Behr MA. The path to Crohnʼs disease: is mucosal pathology a secondary event? Inflamm Bowel Dis. 2010;16:896–902.
Article
PubMed
Google Scholar
Rehal S, Stephens M, Roizes S, Liao S, von der Weid P-Y. Acute small intestinal inflammation results in persistent lymphatic alterations. Am J Physiol Liver Physiol. 2018;314:G408–17.
Google Scholar
Cromer W, Wang W, Zawieja SD, von der Weid P-Y, Newell-Rogers MK, Zawieja DC. Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic microenvironment, and leads to sustained inflammation in the rat Ileum. Inflamm Bowel Dis. 2015;21:1553–63.
Article
PubMed
Google Scholar
Ge Y, Li Y, Chen Q, Zhu W, Zuo L, Guo Z, et al. Adipokine apelin ameliorates chronic colitis in Il-10−/− mice by promoting intestinal lymphatic functions. Biochem Pharmacol. 2018;148:202–12.
Article
CAS
PubMed
Google Scholar
D’Alessio S, Correale C, Tacconi C, Gandelli A, Pietrogrande G, Vetrano S, et al. VEGF-C–dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J Clin Invest. 2014;124:3863–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen W, Li Y, Zou Y, Cao L, Cai X, Gong J, et al. Mesenteric adipose tissue alterations in Crohn’s disease are associated with the lymphatic system. Inflamm Bowel Dis. 2019;25:283–93.
Article
PubMed
Google Scholar
Li Y, Zhu W, Zuo L, Shen B. The role of the mesentery in Crohnʼs disease. Inflamm Bowel Dis. 2016;22:1483–95.
Article
PubMed
Google Scholar
Rahier J-F, De Beauce S, Dubuquoy L, Erdual E, Colombel J-F, Jouret-Mourin A, et al. Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment Pharmacol Ther. 2011;34:533–43.
Article
PubMed
Google Scholar
Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol. 2006;7:344–53.
Article
CAS
PubMed
Google Scholar
Rahier J-F, Dubuquoy L, Colombel J-F, Jouret-Mourin A, Delos M, Ferrante M, et al. Decreased lymphatic vessel density is associated with postoperative endoscopic recurrence in Crohn’s disease. Inflamm Bowel Dis. 2013;19:2084–90.
Article
PubMed
Google Scholar
Tan KW, Yeo KP, Wong FHS, Lim HY, Khoo KL, Abastado J-P, et al. Expansion of cortical and medullary sinuses restrains lymph node hypertrophy during prolonged inflammation. J Immunol. 2012;188:4065–80.
Article
CAS
PubMed
Google Scholar
Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest. 2005;115:247–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan KW, Chong SZ, Angeli V. Inflammatory lymphangiogenesis: cellular mediators and functional implications. Angiogenesis. 2014;17:373–81.
Article
CAS
PubMed
Google Scholar
Dieterich LC, Seidel CD, Detmar M. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis. 2014;17:359–71.
Article
CAS
PubMed
Google Scholar
Angeli V, Randolph GJ. Inflammation, lymphatic function, and dendritic cell migration. Lymphat Res Biol. 2006;4:217–28.
Article
CAS
PubMed
Google Scholar
Von Der Weid P-Y, Rehal S. Lymphatic pump function in the inflamed gut. Ann N Y Acad Sci. 2010;1207:E69-74.
Article
Google Scholar
Zampell JC, Yan A, Elhadad S, Avraham T, Weitman E, Mehrara BJ. CD4+ cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS One. 2012;7:e49940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, García-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 2012;120:2340–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srinivasan RS, Escobedo N, Yang Y, Interiano A, Dillard ME, Finkelstein D, et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
François M, Short K, Secker GA, Combes A, Schwarz Q, Davidson T-L, et al. Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. Dev Biol. 2012;364:89–98.
