McVary KT. BPH: epidemiology and comorbidities. Am J Manag Care. 2006;12(5 Suppl):S122–8.
PubMed
Google Scholar
Roehrborn CG. BPH progression: concept and key learning from MTOPS, ALTESS, COMBAT, and ALF-ONE. BJU Int. 2008;101(Suppl3):17–21.
Article
PubMed
Google Scholar
McConnell JD, Roehrborn CG, Bautista OM, Andriole GL Jr, Dixon CM, Kusek JW, et al. The long- term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med. 2003;349(25):2387–98.
Article
CAS
PubMed
Google Scholar
Chughtai B, Lee R, Te A, Kaplan S. Role of inflammation in benign prostatic hyperplasia. Rev Urol. 2011;13(3):147–50.
PubMed
PubMed Central
Google Scholar
Ficarra V, Rossanese M, Zazzara M, Giannarini G, Abbinante M, Bartoletti R, et al. The role of inflammation in lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) and its potential impact on medical therapy. Curr Urol Rep. 2014;15(12):463–9.
Article
PubMed
Google Scholar
Kahokehr A, Vather R, Nixon A, Hill AG. Non-steroidal anti-inflammatory drugs for lower urinary tract symptoms in benign prostatic hyperplasia: systematic review and meta-analysis of randomized controlled trials. BJU Int. 2013;111(2):304–11.
Article
CAS
PubMed
Google Scholar
Fowke JH, Koyama T, Fadare O, Clark PE. Does inflammation mediate the obesity and BPH relationship? An epidemiologic analysis of body composition and inflammatory markers in blood, urine, and prostate tissue, and the relationship with prostate enlargement and lower urinary tract. PLoS ONE. 2016;11(6):e0156918.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pagano E, Laudato M, Griffo M, Capasso R. Phytotherapy of benign prostatic hyperplasia. A minirewiev Phytother Res. 2014;28(7):949–55.
Article
CAS
PubMed
Google Scholar
Mohri S, Takahashi H, Sakai M, Takahashi S, Waki N, Alzawa K, et al. Wide-range screening of anti-inflammatory compounds in tomato using LC-MS and elucidating the mechanism of their functions. PLoS ONE. 2018;12(13):e0191203.
Article
CAS
Google Scholar
Chaudhary P, Sharma A, Singh B, Nagpal AK. Bioactivities of phytochemical present in tomato. J Food Sci Technol. 2018;55(8):2833–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghavipour M, Saedisomeolia A, Dialali M, Sotoudeh G, Eshraghyan MR, Moghadam AM, et al. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr. 2013;109(11):2031–5.
Article
CAS
PubMed
Google Scholar
Li YF, Chang YY, Huang HC, Wu YC, Yang MD, Chao P-M. Tomato juice supplementation in young women reduces inflammatory adipokine levels independently of body fat reduction. Nutrition. 2016;31(5):691–6.
Article
CAS
Google Scholar
Vitaglione P, Fogliano V, Stingo S, Scalfi L, Caporaso N, Morisco F. Development of a tomato-based food for special medical purposes as therapy adjuvant for patients with HCV infection. Eur J Clin Nutr. 2007;61(7):906–15.
Article
CAS
PubMed
Google Scholar
Pannellini T, Iezzi M, Liberatore M, Sabatini F, Iacobelli S, Rossi C, et al. A dietary tomato supplement prevents prostate cancer in TRAMP mice. Cancer Prev Res. 2010;3(10):1284–91.
Article
CAS
Google Scholar
Conlon LE, Wallig MA, Erdman JW Jr. Low-lycopene containing tomato powder diet does not protect against prostate cancer in TRAMP mice. Nutr Res. 2015;35(10):882–90.
Article
CAS
PubMed
Google Scholar
Boileau TW, Liao Z, Kim S, Lemeshow S, Erdman JW Jr, Clinton SK. Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. J Nat Cancer Inst. 2003;95(21):1578–86.
Article
CAS
PubMed
Google Scholar
Canene-Adams K, Lindshield BL, Wang S, Jeffery EH, Clinton SK, Erdman JW Jr. Combinations of tomato and broccoli enhance antitumor activity in Dunning R3327-H prostate adenocarcinomas. Cancer Res. 2007;67(2):836–43.
Article
CAS
PubMed
Google Scholar
Applegate C, Rowles J 3rd, Miller R, Wallig M, Clinton S, O’Brien W et al. Dietary Tomato, but Not Lycopene Supplementation, Impacts Molecular Outcomes of Castration-resistant Prostate Cancer in the TRAMP Model. Curr Dev Nutr. 2019;3(Suppl1):eCollection https://doi.org/10.1093/cdn/nzz030.P05-015-19.
Mossine VV, Chopra P, Mawhinney TP. Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res. 2008;68(11):4384–91.
