This study, designed to identify HRV analysis-derived putative indices associated with self-reported measures in CFS/ME, provides the first evidence of a significant relationship between HRV and fatigue severity in this condition. The findings of this study showed a high association between the questionnaires scores themselves, indicating a close relationship among all the symptoms. A second finding was that all HRV indices (from frequency and temporal domain analyses), except for the LF/HF ratio, were negatively correlated with the self-reported questionnaire scores in both ill and control groups. This indicates that, as expected, low HRV is associated with high scores for fatigue, autonomic dysfunction, sleep quality, anxiety and depression symptoms. Finally, this study reveals a relationship of two HRV indices (RMSSD and HFnu) with fatigue symptoms; that is, low values of RMSSD (obtained from time domain HRV analysis) and low values of HFnu (obtained from frequency domain analysis) are specifically associated with high fatigue symptoms (as assessed by overall FIS-40 score) in the CFS/ME patients, but not in healthy controls. As this relationship did not appear between other HRV variables and other self-reported measures scores, we believe that this is the first evidence of an association between HRV changes and outcome measures in CFS/ME.
This study shows that HRV analysis is a clinically useful non-invasive tool for predicting fatigue severity in CFS/ME. Both the time- and frequency-domain indices were closely related to self-reported autonomic dysfunction, sleep quality, and anxiety and depression in clinical outpatients. CFS/ME patients had lower mean RR, SDNN, RMSSD and pNN50 than healthy controls, and lower LF, HF and HFnu but higher LF/HF. Even though the first set of these HRV parameters were obtained from the time domain analysis and the second set from the frequency domain analysis, they all indicate that CFS/ME patients showed decreased HRV associated with autonomic dysfunction, sleep quality and anxiety/depression symptoms. This is an important finding because the two types of variables point in the same direction, thus adding robustness to the results.
This is the first study to show this consistency between the different HRV indices. To some extent, our results corroborate those of previous studies. Yamamoto et al. [13] reported lower mean RR, but not SDNN, in CFS/ME patients than in matched healthy controls in baseline supine position. In contrast, Yataco et al. [14] had previously reported no differences in LF, HF and LF/HF in baseline supine position between CFS/ME patients and healthy controls.
During sleep, Boneva et al. [25] found shorter mean RR and reduced LF coupled with higher nor-epinephrine levels and lower aldosterone levels in plasma. The authors interpreted this as a state of sympathetic ANS predominance and neuroendocrine disturbances. Monitoring HR during nocturnal sleep in CFS/ME, Rahman et al. [26] found decreased RMSSD, HF and LF/HF ratio in CFS/ME patients compared to those healthy controls. This result is in line with Meeus et al. review [27] who concluded that HRV was only reduced during sleep in ME/CFS.
Lewis et al. [6] used frequency domain analysis to investigate the differences in autonomic dysfunction between two CFS/ME subgroups, POTS vs. non-POTS. Interestingly, they found lower LF, HF and VLF in the POTS cases. The authors did not include HRV time domain parameters, and they proposed these frequency indices as candidate biomarkers for distinguishing between these two CFS/ME phenotypes.
A relevant feature of the procedure used in the current study for recording the RR intervals is the use of 5-min records obtained on 3 different days (similar time schedule, 15–18 h) from each participant. The three values of each variable were averaged and used for the final analysis. It is likely that this method conferred robustness on the measure and, in consequence, led to a more reliable HRV value, less contaminated by everyday variables such as lifestyle habits, food, activity, sleep problem, medication, and so on.
In a recent study from our group exploring abnormalities of circadian rhythm and dysautonomia in CFS/ME, we found changes in the chronotype and symptom patterns in these patients compared with healthy controls. The findings of that study also showed a difference of almost 10 points in self-reported autonomic symptoms [28]. Using the COMPASS, which included 73 questions that assess autonomic dysfunction symptoms in CFS/ME, Newton et al. [29] concluded that an overall COMPASS cut-off score ≥ 32.5 was considered as a useful diagnostic criterion for ANS dysfunction in individuals with CFS/ME. In the current study, CFS/ME patients reported increased orthostatic intolerance, and higher scores of vasomotor, secretomotor, gastrointestinal, bladder, pupillomotor symptoms and total COMPASS scores than healthy controls, in line with previous results reported by our group [28] and others [30].