Article
PubMed
CAS
Google Scholar
Lin Y-C, Ohbayashi N, Hongu T, Katagiri N, Funakoshi Y, Lee H, et al. Arf6 in lymphatic endothelial cells regulates lymphangiogenesis by controlling directional cell migration. Sci Rep. 2017;7:11431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Planas-Paz L, Lammert E. Mechanosensing in developing lymphatic vessels. Adv Anat Embryol Cell Biol. 2014;214:23–40.
Article
PubMed
Google Scholar
Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011;13:1202–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boucher J, Simonneau C, Denet G, Clarhaut J, Balandre A-C, Mesnil M, et al. Pannexin-1 in human lymphatic endothelial cells regulates lymphangiogenesis. Int J Mol Sci. 2018;19:1558.
Article
PubMed Central
CAS
Google Scholar
Wong BW, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, et al. The role of fatty acid β-oxidation in lymphangiogenesis. Nature. 2017;542:49–54.
Article
CAS
PubMed
Google Scholar
Hosios AM, Vander Heiden MG. Endothelial Cells Get β-ox-ed In to Support Lymphangiogenesis. Dev Cell. 2017;40:118–9.
Article
CAS
PubMed
Google Scholar
Tewalt EF, Cohen JN, Rouhani SJ, Engelhard VH. Lymphatic endothelial cells-key players in regulation of tolerance and immunity. Front Immunol. 2012;3:305.
Article
PubMed
PubMed Central
Google Scholar
Kilpatrick LE, Kiani MF. Experimental approaches to evaluate leukocyte-endothelial cell interactions in sepsis and inflammation. Shock. 2020;53:585–95.
Article
PubMed
PubMed Central
Google Scholar
Alpert L, Yassan L, Poon R, Kadri S, Niu N, Patil SA, et al. Targeted mutational analysis of inflammatory bowel disease–associated colorectal cancers. Hum Pathol. 2019;89:44–50.
Article
CAS
PubMed
Google Scholar
Böhmer R, Neuhaus B, Bühren S, Zhang D, Stehling M, Böck B, et al. Regulation of developmental lymphangiogenesis by Syk+ leukocytes. Dev Cell. 2010;18:437–49.
Article
PubMed
CAS
Google Scholar
Loffredo S, Staiano RI, Granata F, Genovese A, Marone G. Immune cells as a source and target of angiogenic and lymphangiogenic factors. Angiogenes Lymphangiogen Clin Implic. 2013;99:15–36.
Article
CAS
Google Scholar
Tsuru S, Ito Y, Matsuda H, Hosono K, Inoue T, Nakamoto S, et al. RAMP1 signaling in immune cells regulates inflammation-associated lymphangiogenesis. Lab Investig. 2020;100:738–50.
Article
CAS
PubMed
Google Scholar
Syed SN, Raue R, Weigert A, von Knethen A, Brüne B. Macrophage S1PR1 signaling alters angiogenesis and lymphangiogenesis during skin inflammation. Cells. 2019;8:785.
Article
CAS
PubMed Central
Google Scholar
Kim H, Kataru RP, Koh GY. Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest. 2014;124:936–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood. 2009;113:5650–9.
Article
CAS
PubMed
Google Scholar
Kang S, Lee S-P, Kim KE, Kim H-Z, Mémet S, Koh GY. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood. 2009;113:2605–13.
Article
CAS
PubMed
Google Scholar
Watari K, Nakao S, Fotovati A, Basaki Y, Hosoi F, Bereczky B, et al. Role of macrophages in inflammatory lymphangiogenesis: Enhanced production of vascular endothelial growth factor C and D through NF-κB activation. Biochem Biophys Res Commun. 2008;377:826–31.
Article
CAS
PubMed
Google Scholar
Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol. 2011;31:379–446.
Article
CAS
PubMed
Google Scholar
Ye Y, Wang Y, Yang Y, Tao L. Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway. Inflamm Res. 2020;69:375–83.
Article
CAS
PubMed
Google Scholar
Becker F, Kurmaeva E, Gavins FNE, Stevenson EV, Navratil AR, Jin L, et al. A critical role for monocytes/macrophages during intestinal inflammation-associated lymphangiogenesis. Inflamm Bowel Dis. 2016;22:1326–45.
