Luo J, Baranov P, Patel S, Ouyang H, Quach J, Wu F, et al. Human retinal progenitor cell transplantation preserves vision. J Biol Chem. 2014;289(10):6362–71. doi:10.1074/jbc.M113.513713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49. doi:10.1016/s2214-109x(13)70113-x.
Article
PubMed
Google Scholar
Prenner JL, Halperin LS, Rycroft C, Hogue S, Williams Liu Z, Seibert R. Disease burden in the treatment of age-related macular degeneration: findings from a time-and-motion study. Am J Ophthalmol. 2015;160(4):725–731.e1. doi:10.1016/j.ajo.2015.06.023.
Article
PubMed
Google Scholar
Munk MR, Ceklic L, Ebneter A, Huf W, Wolf S, Zinkernagel MS. Macular atrophy in patients with long-term anti-VEGF treatment for neovascular age-related macular degeneration. Acta Ophthalmol. 2016;94(8):e757–64. doi:10.1111/aos.13157.
Article
CAS
PubMed
Google Scholar
Chen M, Tian S, Glasgow NG, Gibson G, Yang X, Shiber CE, et al. Lgr5(+) amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell. 2015;14(4):635–43. doi:10.1111/acel.12346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prada C, Puga J, Perez-Mendez L, Lopez R, Ramirez G. Spatial and temporal patterns of neurogenesis in the chick retina. Eur J Neurosci. 1991;3(6):559–69.
Article
PubMed
Google Scholar
Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, et al. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci. 2004;45(11):4167–73. doi:10.1167/iovs.04-0511.
Article
PubMed
Google Scholar
Qiu G, Seiler MJ, Thomas BB, Wu K, Radosevich M, Sadda SR. Revisiting nestin expression in retinal progenitor cells in vitro and9 after transplantation in vivo. Exp Eye Res. 2007;84(6):1047–59. doi:10.1016/j.exer.2007.01.014.
Article
CAS
PubMed
Google Scholar
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.
Article
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.
Article
CAS
PubMed
Google Scholar
Arnhold S, Absenger Y, Klein H, Addicks K, Schraermeyer U. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol. 2007;245(3):414–22. doi:10.1007/s00417-006-0382-7.
Article
CAS
PubMed
Google Scholar
Rezanejad H, Soheili ZS, Haddad F, Matin MM, Samiei S, Manafi A, et al. In vitro differentiation of adipose-tissue-derived mesenchymal stem cells into neural retinal cells through expression of human PAX6 (5a) gene. Cell Tissue Res. 2014;356(1):65–75. doi:10.1007/s00441-014-1795-y.
Article
CAS
PubMed
Google Scholar
Klassen H, Warfvinge K, Schwartz PH, Kiilgaard JF, Shamie N, Jiang C, et al. Isolation of progenitor cells from GFP-transgenic pigs and transplantation to the retina of allorecipients. Cloning Stem Cells. 2008;10(3):391–402. doi:10.1089/clo.2008.0010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE. 2011;6(4):e18992. doi:10.1371/journal.pone.0018992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16. doi:10.1016/s0140-6736(14)61376-3.
Article
PubMed
Google Scholar
Song Won K, Park K-M, Kim H-J, Lee Jae H, Choi J, Chong So Y, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in asian patients. Stem Cell Rep. 2015;4(5):860–72. doi:10.1016/j.stemcr.2015.04.005.
Article
CAS
Google Scholar
Siqueira RC, Messias A, Messias K, Arcieri RS, Ruiz MA, Souza NF, et al. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (reticell-clinical trial). Stem Cell Res Ther. 2015;6:29. doi:10.1186/s13287-015-0020-6.
Article
PubMed
PubMed Central
Google Scholar
Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, et al. Human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue. Invest Ophthalmol Vis Sci. 2015;56(12):7085–99. doi:10.1167/iovs.14-16246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wetts R, Fraser SE. Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988;239(4844):1142–5.
Article
CAS
PubMed
Google Scholar
Turner DL, Cepko CL. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987;328(6126):131–6. doi:10.1038/328131a0.
Article
CAS
PubMed
Google Scholar
Canola K, Angenieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, et al. Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci. 2007;48(1):446–54. doi:10.1167/iovs.06-0190.
