Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359:1221–31.
Article
PubMed
Google Scholar
Li Z, Liu YC, Jia AL, Cui YR, Feng J. Cerebrospinal fluid cells immune landscape in multiple sclerosis. J Transl Med. 2021;19:125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solomon AJ, Naismith RT, Cross AH. Misdiagnosis of multiple sclerosis: impact of the 2017 McDonald criteria on clinical practice. Neurology. 2019;92:26–33.
Article
PubMed
PubMed Central
Google Scholar
Solomon AJ, Bourdette DN, Cross AH, Applebee A, Skidd PM, Howard DB, et al. The contemporary spectrum of multiple sclerosis misdiagnosis: a multicenter study. Neurology. 2016;87:1393–9.
Article
PubMed
PubMed Central
Google Scholar
Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.
Article
CAS
PubMed
Google Scholar
Franca W, Lorenz G, Arsany H, Nicole K, Michael PH, Julia M, et al. Rebound after fingolim, od and a single daclizumab injection in a patient retrospectively diagnosed with NMO spectrum disorder-MRI apparent diffusion coefficient maps in differential diagnosis of demyelinating CNS disorders. Front Neurol. 2018;9:782.
Article
Google Scholar
Carmosino MJ, Brousseau KM, Arciniegas DB, Corboy JR. Initial evaluations for multiple sclerosis in a university multiple sclerosis center: outcomes and role of magnetic resonance imaging in referral. Arch Neurol. 2005;62:585–90.
Article
PubMed
Google Scholar
Liu S, Kullnat J, Bourdette D, Simon J, Kraemer DF, Murchison C, et al. Prevalence of brain magnetic resonance imaging meeting Barkhof and McDonald criteria for dissemination in space among headache patients. Mult Scler. 2013;19:1101–5.
Article
PubMed
Google Scholar
McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50:121–7.
Article
CAS
PubMed
Google Scholar
Li H, Xu C, Xin B, Zheng C, Zhao Y, Hao K, et al. (18)F-FDG PET/CT Radiomic analysis with machine learning for identifying bone marrow involvement in the patients with suspected relapsed acute leukemia. Theranostics. 2019;9:4730–9.
Article
PubMed
PubMed Central
Google Scholar
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures they are data. Radiology. 2016;278:563–77.
Article
PubMed
Google Scholar
Castillo D, Lakshminarayanan V, Rodríguez-Álvarez MJ. MR images, brain lesions, and deep learning. Appl Sci. 2021;11:1675.
Article
CAS
Google Scholar
Kremer S, Renard F, Achard S, Lana-Peixoto MA, Palace J, Asgari N, et al. Use of advanced magnetic resonance imaging techniques in neuromyelitis optica spectrum disorder. JAMA Neurol. 2015;72:815–22.
Article
PubMed
PubMed Central
Google Scholar
Qian Z, Li Y, Wang Y, Li L, Li R, Wang K, et al. Differentiation of glioblastoma from solitary brain metastases using radiomic machine-learning classifiers. Cancer Lett. 2019;451:128–35.
Article
CAS
PubMed
Google Scholar
Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The Applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9:1303–22.
Article
PubMed
PubMed Central
Google Scholar
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.
Article
PubMed
PubMed Central
Google Scholar
Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.
Article
PubMed
PubMed Central
Google Scholar
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.
Article
CAS
PubMed
Google Scholar
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
Article
CAS
PubMed
Google Scholar
Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234–48.
Article
PubMed
PubMed Central
Google Scholar
Wylde V, Palmer S, Learmonth ID, Dieppe P. Test-retest reliability of quantitative sensory testing in knee osteoarthritis and healthy participants. Osteoarthr Cartil. 2011;19:655–8.
Article
CAS
Google Scholar
Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23:2507–17.
Article
CAS
PubMed
Google Scholar
Ferri FJ, Pudil P, Hatef M. Comparative study of techniques for large-scale feature selection. Mach Intell Pattern Recogn. 1994;16:403–13.
Google Scholar
Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data. University of California, Berkeley. 2004; 110:1–12.
Kim JY, Park JE, Jo Y, Shim WH, Nam SJ, Kim JH, et al. Incorporating diffusion-and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 2019;21:404–14.
Article
PubMed
Google Scholar
Qu JR, Shen C, Qin JJ, Wang ZQ, Liu ZY, Guo J, et al. The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer. Eur Radiol. 2019;29:906–14.
Article
PubMed
Google Scholar
Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, et al. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NeuroImage. 2018;20:537–42.
Article
PubMed
PubMed Central
Google Scholar
Orlhac F, Boughdad S, Philippe C, Hugo SB, Nioche C, Champion L, et al. A post reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59:1321–8.