Article
PubMed
Google Scholar
Wu W-K, Llewellyn OPC, Bates DO, Nicholson LB, Dick AD. IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia. Immunobiology. 2010;215:796–803.
Article
CAS
PubMed
Google Scholar
Wang XL, Zhao J, Qin L, Qiao M. Promoting inflammatory lymphangiogenesis by vascular endothelial growth factor-C (VEGF-C) aggravated intestinal inflammation in mice with experimental acute colitis. Brazil J Med Biol Res. 2016;49:e4738.
Article
CAS
Google Scholar
Tan KW, Chong SZ, Wong FHS, Evrard M, Tan SM-L, Keeble J, et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood. 2013;122:3666–77.
Article
CAS
PubMed
Google Scholar
Miyamoto A, Shirasuna K, Haneda S, Shimizu T, Matsui M. CELL BIOLOGY SYMPOSIUM: perspectives: possible roles of polymorphonuclear neutrophils in angiogenesis and lymphangiogenesis in the corpus luteum during development and early pregnancy in ruminants1. J Anim Sci. 2014;92:1834–9.
Article
CAS
PubMed
Google Scholar
Becker F, Potepalov S, Shehzahdi R, Bernas M, Witte M, Abreo F, et al. Downregulation of FoxC2 increased susceptibility to experimental colitis. Inflamm Bowel Dis. 2015;1:1282–96.
Google Scholar
Ganta VC, Cromer W, Mills GL, Traylor J, Jennings M, Daley S, et al. Angiopoietin-2 in experimental colitis. Inflamm Bowel Dis. 2010;16:1029–39.
Article
PubMed
Google Scholar
Daley SK, Witte MH, Washington J, Bernas M, Kiela P, Thorn J, et al. Role of lymphatic deficiency in the pathogenesis and progression of inflammatory bowel disease to colorectal cancer in an experimental mouse model. Inflamm Bowel Dis. 2019;25:1919–26.
Article
PubMed
PubMed Central
Google Scholar
Bosisio D, Ronca R, Salvi V, Presta M, Sozzani S. Dendritic cells in inflammatory angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018;53:180–6.
Article
CAS
PubMed
Google Scholar
Gagliostro V, Seeger P, Garrafa E, Salvi V, Bresciani R, Bosisio D, et al. Pro-lymphangiogenic properties of IFN-γ-activated human dendritic cells. Immunol Lett. 2016;173:26–35.
Article
CAS
PubMed
Google Scholar
Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res. 2010;106:920–31.
Article
CAS
PubMed
Google Scholar
Johnson LA, Jackson DG. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol. 2010;22:839–49.
Article
CAS
PubMed
Google Scholar
Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med. 2009;206:2925–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clatworthy MR, Harford SK, Mathews RJ, Smith KGC. FcγRIIb inhibits immune complex-induced VEGF-A production and intranodal lymphangiogenesis. Proc Natl Acad Sci. 2014;111:17971–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chyou S, Benahmed F, Chen J, Kumar V, Tian S, Lipp M, et al. Coordinated regulation of lymph node vascular-stromal growth first by CD11c + cells and then by T and B cells. J Immunol. 2011;187:5558–67.
Article
CAS
PubMed
Google Scholar
Willrodt A-H, Salabarria A-C, Schineis P, Ignatova D, Hunter MC, Vranova M, et al. ALCAM mediates DC migration through afferent lymphatics and promotes allospecific immune reactions. Front Immunol. 2019;10:759.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlsen TV, Reikvam T, Tofteberg A, Nikpey E, Skogstrand T, Wagner M, et al. Lymphangiogenesis facilitates initial lymph formation and enhances the dendritic cell mobilizing chemokine CCL21 without affecting migration. Arterioscler Thromb Vasc Biol. 2017;37:2128–35.
Article
CAS
PubMed
Google Scholar
Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30(3):229–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato H, Higashiyama M, Hozumi H, Sato S, Furuhashi H, Takajo T, et al. Platelet interaction with lymphatics aggravates intestinal inflammation by suppressing lymphangiogenesis. Am J Physiol Liver Physiol. 2016;311:G276–85.