Article
PubMed
PubMed Central
Google Scholar
Cho SJ, Lee YS, Lee JI, Bang JI, Yang J, Klassen H, et al. Confirmation of germ-line transmission in the red fluorescence protein (RFP) transgenic cloned male cat. Cell Reprogramming. 2010;12(6):739–47. doi:10.1089/cell.2010.0009.
Article
Google Scholar
Klassen H, Kiilgaard JF, Zahir T, Ziaeian B, Kirov I, Scherfig E, et al. Progenitor cells from the porcine neural retina express photoreceptor markers after transplantation to the subretinal space of allorecipients. Stem Cells. 2007;25(5):1222–30. doi:10.1634/stemcells.2006-0541.
Article
CAS
PubMed
Google Scholar
Seiler MJ, Aramant RB, Seeliger MW, Bragadottir R, Mahoney M, Narfstrom K. Functional and structural assessment of retinal sheet allograft transplantation in feline hereditary retinal degeneration. Vet Ophthalmol. 2009;12(3):158–69. doi:10.1111/j.1463-5224.2009.00693.x.
Article
PubMed
Google Scholar
Liu K, Mao J, Song L, Fan A, Zhang S, Wang J, et al. DNA repair and replication links to pluripotency and differentiation capacity of pig iPS cells. PLoS ONE. 2017;12(3):e0173047. doi:10.1371/journal.pone.0173047.
Article
PubMed
PubMed Central
Google Scholar
Ren F, Yu S, Chen R, Lv X, Pan C. Identification of a novel 12-bp insertion/deletion (indel) of iPS-related Oct4 gene and its association with reproductive traits in male piglets. Anim Reprod Sci. 2017;178:55–60. doi:10.1016/j.anireprosci.2017.01.009.
Article
CAS
PubMed
Google Scholar
Aftab U, Jiang C, Tucker B, Kim JY, Klassen H, Miljan E, et al. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res. 2009;89(3):301–10. doi:10.1016/j.exer.2009.03.025.
Article
CAS
PubMed
Google Scholar
Yang P, Seiler MJ, Aramant RB, Whittemore SR. In vitro isolation and expansion of human retinal progenitor cells. Exp Neurol. 2002;177(1):326–31.
Article
CAS
PubMed
Google Scholar
O’Brien KM, Schulte D, Hendrickson AE. Expression of photoreceptor-associated molecules during human fetal eye development. Mol Vis. 2003;9:401–9.
PubMed
Google Scholar
Zhou PY, Peng GH, Xu H, Yin ZQ. c-Kit(+) cells isolated from human fetal retinas represent a new population of retinal progenitor cells. J Cell Sci. 2015;128(11):2169–78. doi:10.1242/jcs.169086.
Article
CAS
PubMed
Google Scholar
Li SY, Yin ZQ, Chen SJ, Chen LF, Liu Y. Rescue from light-induced retinal degeneration by human fetal retinal transplantation in minipigs. Curr Eye Res. 2009;34(7):523–35.
Article
PubMed
Google Scholar
Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, et al. Retinal stem cells in the adult mammalian eye. Science. 2000;287(5460):2032–6.
Article
CAS
PubMed
Google Scholar
Tian C, Zhao T, Zeng Y, Yin ZQ. Increased Muller cell de-differentiation after grafting of retinal stem cell in the sub-retinal space of Royal College of Surgeons rats. Tissue Eng Part A. 2011;17(19–20):2523–32. doi:10.1089/ten.TEA.2010.0649.
Article
CAS
PubMed
Google Scholar
Jensen AM, Raff MC. Continuous observation of multipotential retinal progenitor cells in clonal density culture. Dev Biol. 1997;188(2):267–79. doi:10.1006/dbio.1997.8645.
Article
CAS
PubMed
Google Scholar
Xu Y, Balasubramaniam B, Copland DA, Liu J, Armitage MJ, Dick AD. Activated adult microglia influence retinal progenitor cell proliferation and differentiation toward recoverin-expressing neuron-like cells in a co-culture model. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1085–96. doi:10.1007/s00417-015-2961-y.
Article
CAS
PubMed
Google Scholar
Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): new facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015;26(5):507–15. doi:10.1016/j.cytogfr.2015.07.007.
Article
CAS
PubMed
Google Scholar
Rosenthal R, Wohlleben H, Malek G, Schlichting L, Thieme H, Bowes Rickman C, et al. Insulin-like growth factor-1 contributes to neovascularization in age-related macular degeneration. Biochem Biophys Res Commun. 2004;323(4):1203–8. doi:10.1016/j.bbrc.2004.08.219.