Article
CAS
PubMed
Google Scholar
Cellini A, Natali PG, Iezzi M, Piantelli M, Fogliano V, Iacobelli S. Efficacy and safety of Lycoprozen®, a novel tomato-based food supplement in patients with benign prostatic hyperplasia. Int J Nutr. 2018;3(2):1–5.
Article
Google Scholar
Fogliano V, Iacobelli S, Piantelli M. “Tomato powder-based composition”. 2016; US Patent App. 15/024,165.
Irani J, Levillain P, Goujon JM, Bon D, Dore B, Aubert J. Inflammation in benign prostatic hyperplasia: correlation with prostate specific antigen value. J Urol. 1997;157(4):1301–3.
Article
CAS
PubMed
Google Scholar
Badia X, Garcia-Losa M, Dal-Re R. Ten-language translation and harmonization of the International prostate symptom score: developing methodology for multinational clinical trials. Eur Urol. 1997;31(2):129–40.
Article
CAS
PubMed
Google Scholar
Luvizotto Rde A, Nascimento AF, Imaizumi E, Pierine DT, Conde SJ, Correa CR, et al. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin, and IL-6 in diet-induced obese rats. Brit J Nutr. 2013;110(10):1803–9.
Article
PubMed
CAS
Google Scholar
Kim YI, Mohri S, Hirai S, Lin S, Goto T, Ohvane C, et al. Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages. Biosci Biotechnol Biochem. 2015;79(1):82–7.
Article
CAS
PubMed
Google Scholar
Cheng HM, Koutsidis G, Lodge JK, Ashor A, Siervo M, Lara J. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis. Atherosclerosis. 2017;257:100–8.
Article
CAS
PubMed
Google Scholar
Gravas S, Cornu JN, Drake MJ. EAU Guidelines on Management of non-neurogenic male lower urinary tract symptoms. 5.2 Pharmacological treatment. 2018;17–25, ISBN 978–94–92671–01–1. http://uroweb.org/guidelines/compilations-of-all-guidelines/.
Wertz K, Siler U, Goralczyk R. Lycopene: modes of action to promote prostate health. Arch Biochemical Biophys. 2004;430(1):127–34.
Article
CAS
Google Scholar
Kouka P, Chatzieffraimidi GA, Raftis G, Stagos D, Angelis A, Stathopoulos P, et al. Antioxidant effects of an olive oil total polyphenolic fraction from a Greek Olea europaea variety in different cell cultures. Phytomedicine. 2018;47:135–42.
Article
CAS
PubMed
Google Scholar
Zhao Q, Yang F, Meng L, Chen D, Wang M, Lu X, et al. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF-kB, MAPKs, and Nrf2 signaling pathways in rats. Andrology. 2020;8(3):747–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández-Bedmar Z, Anter J, Alonso MÁ. Anti/genotoxic, longevity inductive, cytotoxic, and clastogenic-related bioactivities of tomato and lycopene. Environ Mol Mutagen. 2018;59(5):427–37.
Article
PubMed
CAS
Google Scholar
.Roehrborn C. G., McConnell J. Etiology, pathophysiology, epidemiology and natural history of benign prostatic hyperplasia. In Walsh P, Retik A, Vaughan E, Wein A, editors. Campbell’s Urology 8th Edition. Philadelphia: Saunders; 2002. Pp. 1297–1333.
Umtergasser G, Madersbacher S, Berger P. Benign prostatic hyperplasia: age related tissue remodeling. Exp Gerontol. 2005;40(3):121–8.
Article
Google Scholar
Kim HS, Bowen P, Chen L, Duncan C, Ghosh L, Sharifi R, et al. Effects of tomato sauce consumption on apoptotic cell death in prostate benign hyperplasia and carcinoma. Nutr Cancer. 2003;47(1):40–7.
Article
CAS
PubMed
Google Scholar
Liu C, Lian F, Smith DE, Russel RM, Wang X-D. Lycopene supplementation inhibits lung squamous metaplasia and induces apoptosis via up-regulating insulin-like growth factor-binding protein 3 in cigarette smoke-exposed ferrets. Cancer Res. 2003;63(12):3138–44.
CAS
PubMed
Google Scholar
Applegate CC, Rowles JL, Erdman JW. Can lycopene impact the androgen axis in prostate cancer? a systematic review of cell culture and animal studies. Nutrients. 2019;11(3):633. https://doi.org/10.3390/nu11030633.
Article
CAS
PubMed Central
Google Scholar
Schatteman PH, Hoekx L, Wyndaele JJ, Jeuris W, Van Marck E. Inflammation in prostate biopsies of men without prostatic malignancy or clinical prostatitis: correlation with total serum PSA and PSA density. Eur Urol. 2000;37(4):404–12.