Article
Google Scholar
Martínez-Moya P, Romero-Calvo I, Requena P, Hernández-Chirlaque C, Aranda CJ, González R, et al. Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. Int Immunopharmacol. 2013;15:372–80.
Article
PubMed
CAS
Google Scholar
Osada M, Inoue O, Ding G, Shirai T, Ichise H, Hirayama K, et al. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem. 2012;287:22241–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osada M, Suzuki-Inoue K, Inoue O. Ozaki Y [A role of the platelet receptor CLEC-2 in lymphangiogenesis and its clinical application]. Rinsho Byori. 2013;61:318–27.
CAS
PubMed
Google Scholar
Hur J, Jang JH, Oh I-Y, Choi J-I, Yun J-Y, Kim J, et al. Human Podoplanin-positive monocytes and platelets enhance lymphangiogenesis through the activation of the podoplanin/CLEC-2 axis. Mol Ther. 2014;22:1518–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pararasa C, Zhang N, Tull TJ, Chong MHA, Siu JHY, Guesdon W, et al. Reduced CD27−IgD− B cells in blood and raised CD27−IgD− B cells in gut-associated lymphoid tissue in inflammatory Bowel disease. Front Immunol. 2019;10:361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angeli V, Ginhoux F, Llodrà J, Quemeneur L, Frenette PS, Skobe M, et al. B Cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity. 2006;24:203–15.
Article
CAS
PubMed
Google Scholar
Shrestha B, Hashiguchi T, Ito T, Miura N, Takenouchi K, Oyama Y, et al. B Cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J Immunol. 2010;184:4819–26.
Article
CAS
PubMed
Google Scholar
Hwang-Bo J, Park J, Bae MG, Chung IS. Recombinant canstatin inhibits VEGF-A-induced lymphangiogenesis and metastasis in an oral squamous cell carcinoma SCC-VII animal model. Cancer Med. 2016;5:2977–88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wuest TR, Carr DJJ. VEGF-A expression by HSV-1–infected cells drives corneal lymphangiogenesis. J Exp Med. 2010;207:101–15.
Article
PubMed
PubMed Central
Google Scholar
Halin C, Tobler NE, Vigl B, Brown LF, Detmar M. VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood. 2007;110:3158–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinkopff T, Konradt C, Christian DA, Discher DE, Hunter CA, Scott P. Leishmania major infection-induced VEGF-A/VEGFR-2 signaling promotes lymphangiogenesis that controls disease. J Immunol. 2016;197:1823–31.
Article
CAS
PubMed
Google Scholar
Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113:1040–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubey LK, Karempudi P, Luther SA, Ludewig B, Harris NL. Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. Nat Commun. 2017;8:367.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ogata F, Fujiu K, Matsumoto S, Nakayama Y, Shibata M, Oike Y, et al. Excess lymphangiogenesis cooperatively induced by macrophages and CD4+ T cells drives the pathogenesis of lymphedema. J Invest Dermatol. 2016;136:706–14.
Article
CAS
PubMed
Google Scholar
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14:392–404.
Article
CAS
PubMed
Google Scholar
Shi C-S, Huang T-H, Lin C-K, Li J-M, Chen M-H, Tsai M-L, et al. VEGF production by Ly6C+high monocytes contributes to ventilator-induced lung injury. PLoS One. 2016;11:e0165317.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014;63:1–11.
Article
CAS
PubMed
Google Scholar
Changming W, Xin L, Hua T, Shikun W, Qiong X, Zhigeng Z, et al. Monocytes can be induced to express lymphatic phenotypes. Lymphology. 2011;44:48–53.
CAS
PubMed
Google Scholar
Bron S, Henry L, Faes-van’t Hull E, Turrini R, Vanhecke D, Guex N, et al. TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. Oncoimmunology. 2016;5:e1073882.
Article
PubMed
CAS
Google Scholar
Turrini R, Pabois A, Xenarios I, Coukos G, Delaloye J-F, Doucey M-A. TIE-2 expressing monocytes in human cancers. Oncoimmunology. 2017;6:e1303585.