Article
CAS
PubMed
Google Scholar
Angenieux B, Schorderet DF, Arsenijevic Y. Epidermal growth factor is a neuronal differentiation factor for retinal stem cells in vitro. Stem Cells. 2006;24(3):696–706. doi:10.1634/stemcells.2005-0190.
Article
CAS
PubMed
Google Scholar
Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet—dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016;44(W1):W135–41. doi:10.1093/nar/gkw288.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Luo J, Zhang H, Lu J. microRNAs in the same clusters evolve to coordinately regulate functionally related genes. Mol Biol Evol. 2016;33(9):2232–47. doi:10.1093/molbev/msw089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Luo M, Ni N, Den Y, Xia J, Chen J, et al. Reciprocal actions of microRNA-9 and TLX in the proliferation and differentiation of retinal progenitor cells. Stem Cells Dev. 2014;23(22):2771–81. doi:10.1089/scd.2014.0021.
Article
CAS
PubMed
Google Scholar
Ni N, Zhang D, Xie Q, Chen J, Wang Z, Deng Y, et al. Effects of let-7b and TLX on the proliferation and differentiation of retinal progenitor cells in vitro. Sci Rep. 2014;4:6671. doi:10.1038/srep06671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials. 2005;26(16):3187–96. doi:10.1016/j.biomaterials.2004.08.022.
Article
CAS
PubMed
Google Scholar
Zhang D, Ni N, Chen J, Yao Q, Shen B, Zhang Y, et al. Electrospun SF/PLCL nanofibrous membrane: a potential scaffold for retinal progenitor cell proliferation and differentiation. Sci Rep. 2015;5:14326. doi:10.1038/srep14326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Fan X, Xia J, Chen P, Zhou X, Huang J, et al. Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int J Nanomed. 2011;6:453–61. doi:10.2147/ijn.s17057.
Article
CAS
Google Scholar
Ballios Brian G, Cooke Michael J, Donaldson L, Coles Brenda LK, Morshead Cindi M, van der Kooy D, et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Rep. 2015;4(6):1031–45. doi:10.1016/j.stemcr.2015.04.008.
Article
CAS
Google Scholar
Chang KY, Cheng LW, Ho GH, Huang YP, Lee YD. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 2009;5(6):1937–47. doi:10.1016/j.actbio.2009.02.002.
Article
CAS
PubMed
Google Scholar
Das T, del Cerro M, Jalali S, Rao VS, Gullapalli VK, Little C, et al. The transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study. Exp Neurol. 1999;157(1):58–68. doi:10.1006/exnr.1998.6992.
Article
CAS
PubMed
Google Scholar
Radtke ND, Aramant RB, Seiler M, Petry HM. Preliminary report: indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients. Am J Ophthalmol. 1999;128(3):384–7.
Article
CAS
PubMed
Google Scholar
ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02320812?term=jCyte&rank=1. Accessed 11 Apr 2017.
ReNeuron. https://www.reneuron.com/clinical-trials/phase-iii-clinical-trial-in-retinitis-pigmentosa/. Accessed 11 Apr 2017.
Baranov PY, Tucker BA, Young MJ. Low-oxygen culture conditions extend the multipotent properties of human retinal progenitor cells. Tissue Eng Part A. 2014;20(9–10):1465–75. doi:10.1089/ten.TEA.2013.0361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 1981;78(12):7634–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Liu J, Ahmad I. Differentiation of embryonic stem cells into retinal neurons. Biochem Biophys Res Commun. 2002;297(2):177–84.
Article
CAS
PubMed
Google Scholar
Meyer JS, Katz ML, Maruniak JA, Kirk MD. Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells. 2006;24(2):274–83. doi:10.1634/stemcells.2005-0059.
Article
PubMed
Google Scholar
Schraermeyer U, Thumann G, Luther T, Kociok N, Armhold S, Kruttwig K, et al. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transpl. 2001;10(8):673–80.
CAS
Google Scholar
Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci. 2004;45(3):1020–5.
Article
PubMed
Google Scholar
Takahashi M, Haruta M. Derivation and characterization of lentoid bodies and retinal pigment epithelial cells from monkey embryonic stem cells in vitro. Methods Mol Biol. 2006;330:417–29. doi:10.1385/1-59745-036-7:417.