Article
CAS
PubMed
Google Scholar
Sheikhan M, Bejani M, Gharavian D. Modular neural-SVM scheme for speech emotion recognition using ANOVA feature selection method. Neural Comput Appl. 2013;23:215–27.
Article
Google Scholar
Bennasar M, Hicks Y, Setchi R. Feature selection using joint mutual information maximisation. Expert Syst Appl. 2015;42:8520–32.
Article
Google Scholar
Zhang B, He X, Ouyang FS, Gu DS, Dong YH, Zhang L, et al. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma. Cancer Lett. 2017;10(403):21–7.
Article
CAS
Google Scholar
Pudil P, Novovičová J, Kittler J. Floating search methods in feature selection. Pattern Recognit Lett. 1994;15:1119–25.
Article
Google Scholar
Ghosh D, Chinnaiyan M. Classification and selection of biomarkers in genomic data using LASSO. J Biomed Biotechnol. 2005;2:147–54.
Article
CAS
Google Scholar
Zou H, Hastie T. Regularizatin and variable selection via the elastic net. J R Statist Soc B. 2005;67:301–20.
Article
Google Scholar
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46:389–422.
Article
Google Scholar
Wang X, Wang D, Yao Z, Xin B, Wang B, Lan C, et al. Machine learning models for multiparametric glioma grading with quantitative result interpretations. Front Neurosci. 2018;12:1046.
Article
PubMed
Google Scholar
Strumbelj E, Kononenko I. Explaining prediction models and individual predictions with feature contributions. Knowl Inf Syst. 2014;41:647–65.
Article
Google Scholar
Nielsen JM, Korteweg T, Barkhof F, Uitdehaag BMJ, Polman CH. Overdiagnosis of multiple sclerosis and magnetic resonance imaging criteria. Ann Neurol. 2005;58:781–3.
Article
PubMed
Google Scholar
Matthews L, Marasco R, Jenkinson M, Küker W, Luppe S, Leite MI, et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution. Neurology. 2013;80:1330–7.
Article
PubMed
PubMed Central
Google Scholar
Lalan S, Khan M, Schlakman B, Penman A, Gatlin J, Herndon R. Differentiation of neuromyelitis optica from multiple sclerosis on spinal magnetic resonance imaging. Int J MS Care. 2012;14:209–14.
Article
PubMed
PubMed Central
Google Scholar
Huh SY, Min JH, Kim W, Kim SH, Kim HJ, Kim BJ, et al. The usefulness of brain MRI at onset in the differentiation of multiple sclerosis and seropositive neuromyelitis optica spectrum disorders. Mult Scler. 2014;20:695–704.
Article
PubMed
Google Scholar
Kim H, Lee Y, Kim YH, Lim YM, Lee JS, Woo J, et al. Deep learning-based method to differentiate neuromyelitis optica spectrum disorder from multiple sclerosis. Front Neurol. 2020;11: 599042.
Article
PubMed
PubMed Central
Google Scholar
Filippi M, Bruck W, Chard D, Fazekas F, Geurts JJG, Enzinger C, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019;18:198–210.
Article
PubMed
Google Scholar
Wang Q, Li Q, Mi R, Ye H, Zhang H, Chen B, et al. Radiomics nomogram building from multiparametric MRI to predict grade in patients with glioma: a cohort study. J Magn Reson Imaging. 2019;49:825–33.
Article
CAS
PubMed
Google Scholar
Liu H , Setiono R. A probabilistic approach to feature selection-a filter solution. In proceedings of the international conference on machine learning. 1996; 96:319–27.
Girish C, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014;40:16–28.
Article
Google Scholar
Lundberg SM, Nair B, Vavilala MS, Horibe M, Eisses MJ, Adams T, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2:749–60.
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Tian J, Dong D, Gu D, Dong Y, Zhang L, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23:4259–69.
Article
PubMed
Google Scholar
Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C, et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain. 2012;135:2952–61.
Article
PubMed
Google Scholar
Li DK, Held U, Petkau J, Daumer M, Barkhof F, Fazekas F, et al. MRI T2 lesion burden in multiple sclerosis: a plateauing relationship with clinical disability. Neurology. 2006;66:1384–9.
Article
CAS
PubMed
Google Scholar
Hara JH, Wu A, Villanueva-Meyer JE, Valdes G, Daggubati V, Mueller S, et al. Clinical applications of quantitative 3-dimensional MRI analysis for pediatric embryonal brain tumors. Int J Radiat Oncol Biol Phys. 2018;102:744–56.
Article
PubMed
Google Scholar
Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun. 2014;48–49:134–42.
Article
PubMed
CAS
Google Scholar