Article
CAS
PubMed
Google Scholar
Meert T, Baten E, van Renterghem K. Clinical importance of histopathological inflammation in patients with lower urinary tract symptoms due to benign prostatic hyperplasia: a prospective study of 222 patients. Curr Urol. 2017;10(3):150–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, Ghosh L, van Breemen R, et al. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst. 2001;93(24):1872–9.
Article
CAS
PubMed
Google Scholar
Jatoi A, Burch P, Hillman D, Vanyo JM, Dakhil S, Nikcevich D, et al. A tomato-based, lycopene-containing intervention for androgen-independent prostate cancer: results of a Phase II study from the North Central Cancer Treatment Group. Urology. 2007;69(2):289–94.
Article
PubMed
Google Scholar
Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, Patrick A. A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk. Nutr Cancer. 2007;57(2):130–7.
Article
CAS
PubMed
Google Scholar
Paur I, Lilleby W, Kjølsrud Bøhn S, Hulande E, Klein W, Vlatkovic L, et al. Tomato-based randomized controlled trial in prostate cancer patients: Effect on PSA. Clin Nutr. 2017;36(3):672–9.
Article
CAS
PubMed
Google Scholar
Eleazu C, Eleazu K, Kalu W. Management of benign prostatic hyperplasia: could dietary polyphenols be an alternative to existing therapies? Front Pharmacol. 2017;8:234. https://doi.org/10.3389/fphar.2017.00234.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618. https://doi.org/10.3390/nu10111618.
Article
CAS
PubMed Central
Google Scholar
Yuan JJ, Coplen DE, Petros JA, Figenshau RS, Ratlift TL, Smith DS, et al. Effects of rectal examination, prostatic massage, ultrasonography and needle biopsy on serum prostate-specific antigen levels. J Urol. 1992;147(3pt2):810–4.
Article
CAS
PubMed
Google Scholar
Ørsted DD, Bojesen SE, Nielsen SF, Nordestgaard BG. Association of clinical benign prostate hyperplasia with prostate cancer incidence and mortality revisited: a nationwide cohort study of 3 009 258 men. Eur Urol. 2011;60(4):691–8.
Article
PubMed
Google Scholar
Huang JG, Campbell N, Goldenberg SL. PSA and beyond: Biomarkers in prostate cancer. BC Med J. 2014;56(7):334–41.
Google Scholar
Morote J, Ravento CX, Lorente JA, Miguel A, Lopez-Pacios MA, Encabo G, et al. Measurement of free PSA in the diagnosis and staging of prostate cancer. Int J Cancer. 1997;71(5):756–9.
Article
CAS
PubMed
Google Scholar
Walz J, Haese A, Scattoni V, Steuber T, Chun FKH, Briganti A, et al. Percent free prostate-specific antigen (PSA) is an accurate predictor of prostate cancer risk in men with serum PSA 2.5 ng/mL and lower. Cancer. 2008;113(10):2695–703.
Article
CAS
PubMed
Google Scholar
Salehi B, Sharifi-Rad R, Sharopov F, Namiesnik J, Roointan A, Kamle M, et al. Beneficial effects and potential risks of tomato consumption for human health: an overview. Nutrition. 2019;62:201–8.
Article
PubMed
Google Scholar
Chen P, Zhang W, Wang X, Zhao K, Singh Negi D, Zhuo L, et al. Lycopene and risk of prostate cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94(33):e1260.
Article
CAS
Google Scholar
Er V, Lane JA, Martin RM, Emmet P, Gilbert R, Avery KN, et al. Adherence to dietary and lifestyle recommendations and prostate cancer risk in the prostate testing for cancer and treatment (ProtecT) Trial. Cancer Epidemiol Biomarkers Prev. 2014;23(10):2066–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minutoli L, Altavilla D, Marini H, Rinaldi M, Irrera N, Pizzino G, et al. Inhibitors of apoptosis proteins in experimental benign prostatic hyperplasia: effects of Serenoa repens, selenium and lycopene. J Biomed Sci. 2014. https://doi.org/10.1186/1423-0127-21-19.
Article
PubMed
PubMed Central
Google Scholar
Han GM, Meza JL, Soliman GA, Islam KM, Aatanabe-Galloway S. Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome. Nutr Res. 2016;36(5):402–7.
Article
CAS
PubMed
Google Scholar
Li Y, Wang H, Zhang Y, Martin C. Can the world’s favorite fruit, tomato, provide a biosynthetic chassis for high-value metabolites? Plant Cell Rep. 2018;37(10):1443–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazidi M, Katsiki N, George ES, Banach M. Tomato and lycopene consumption is inversely associated with total and cause-specific mortality: a population-based cohort study, on behalf of the International Lipid Expert Panel (ILEP). Br J Nutr. 2020;124(12):1303–10. https://doi.org/10.1017/S0007114519002150 (Epub 2019 Aug 22).
Article
CAS
PubMed
Google Scholar