CAS
PubMed
Google Scholar
Yue F, Johkura K, Shirasawa S, Yokoyama T, Inoue Y, Tomotsune D, et al. Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun. 2010;394(4):877–83. doi:10.1016/j.bbrc.2010.03.008.
Article
CAS
PubMed
Google Scholar
Banin E, Obolensky A, Idelson M, Hemo I, Reinhardtz E, Pikarsky E, et al. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells. 2006;24(2):246–57. doi:10.1634/stemcells.2005-0009.
Article
PubMed
Google Scholar
Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA. 2006;103(34):12769–74. doi:10.1073/pnas.0601990103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plaza Reyes A, Petrus-Reurer S, Antonsson L, Stenfelt S, Bartuma H, Panula S, et al. Xeno-free and defined human embryonic stem cell-derived retinal pigment epithelial cells functionally integrate in a large-eyed preclinical model. Stem Cell Rep. 2016;6(1):9–17. doi:10.1016/j.stemcr.2015.11.008.
Article
CAS
Google Scholar
Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci USA. 2016;113(1):E81–90. doi:10.1073/pnas.1512590113.
Article
CAS
PubMed
Google Scholar
Chaudhry GR, Fecek C, Lai MM, Wu WC, Chang M, Vasquez A, et al. Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev. 2009;18(2):247–58. doi:10.1089/scd.2008.0057.
Article
CAS
PubMed
Google Scholar
Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci. 2013;54(7):5087–96. doi:10.1167/iovs.12-11239.
Article
PubMed
PubMed Central
Google Scholar
Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347–61. doi:10.1016/j.expneurol.2008.09.007.
Article
CAS
PubMed
Google Scholar
Yanai A, Laver CR, Gregory-Evans CY, Liu RR, Gregory-Evans K. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system. Tissue Eng Part A. 2015;21(11–12):1763–71. doi:10.1089/ten.TEA.2014.0669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ, et al. ROCK inhibition extends passage of pluripotent stem cell-derived retinal pigmented epithelium. Stem Cells Transl Med. 2014;3(9):1066–78. doi:10.5966/sctm.2014-0079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanai A, Laver C, Joe AW, Gregory-Evans K. Efficient production of photoreceptor precursor cells from human embryonic stem cells. Methods Mol Biol. 2016;1307:357–69. doi:10.1007/7651_2013_57.
Article
PubMed
Google Scholar
Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med. 2015;4(2):165–77. doi:10.5966/sctm.2014-0179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Decembrini S, Koch U, Radtke F, Moulin A, Arsenijevic Y. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Rep. 2014;2(6):853–65. doi:10.1016/j.stemcr.2014.04.010.
Article
CAS
Google Scholar
Zhu Y, Schreiter S, Tanaka EM. Accelerated three-dimensional neuroepithelium formation from human embryonic stem cells and its use for quantitative differentiation to human retinal pigment epithelium. Methods Mol Biol. 2016;1307:345–55. doi:10.1007/7651_2013_56.
Article
PubMed
Google Scholar
Calejo MT, Ilmarinen T, Jongprasitkul H, Skottman H, Kellomaki M. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium. J Biomed Mater Res A. 2016;104(7):1646–56. doi:10.1002/jbm.a.35690.
Article
CAS
PubMed
Google Scholar
Hu Y, Liu L, Lu B, Zhu D, Ribeiro R, Diniz B, et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res. 2012;48(4):186–91. doi:10.1159/000338749.
Article
PubMed
Google Scholar
Gomez MC, Serrano MA, Pope CE, Jenkins JA, Biancardi MN, Lopez M, et al. Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. Theriogenology. 2010;74(4):498–515. doi:10.1016/j.theriogenology.2010.05.023.
Article
CAS
PubMed
Google Scholar
Park JK, Kim HS, Uh KJ, Choi KH, Kim HM, Lee T, et al. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS ONE. 2013;8(1):e52481. doi:10.1371/journal.pone.0052481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20. doi:10.1016/S0140-6736(12)60028-2.
Article
CAS
PubMed
Google Scholar
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi:10.1016/j.cell.2007.11.019.
Article
CAS
PubMed
Google Scholar
Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett. 2009;458(3):126–31. doi:10.1016/j.neulet.2009.04.035.