The development of telemetric devices capable of detecting and capturing R–R interval signals, together with the applications that facilitate the analysis and provide the calculation of HRV indices, may facilitate the use of these signals as biomarker in research and clinical practice. This study breaks new ground in the use of mHealth technology for the real-time analysis of cardiac variability in CFS/ME in a controlled situation. For example, mHealth has been defined as the use of mobile computing and communication technologies in healthcare and public health [31, 32]. The improvement in the speed of the processors, the smaller and longer-lasting batteries, the greater memory capacity and very precise built-in sensors enables more accurate monitoring of health parameters in real time and in natural situations [33].
Heart rate variability is considered an index of cardiac autonomic modulation. In the frequency domain, vagal (parasympathetic) activity is the major contributor to HF variability, whereas both vagal and sympathetic activity contributes to LF variability. The LF/HF ratio is considered an index of sympathovagal balance. For time domain indices, vagal (parasympathetic) activity is the main contributor to pNN50 and RMSSD, whereas SDNN is a measure of total variability, analogous to the total power index in the frequency domain [24]. Autonomic function in CFS/ME shows sympathetic hyperactivity and parasympathetic hypoactivity and this autonomic imbalance might reflect an alteration of the central control pathomechanisms.
Studying parasympathetic activity by using HF power in the frequency domain method and RMSSD in the HRV time domain method, previous studies have shown that the HF component changes after electrical vagal stimulation, muscarinic receptor blockade, and vagotomy [24]. We found decreased mean RR, SDNN, RMSSD and pNN50 in CFS/ME patients compared with healthy controls in the HRV time domain analysis of RR intervals, and the frequency domain analysis revealed decreased LF and HF, and HFnu and increased LF/HF index in CFS/ME patients. This concurrence in these HRV indices from different domains had not been previously reported.
The robust association between fatigue symptoms, anxiety-depression and HRV indices also deserves mention. All scores of fatigue symptoms (physical, cognitive, psychosocial and overall) correlated significantly and negatively with all HRV indices, except for the LF/HF ratio, which showed a positive correlation. This indicates that increased fatigue coincides clearly with a reduced variation in the time interval between consecutive heartbeats. Anxiety and depression scores were also negatively and robustly associated with time domain HRV indices and with the HF index of the frequency domain, suggesting that anxiety and depression symptoms were associated with decreased HRV. All PSQI domains except sleep latency were negatively and robustly associated with the main HRV indices, including SDRR, RMSSD, pNN50 and HF. This result is consistent with those of a previous study reporting lower nocturnal RMSSD and HF in CFS/ME patients than in healthy controls [26]. In the current study, sleep efficiency, disturbances, sleeping medication and total scores were also associated with HFnu. Interestingly, the correlations of HF and HFnu with the questionnaires scores were stronger than those of the LF and LF/HF indices. Overall, the significance of the HF and HFnu when present was greater than that of LF or LF/HF in all the correlations analysed, suggesting that HF and or HFnu may be more specific correlates of fatigue and comorbid health conditions than LF or LF/HF.
Regarding the COMPASS-31 results, four of the six domains (orthostatic intolerance, secretomotor, gastrointestinal, and pupillomotor) as well as the total score were associated with decreased HRV time domain and HF and HFnu parameters, which again corroborates the specificity of those measures as biomarker that correlate with fatigue and comorbid conditions. We stress that orthostatic intolerance, secretomotor and total scores were also associated with LF and the LF/HF ratio, but with a lower degree of significance than the other parameters mentioned above. Vasomotor and bladder domains were not associated with HRV, thus indicating certain specificity in the association between the autonomic dysfunction scored by COMPASS-31 and HRV domain parameters. With the exception of the LF/HF ratio, a significant negative association was found between all the HRV parameters and symptoms of sleep disturbances, anxiety/depression, autonomic dysfunction and, most significantly, the fatigue scores. Thus, low values for the HRV indices were associated with high scores of the clinical symptoms.
Finally, the results showed a robust relationship between the self-reported measure score of fatigue assessed by FIS-40 scale and mean RR, RMSSD and HFnu HRV indices in CFS/ME patients, but not in healthy controls. Interestingly, HF domain together with mood status (assessed by the Profile of Mood Status) and blood biomarkers (such as serum dehydroepiandrosterone sulfate levels, cortisol and TNF-α), HF improved in CFS/ME patients after a session of isometric yoga [34]. These changes may be related to a short-term fatigue-relieving effect of sitting isometric yoga and the ensuing increase in vagal nerve functioning observed due to the reduction of the heart rate and the increase in high frequency power. These results indicate the importance of the physiological parameters involved in the R–R variability, and of the assessment of fatigue severity status in individuals with CFS/ME.