Danielson LS, Menendez S, Attolini CS, Guijarro MV, Bisogna M, Wei J, et al. A differentiation-based microRNA signature identifies leiomyosarcoma as a mesenchymal stem cell-related malignancy. Am J Pathol. 2010;177(2):908–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stiller CA, Botta L, Brewster DH, Ho VKY, Frezza AM, Whelan J, et al. Survival of adults with cancers of bone or soft tissue in Europe-report from the EUROCARE-5 study. Cancer Epidemiol. 2018;56:146–53.
Article
PubMed
Google Scholar
Ducimetiere F, Lurkin A, Ranchere-Vince D, Decouvelaere AV, Peoc’h M, Istier L, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS ONE. 2011;6(8):e20294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mocellin S, Provenzano M. RNA interference: learning gene knock-down from cell physiology. J Transl Med. 2004;2(1):39.
Article
PubMed
PubMed Central
Google Scholar
Jurcevic S, Klinga-Levan K, Olsson B, Ejeskar K. Verification of microRNA expression in human endometrial adenocarcinoma. BMC Cancer. 2016;2(16):261.
Article
Google Scholar
Pichler M, Winter E, Ress AL, Bauernhofer T, Gerger A, Kiesslich T, et al. miR-181a is associated with poor clinical outcome in patients with colorectal cancer treated with EGFR inhibitor. J Clin Pathol. 2014;67(3):198–203.
Article
CAS
PubMed
Google Scholar
Ling H, Krassnig L, Bullock MD, Pichler M. MicroRNAs in testicular cancer diagnosis and prognosis. Urol Clin North Am. 2016;43(1):127–34.
Article
PubMed
Google Scholar
Gong JN, Yu J, Lin HS, Zhang XH, Yin XL, Xiao Z, et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ. 2014;21(1):100–12.
Article
CAS
PubMed
Google Scholar
Yin Z, Xu M, Li P. miRNA-221 acts as an oncogenic role by directly targeting TIMP2 in non-small-cell lung carcinoma. Gene. 2017;15(620):46–53.
Article
Google Scholar
Troppan K, Wenzl K, Deutsch A, Ling H, Neumeister P, Pichler M. MicroRNAs in diffuse large B-cell lymphoma: implications for pathogenesis, diagnosis, prognosis and therapy. Anticancer Res. 2014;34(2):557–64.
CAS
PubMed
Google Scholar
Bertoli G, Cava C, Castiglioni I. The potential of miRNAs for diagnosis, treatment and monitoring of breast cancer. Scand J Clin Lab Invest Suppl. 2016;245:S34–9.
Article
PubMed
Google Scholar
Zhao F, Lv J, Gan H, Li Y, Wang R, Zhang H, et al. MiRNA profile of osteosarcoma with CD117 and stro-1 expression: miR-1247 functions as an onco-miRNA by targeting MAP3K9. Int J Clin Exp Pathol. 2015;8(2):1451–8.
CAS
PubMed
PubMed Central
Google Scholar
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22.
Article
CAS
PubMed
Google Scholar
Mocellin S, Pasquali S, Pilati P. Oncomirs: from tumor biology to molecularly targeted anticancer strategies. Mini Rev Med Chem. 2009;9(1):70–80.
Article
CAS
PubMed
Google Scholar
Smolle MA, Leithner A, Posch F, Szkandera J, Liegl-Atzwanger B, Pichler M. MicroRNAs in different histologies of soft tissue sarcoma: a comprehensive review. Int J Mol Sci. 2017;18(9):1960. https://doi.org/10.3390/ijms18091960.
Article
CAS
PubMed Central
Google Scholar
de Almeida BC, Garcia N, Maffazioli G, Gonzalez Dos Anjos L, Chada Baracat E, Candido Carvalho K. Oncomirs expression profiling in uterine leiomyosarcoma cells. Int J Mol Sci. 2017;19(1):52. https://doi.org/10.3390/ijms19010052.
Article
CAS
PubMed Central
Google Scholar
Gonzalez Dos Anjos L, de Almeida BC, Gomes de Almeida T, Mourao Lavorato Rocha A, De Nardo Maffazioli G, Soares FA, et al. Could miRNA signatures be useful for predicting uterine sarcoma and carcinosarcoma prognosis and treatment. Cancers (Basel). 2018;10(9):315. https://doi.org/10.3390/cancers10090315.
Article
Google Scholar
Pazzaglia L, Novello C, Conti A, Pollino S, Picci P, Benassi MS. miR-152 down-regulation is associated with MET up-regulation in leiomyosarcoma and undifferentiated pleomorphic sarcoma. Cell Oncol (Dordr). 2017;40(1):77–88.
Article
CAS
Google Scholar
Benna C, Rajendran S, Spiro G, Tropea S, Del Fiore P, Rossi CR, et al. Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis. J Transl Med. 2018;16(1):338.