Article
CAS
PubMed
Google Scholar
Tucker BA, Anfinson KR, Mullins RF, Stone EM, Young MJ. Use of a synthetic xeno-free culture substrate for induced pluripotent stem cell induction and retinal differentiation. Stem Cells Transl Med. 2013;2(1):16–24. doi:10.5966/sctm.2012-0040.
Article
CAS
PubMed
Google Scholar
Zhou L, Wang W, Liu Y, Fernandez de Castro J, Ezashi T, Telugu BP, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells. 2011;29(6):972–80. doi:10.1002/stem.637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427–34. doi:10.1002/stem.189.
Article
CAS
PubMed
Google Scholar
Liao JL, Yu J, Huang K, Hu J, Diemer T, Ma Z, et al. Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet. 2010;19(21):4229–38. doi:10.1093/hmg/ddq341.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA. 2010;107(9):4335–40. doi:10.1073/pnas.0910012107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma VS, Khalife R, Tostoes R, Leung L, Kinsella R, Ruban L, et al. Early retinal differentiation of human pluripotent stem cells in microwell suspension cultures. Biotechnol Lett. 2017;39(2):339–50. doi:10.1007/s10529-016-2244-7.
Article
CAS
PubMed
Google Scholar
Maeda T, Lee MJ, Palczewska G, Marsili S, Tesar PJ, Palczewski K, et al. Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo. J Biol Chem. 2013;288(48):34484–93. doi:10.1074/jbc.M113.518571.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barber AC, Hippert C, Duran Y, West EL, Bainbridge JW, Warre-Cornish K, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci USA. 2013;110(1):354–9. doi:10.1073/pnas.1212677110.
Article
CAS
PubMed
Google Scholar
Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS ONE. 2010;5(1):e8763. doi:10.1371/journal.pone.0008763.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barnea-Cramer AO, Wang W, Lu SJ, Singh MS, Luo C, Huo H, et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep. 2016;6:29784. doi:10.1038/srep29784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103. doi:10.1038/nature10997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanzel Boris V, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2(1):64–77. doi:10.1016/j.stemcr.2013.11.005.
Article
CAS
Google Scholar
Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2(2):205–18. doi:10.1016/j.stemcr.2013.12.007.
Article
CAS
Google Scholar
Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, et al. A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev. 2012;21(12):2262–72. doi:10.1089/scd.2011.0599.
Article
CAS
PubMed
Google Scholar
Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18:1312–9. doi:10.2119/molmed.2012.00242.
CAS
PubMed
PubMed Central
Google Scholar
Zheng A, Li Y, Tsang SH. Personalized therapeutic strategies for patients with retinitis pigmentosa. Expert Opin Biol Ther. 2015;15(3):391–402. doi:10.1517/14712598.2015.1006192.
Article
PubMed
PubMed Central
Google Scholar
Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012;130(1):9–24. doi:10.1001/archophthalmol.2011.298.
Article
CAS
PubMed
Google Scholar
Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet. 2009;374(9701):1597–605. doi:10.1016/s0140-6736(09)61836-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Chan L, Nguyen HV, Tsang SH. Personalized medicine: cell and gene therapy based on patient-specific iPSC-derived retinal pigment epithelium cells. Adv Exp Med Biol. 2016;854:549–55. doi:10.1007/978-3-319-17121-0_73.
Article
PubMed
Google Scholar
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–9. doi:10.1038/nature20565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. doi:10.1056/NEJMoa1608368.
Article
PubMed
Google Scholar
Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33(9):890–1. doi:10.1038/nbt0915-890.
Article
CAS
PubMed
Google Scholar
Nature. Japanese man is first to receive ‘reprogrammed’ stem cells from another person, http://www.nature.com/news/japanese-man-is-first-to-receive-reprogrammed-stem-cells-from-anothe. Accessed 11 Apr 2017.
Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science. 2008;322(5903):949–53. doi:10.1126/science.1164270.
Article
CAS
PubMed
Google Scholar
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801. doi:10.1126/science.1172482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5. doi:10.1038/nature07864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, et al. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res. 2007;85(2):234–41. doi:10.1016/j.exer.2007.04.007.
Article
CAS
PubMed
Google Scholar
Gong L, Wu Q, Song B, Lu B, Zhang Y. Differentiation of rat mesenchymal stem cells transplanted into the subretinal space of sodium iodate-injected rats. Clin Exp Ophthalmol. 2008;36(7):666–71. doi:10.1111/j.1442-9071.2008.01857.x.