Article
PubMed
PubMed Central
Google Scholar
Xue R, Sheng Y, Duan X, Yang Y, Ma S, Xu J, et al. Tie2-expressing monocytes as a novel angiogenesis-related cellular biomarker for non-small cell lung cancer. Int J Cancer. 2021;148:1519–28.
Article
CAS
PubMed
Google Scholar
Sessa R, Yuen D, Wan S, Rosner M, Padmanaban P, Ge S, et al. Monocyte-derived Wnt5a regulates inflammatory lymphangiogenesis. Cell Res. 2016;26:262–5.
Article
PubMed
Google Scholar
Cursiefen C, Maruyama K, Bock F, Saban D, Sadrai Z, Lawler J, et al. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J Exp Med. 2011;208:1083–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marone G, Varricchi G, Loffredo S, Granata F. Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur J Pharmacol. 2016;778:146–51.
Article
CAS
PubMed
Google Scholar
Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int J Mol Sci. 2019;20:2106.
Article
CAS
PubMed Central
Google Scholar
de Paulis A, Prevete N, Fiorentino I, Rossi FW, Staibano S, Montuori N, et al. Expression and functions of the vascular endothelial growth factors and their receptors in human basophils. J Immunol. 2006;177:7322–31.
Article
PubMed
Google Scholar
Chen W, Paulus B, Shu D, Wilson I, Chadwick V. Increased serum levels of eotaxin in patients with inflammatory Bowel disease. Scand J Gastroenterol. 2001;36:515–20.
Article
CAS
PubMed
Google Scholar
Schwartz C, Eberle JU, Voehringer D. Basophils in inflammation. Eur J Pharmacol. 2016;778:90–5.
Article
CAS
PubMed
Google Scholar
Miyake K, Karasuyama H. Emerging roles of basophils in allergic inflammation. Allergol Int. 2017;66:382–91.
Article
CAS
PubMed
Google Scholar
Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G, Varricchi G. Basophils in tumor microenvironment and surroundings. Adv Exp Med Biol. 2020;1224:21–34.
Article
CAS
PubMed
Google Scholar
De Monte L, Wörmann S, Brunetto E, Heltai S, Magliacane G, Reni M, et al. Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients. Cancer Res. 2016;76:1792–803.
Article
PubMed
CAS
Google Scholar
Kim S, Prout M, Ramshaw H, Lopez AF, LeGros G, Min B. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. J Immunol. 2010;184:1143–7.
Article
CAS
PubMed
Google Scholar
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in inflammatory Bowel disease. Inflamm Bowel Dis. 2019;25:1140–51.
Article
PubMed
Google Scholar
Wang Z, Adachi S, Kong L, Watanabe D, Nakanishi Y, Ohteki T, et al. Role of eosinophils in a murine model of inflammatory bowel disease. Biochem Biophys Res Commun. 2019;511:99–104.
Article
CAS
PubMed
Google Scholar
Hogan SP, Waddell A, Fulkerson PC. Eosinophils in infection and intestinal immunity. Curr Opin Gastroenterol. 2013;29:7–14.
Article
PubMed
PubMed Central
Google Scholar
Hamilton MJ, Frei SM, Stevens RL. The multifaceted mast cell in inflammatory Bowel disease. Inflamm Bowel Dis. 2014;20:2364–78.
Article
PubMed
Google Scholar
Al-Haddad S. The role of eosinophils in inflammatory bowel disease. Gut. 2005;54:1674–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cameselle-Teijeiro J, Ladra MJ, Abdulkader I, Eloy C, Soares P, Barreiro F, et al. Increased lymphangiogenesis in Riedel thyroiditis (Immunoglobulin G4-related thyroid disease). Virchows Arch. 2014;465:359–64.