Article
PubMed
PubMed Central
Google Scholar
Sarver AL, Phalak R, Thayanithy V, Subramanian S. S-MED: sarcoma microRNA expression database. Lab Invest. 2010;90(5):753.
Article
CAS
PubMed
Google Scholar
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015. https://doi.org/10.7554/elife.05005.
Article
PubMed
PubMed Central
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.
Article
CAS
Google Scholar
Riffo-Campos AL, Riquelme I, Brebi-Mieville P. Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci. 2016;17(12):1987. https://doi.org/10.3390/ijms17121987.
Article
CAS
PubMed Central
Google Scholar
Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics. 2007;23(4):401–7.
Article
CAS
PubMed
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100(16):9440–5.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–8.
Article
CAS
PubMed
Google Scholar
White RJ. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 2008;24(12):622–9.
Article
CAS
PubMed
Google Scholar
White RJ. RNA polymerase III transcription and cancer. Oncogene. 2004;23(18):3208.
Article
CAS
PubMed
Google Scholar
Winter AG, Sourvinos G, Allison SJ, Tosh K, Scott PH, Spandidos DA, et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proc Natl Acad Sci USA. 2000;97(23):12619–24.
Article
CAS
PubMed
Google Scholar
Chen W, Heierhorst J, Brosius J, Tiedge H. Expression of neural BC1 RNA: induction in murine tumours. Eur J Cancer. 1997;33(2):288–92.
Article
CAS
PubMed
Google Scholar
Chen W, Bocker W, Brosius J, Tiedge H. Expression of neural BC200 RNA in human tumours. J Pathol. 1997;183(3):345–51.
Article
CAS
PubMed
Google Scholar
White RJ, Trouche D, Martin K, Jackson SP, Kouzarides T. Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature. 1996;382(6586):88–90.
Article
CAS
PubMed
Google Scholar
Crighton D, Woiwode A, Zhang C, Mandavia N, Morton JP, Warnock LJ, et al. p53 represses RNA polymerase III transcription by targeting TBP and inhibiting promoter occupancy by TFIIIB. EMBO J. 2003;22(11):2810–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rapino F, Delaunay S, Zhou Z, Chariot A, Close P. tRNA modification: is cancer having a wobble? Trends Cancer. 2017;3(4):249–52.
Article
CAS
PubMed
Google Scholar
Arias-Carrion O, Stamelou M, Murillo-Rodriguez E, Menendez-Gonzalez M, Poppel E. Dopaminergic reward system: a short integrative review. Int Arch Med. 2010;3:24.
Article
PubMed
PubMed Central
Google Scholar
Ayano G. Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Mental Disord Treat. 2016;2(2):2–5.
Article
Google Scholar
Mizuta K, Zhang Y, Xu D, Mizuta F, D’Ovidio F, Masaki E, et al. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle. Respir Res. 2013;14:89.
Article
PubMed
PubMed Central
Google Scholar
Zeng C, Han Y, Huang H, Yu C, Ren H, Shi W, et al. D1-like receptors inhibit insulin-induced vascular smooth muscle cell proliferation via down-regulation of insulin receptor expression. J Hypertens. 2009;27(5):1033–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao J, Zhang C, Gao F, Li H. The effect and mechanism of dopamine D1 receptors on the proliferation of osteosarcoma cells. Mol Cell Biochem. 2017;430(1–2):31–6.
Article
CAS
PubMed
Google Scholar
Gao J, Gao F. Dopamine D1 receptors induce apoptosis of osteosarcoma cells via changes of MAPK pathway. Clin Exp Pharmacol Physiol. 2017;44(11):1166–8.
Article
CAS
PubMed
Google Scholar
Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol. 2014;206(2):151–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams S, Bateman A, O’Kelly I. Altered expression of two-pore domain potassium (K2P) channels in cancer. PLoS ONE. 2013;8(10):e74589.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Zhong D, Wu X, Sha M, Kang L, Ding Z. Voltage-gated potassium channel Kv1.3 is highly expressed in human osteosarcoma and promotes osteosarcoma growth. Int J Mol Sci. 2013;14(9):19245–56.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Zhong D, Fu X, Liu Q, Kang L, Ding Z. Silencing of Ether à go-go 1 by shRNA inhibits osteosarcoma growth and cell cycle progression. Int J Mol Sci. 2014;15(4):5570–81.
Article
PubMed
PubMed Central
Google Scholar
Wu J, Chen Z, Liu Q, Zeng W, Wu X, Lin B. Silencing of Kv1.5 gene inhibits proliferation and induces apoptosis of osteosarcoma cells. Int J Mol Sci. 2015;16(11):26914–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Suzuki H, Hayashizaki Y, et al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol. 2011;8(1):158–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, et al. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA. 2009;106(5):1502–5.
Article
CAS
PubMed
Google Scholar