Article
PubMed
Google Scholar
Junyi L, Na L, Yan J. Mesenchymal stem cells secrete brain-derived neurotrophic factor and promote retinal ganglion cell survival after traumatic optic neuropathy. J Craniofac Surg. 2015;26(2):548–52. doi:10.1097/scs.0000000000001348.
Article
PubMed
Google Scholar
Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, et al. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Research. 2015;15(2):387–94. doi:10.1016/j.scr.2015.08.007.
Article
CAS
PubMed
Google Scholar
Li Z, Wang J, Gao F, Zhang J, Tian H, Shi X, et al. Human adipose-derived stem cells delay retinal degeneration in Royal College of Surgeons rats through anti-apoptotic and VEGF-mediated neuroprotective effects. Curr Mol Med. 2016;16(6):553–66.
Article
CAS
PubMed
Google Scholar
Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455–63. doi:10.5966/sctm.2012-0184.
Article
PubMed
PubMed Central
Google Scholar
Li CY, Wu XY, Tong JB, Yang XX, Zhao JL, Zheng QF, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6:55. doi:10.1186/s13287-015-0066-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Takemitsu H, Zhao D, Yamamoto I, Harada Y, Michishita M, Arai T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet Res. 2012;8:150. doi:10.1186/1746-6148-8-150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guan Y, Cui L, Qu Z, Lu L, Wang F, Wu Y, et al. Subretinal transplantation of rat MSCs and erythropoietin gene modified rat MSCs for protecting and rescuing degenerative retina in rats. Curr Mol Med. 2013;13(9):1419–31.
Article
CAS
PubMed
Google Scholar
Huang L, Xu W, Xu G. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration. Ocul Immunol Inflamm. 2013;21(4):276–85. doi:10.3109/09273948.2013.791925.
Article
CAS
PubMed
Google Scholar
Machalinska A, Kawa M, Pius-Sadowska E, Stepniewski J, Nowak W, Roginska D, et al. Long-term neuroprotective effects of NT-4-engineered mesenchymal stem cells injected intravitreally in a mouse model of acute retinal injury. Invest Ophthalmol Vis Sci. 2013;54(13):8292–305. doi:10.1167/iovs.13-12221.
Article
CAS
PubMed
Google Scholar
Li P, Tian H, Li Z, Wang L, Gao F, Ou Q, et al. Subpopulations of bone marrow mesenchymal stem cells exhibit differential effects in delaying retinal degeneration. Curr Mol Med. 2016;16(6):567–81.
Article
CAS
PubMed
Google Scholar
Sasahara M, Otani A, Oishi A, Kojima H, Yodoi Y, Kameda T, et al. Activation of bone marrow-derived microglia promotes photoreceptor survival in inherited retinal degeneration. Am J Pathol. 2008;172(6):1693–703. doi:10.2353/ajpath.2008.080024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Wang XT, Xu GX, Guo J, Huang LB. Stromal cell-derived factor 1alpha-stimulated mesenchymal stem cells confer enhanced protection against light-induced retinal degeneration in rats. Curr Eye Res. 2014;39(1):69–78. doi:10.3109/02713683.2013.824988.
Article
CAS
PubMed
Google Scholar
Jonas JB, Witzens-Harig M, Arseniev L, Ho AD. Intravitreal autologous bone marrow-derived mononuclear cell transplantation: a feasibility report. Acta Ophthalmol. 2008;86(2):225–6. doi:10.1111/j.1600-0420.2007.00987.x.
Article
PubMed
Google Scholar
Jonas JB, Witzens-Harig M, Arseniev L, Ho AD. Intravitreal autologous bone-marrow-derived mononuclear cell transplantation. Acta Ophthalmol. 2010;88(4):e131–2. doi:10.1111/j.1755-3768.2009.01564.x.
Article
PubMed
Google Scholar
Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31(6):1207–14. doi:10.1097/IAE.0b013e3181f9c242.
Article
PubMed
Google Scholar
Siqueira RC, Messias A, Voltarelli JC, Messias K, Arcieri RS, Jorge R. Resolution of macular oedema associated with retinitis pigmentosa after intravitreal use of autologous BM-derived hematopoietic stem cell transplantation. Bone Marrow Transpl. 2013;48(4):612–3. doi:10.1038/bmt.2012.185.
Article
CAS
Google Scholar
Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2015;56(1):81–9. doi:10.1167/iovs.14-15415.
Article
CAS
PubMed Central
Google Scholar