Article
CAS
PubMed
Google Scholar
Tani Y, Isobe Y, Imoto Y, Segi-Nishida E, Sugimoto Y, Arai H, et al. Eosinophils control the resolution of inflammation and draining lymph node hypertrophy through the proresolving mediators and CXCL13 pathway in mice. FASEB J. 2014;28:4036–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi H-Z, Humbles A, Gerard C, Jin Z, Weller PF. Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest. 2000;105:945–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa SF, Trivellato GF, Rebech GT, Oliveira dos Santos Maciel M, Melo LM, Luvizotto MCR, et al. Eosinophilic inflammation in lymph nodes of dogs with visceral leishmaniasis. Parasite Immunol. 2018;40:e12567.
Article
PubMed
CAS
Google Scholar
Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76.
Article
CAS
PubMed
Google Scholar
Ji R-C. Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 2012;69:897–914.
Article
CAS
PubMed
Google Scholar
Padera TP, Meijer EFJ, Munn LL. The lymphatic system in disease processes and cancer progression. Annu Rev Biomed Eng. 2016;18:125–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17:1371–80.
Article
CAS
PubMed
Google Scholar
Abouelkheir GR, Upchurch BD, Rutkowski JM. Lymphangiogenesis: fuel, smoke, or extinguisher of inflammation’s fire? Exp Biol Med. 2017;242:884–95.
Article
CAS
Google Scholar
Jurisic G, Sundberg JP, Detmar M. Blockade of VEGF receptor-3 aggravates inflammatory Bowel disease and lymphatic vessel enlargement. Inflamm Bowel Dis. 2013;1:1983.
Google Scholar
Wu H, Rahman HNA, Dong Y, Liu X, Lee Y, Wen A, et al. Epsin deficiency promotes lymphangiogenesis through regulation of VEGFR3 degradation in diabetes. J Clin Invest. 2018;128:4025–43.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang C, Li L, Liang X, Cheng P, Li Q, et al. Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis. 2021;12:109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varricchi G, Loffredo S, Galdiero MR, Marone G, Cristinziano L, Granata F, et al. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol. 2018;53:152–60.
Article
CAS
PubMed
Google Scholar
Cosín-Roger J, Ortiz-Masiá D, Calatayud S, Hernández C, Esplugues JV, Barrachina MD. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunol. 2016;9:986–98.
Article
PubMed
CAS
Google Scholar
Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17:545–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21:223–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–8.
Article
CAS
PubMed
Google Scholar
Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019;10:906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skupsky J, Sabui S, Hwang M, Nakasaki M, Cahalan MD, Said HM. Biotin supplementation ameliorates murine colitis by preventing NF-κB activation. Cell Mol Gastroenterol Hepatol. 2020;9:557–67.
Article
PubMed
Google Scholar
Flister MJ, Volk LD, Ran S. Characterization of Prox1 and VEGFR-3 expression and lymphatic phenotype in normal organs of mice lacking p50 subunit of NF-κB. Microcirculation. 2011;18:85–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flister MJ, Wilber A, Hall KL, Iwata C, Miyazono K, Nisato RE, et al. Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-κB and Prox1. Blood. 2010;115:418–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prangsaengtong O, Jantaree P, Lirdprapamongkol K, Ngiwsara L, Svasti J, Koizumi K. Aspirin suppresses components of lymphangiogenesis and lymphatic vessel remodeling by inhibiting the NF-κB/VCAM-1 pathway in human lymphatic endothelial cells. Vasc Med. 2018;23:201–11.
Article
CAS
PubMed
Google Scholar
Prangsaengtong O, Jantaree P, Lirdprapamongkol K, Svasti J, Koizumi K. Shikonin Suppresses Lymphangiogenesis via NF-κB/HIF-1α Axis Inhibition. Biol Pharm Bull. 2018;41:1659–66.
Article
CAS
PubMed
Google Scholar
Linares PM, Gisbert JP. Role of growth factors in the development of lymphangiogenesis driven by inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:1814–21.
Article
PubMed
Google Scholar
Kaiserling E, Kröber S, Geleff S. Lymphatic vessels in the colonic mucosa in ulcerative colitis. Lymphology. 2003;36:52–61.
