang M, Wang B, Jiang K, Ye Y, Wang S, Shen Z. Molecular characterization and clinical relevance of RNA Binding Proteins in Colorectal Cancer. Front Genet. 2020;11: 580149. https://doi.org/10.3389/fgene.2020.580149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan L, Lin Y, Lei H, Shu G, He L, Yan Z, Rihan H, Yin G. A newly defined risk signature, consisting of three m(6)A RNA methylation regulators, predicts the prognosis of ovarian cancer. Aging. 2020;12:18453–75. https://doi.org/10.18632/aging.103811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucchesi CA, Zhang J, Ma B, Chen M, Chen X. Disruption of the Rbm38-eIF4E Complex with a Synthetic Peptide Pep8 Increases p53 Expression. Cancer Res. 2019;79:807–18. https://doi.org/10.1158/0008-5472.CAN-18-2209.
Article
CAS
PubMed
Google Scholar
Ko SY, Guo H, Barengo N, Naora H. Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E. Clin Cancer Res. 2009;15:4336–47. https://doi.org/10.1158/1078-0432.CCR-08-2924.
Article
CAS
PubMed
Google Scholar
Chen H, Liu J, Wang H, Cheng Q, Zhou C, Chen X, Ye F. Inhibition of RNA-binding protein musashi-1 suppresses malignant properties and reverses paclitaxel resistance in ovarian carcinoma. J Cancer. 2019;10:1580–92. https://doi.org/10.7150/jca.27352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu C, Yuan M, Sun J, Liu G, Zhao X, Chang W, Ma Z. RNA-Binding Motif Protein 11 (RBM11) serves as a prognostic biomarker and promotes ovarian cancer progression. Dis Markers. 2021;2021:3037337. https://doi.org/10.1155/2021/3037337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Li Z, Zhu G, Hong L, Hu C, Wang K, Cui K, Hao C. RNA-binding protein IGF2BP2 enhances circ_0000745 abundancy and promotes aggressiveness and stemness of ovarian cancer cells via the microRNA-3187-3p/ERBB4/PI3K/AKT axis. J Ovarian Res. 2021;14:154. https://doi.org/10.1186/s13048-021-00917-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao H, Gao Y, Chen Q, Li J, Ren M, Zhao X, Yue W. RAD51AP1 promotes progression of ovarian cancer via TGF-beta/Smad signalling pathway. J Cell Mol Med. 2021;25:1927–38. https://doi.org/10.1111/jcmm.15877.
Article
CAS
PubMed
Google Scholar
Wang L, Rowe RG, Jaimes A, Yu C, Nam Y, Pearson DS, Zhang J, Xie X, Marion W, Heffron GJ, Daley GQ, Sliz P. Small-molecule inhibitors disrupt let-7 oligouridylation and release the selective blockade of let-7 processing by LIN28. Cell Rep. 2018;23:3091–101. https://doi.org/10.1016/j.celrep.2018.04.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hiramatsu K, Yoshino K, Serada S, Yoshihara K, Hori Y, Fujimoto M, Matsuzaki S, Egawa-Takata T, Kobayashi E, Ueda Y, Morii E, Enomoto T, Naka T, Kimura T. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas. Br J Cancer. 2016;114:554–61. https://doi.org/10.1038/bjc.2016.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao L, Wang JM, Liu BQ, Yan J, Li C, Jiang JY, Zhao FY, Qiao HY, Wang HQ. m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res. 2021;1868: 118878. https://doi.org/10.1016/j.bbamcr.2020.118878.
Article
CAS
PubMed
Google Scholar