Skip to main content

Table 2 Diagnostic performance of our method compared with 8 SOTA feature selection algorithms

From: Multi-parametric MRI phenotype with trustworthy machine learning for differentiating CNS demyelinating diseases

Category

Method

Roc_auc

Sensitivity

Specificity

Accuracy

Filter

Wilcoxon [28]

0.625 ± 0.120

0.604 ± 0.145

0.585 ± 0.137

0.593 ± 0.104

Filter

Anova [29]

0.879 ± 0.037

0.883 ± 0.042

0.726 ± 0.067

0.789 ± 0.036

Filter

mRMR [30]

0.846 ± 0.041

0.823 ± 0.091

0.754 ± 0.076

0.782 ± 0.050

Wrapper

RF [31]

0.846 ± 0.041

0.828 ± 0.091

0.750 ± 0.075

0.781 ± 0.048

Wrapper

SFS [32]

0.858 ± 0.038

0.782 ± 0.073

0.829 ± 0.121

0.810 ± 0.067

Embedded

Lasso [33]

0.873 ± 0.050

0.884 ± 0.046

0.737 ± 0.087

0.796 ± 0.056

Embedded

ElasticNet [34]

0.850 ± 0.064

0.868 ± 0.070

0.719 ± 0.135

0.779 ± 0.086

Embedded

RFE [35]

0.814 ± 0.072

0.846 ± 0.058

0.612 ± 0.141

0.705 ± 0.090

Ours

Clinical

0.573 ± 0.055

0.716 ± 0.190

0.446 ± 0.179

0.554 ± 0.070

Ours

T2 MRI

0.852 ± 0.053

0.887 ± 0.067

0.733 ± 0.057

0.795 ± 0.045

Ours

T1-MPR MRI

0.880 ± 0.033

0.798 ± 0.102

0.859 ± 0.073

0.835 ± 0.060

Ours

Multi-parametric MRI

0.902 ± 0.027

0.873 ± 0.083

0.869 ± 0.051

0.871 ± 0.044

  1. The Bolded value indicates the highest value in each column
  2. AUC area under the curve, Anova analysis of variance, mRMR maximum relevance minimum redundancy, RF random forest, SFS sequential forward selection, Lasso least absolute shrinkage and selection operator, RFE recursive feature elimination