CAS
PubMed
Google Scholar
D’Alessio S, Tacconi C, Danese S. Targeting lymphatics in inflammatory bowel disease. Oncotarget. 2015;6:34047–8.
Article
PubMed
Google Scholar
Volk-Draper LD, Hall KL, Wilber AC, Ran S. Lymphatic endothelial progenitors originate from plastic myeloid cells activated by toll-like receptor-4. PLoS ONE. 2017;12:e0179257.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu G, Huang Q, Huang Y, Zheng W, Hua J, Yang S, et al. Lipopolysaccharide increases the release of VEGF-C that enhances cell motility and promotes lymphangiogenesis and lymphatic metastasis through the TLR4- NF-κB/JNK pathways in colorectal cancer. Oncotarget. 2016;7:73711–24.
Article
PubMed
PubMed Central
Google Scholar
Shi Y-J, Gong H-F, Zhao Q-Q, Liu X-S, Liu C, Wang H. Critical role of toll-like receptor 4 (TLR4) in dextran sulfate sodium (DSS)-Induced intestinal injury and repair. Toxicol Lett. 2019;315:23–30.
Article
CAS
PubMed
Google Scholar
Stephens M, Liao S, von der Weid P-Y. Mesenteric lymphatic alterations observed during DSS induced intestinal inflammation are driven in a TLR4-PAMP/DAMP discriminative manner. Front Immunol. 2019;10:557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci. 2018;109:3671–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hait NC, Maiti A. The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediat Inflamm. 2017;2017:1–17.
Article
CAS
Google Scholar
Bernier-Latmani J, Cisarovsky C, Demir CS, Bruand M, Jaquet M, Davanture S, et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J Clin Invest. 2015;125:4572–86.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Wang H, Cao J, Ye C. Exosomes from adipose-derived stem cells promotes VEGF-C-dependent lymphangiogenesis by regulating miRNA-132/TGF-β pathway. Cell Physiol Biochem. 2018;49:160–71.
Article
PubMed
CAS
Google Scholar
Misselwitz B, Juillerat P, Sulz MC, Siegmund B, Brand S. Emerging treatment options in inflammatory Bowel disease: Janus Kinases, stem cells, and more. Digestion. 2020;101:69–82.
Article
CAS
PubMed
Google Scholar
Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, et al. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev. 2020;95(5):1287–307.
Article
PubMed
Google Scholar
Han L, Zhang M, Wang M, Jia J, Zhao M, Fan Y, et al. High mobility group Box-1 promotes inflammation-induced lymphangiogenesis via toll-like receptor 4-dependent signalling pathway. PLoS ONE. 2016;11:e0154187.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, et al. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett. 2018;418:176–84.
Article
CAS
PubMed
Google Scholar
Danussi C, Del Bel BL, Pivetta E, Modica TME, Muro A, Wassermann B, et al. EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance. Mol Cell Biol. 2013;33:4381–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capuano A, Pivetta E, Baldissera F, Bosisio G, Wassermann B, Bucciotti F, et al. Integrin binding site within the gC1q domain orchestrates EMILIN-1-induced lymphangiogenesis. Matrix Biol. 2019;81:34–49.
Article
CAS
PubMed
Google Scholar
Hale LP, Greer PK. A novel murine model of inflammatory Bowel disease and inflammation-associated colon cancer with ulcerative colitis-like features. PLoS ONE. 2012;7:e41797.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones RB, Zhu X, Moan E, Murff HJ, Ness RM, Seidner DL, et al. Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci Rep. 2018;8:4139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suh SH, Choe K, Hong SP, Jeong S, Mäkinen T, Kim KS, et al. Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages. EMBO Rep. 2019;20:e46927.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fink LN, Frøkiaer H. Dendritic cells from Peyer’s patches and mesenteric lymph nodes differ from spleen dendritic cells in their response to commensal gut bacteria. Scand J Immunol. 2008;68:270–9.
Article
CAS
PubMed
Google Scholar
Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, et al. CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nat Commun. 2017;8:14715.
Article
PubMed
PubMed Central
Google Scholar