ParK CM, Song YS. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-kB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr Res Pract. 2013;7(6):423–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
ParK SH, Kim JH, Lee DH, Kang JW, Song HH, Oh SR, Yoon DY. Luteolin 8-C-β-fucopyranoside inhibits invasion and suppresses TPA-induced MMP-9 and IL-8 via ERK/AP-1 and ERK/NF-kB signaling in MCF-7 breast cancer cells. Biochimie. 2013;95(11):2082–90.
Article
CAS
PubMed
Google Scholar
Ansó E, Zuazo A, Irigoyen M, Urdaci MC, Rouzaut A, Martínez-Irujo JJ. Flavonoids inhibits hypoxia-induced vascular endothelial growth factor expression by a HIF-1 independent mechanism. Biochem Pharmacol. 2010;79(11):1600–9.
Article
PubMed
Google Scholar
Bagli E, Stefaniotou M, Morbidelli L, Ziche M, Psillas K, Murphy C, Fotsis T. Luteolin inhibits vascular endothelial growth factor induced angiogenesis: inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3-kinase activity. Cancer Res. 2004;64(21):7936–46.
Article
CAS
PubMed
Google Scholar
Kim HY, Jung SK, Byun S, Son JE, Oh MH, Lee J, Kang MJ, Heo YS, Lee KW, Lee HJ. Raf and PI3K are the molecular targets for the anti-metastatic effect of luteolin. Phytother Res. 2013;27(10):1481–8.
CAS
PubMed
Google Scholar
Saleem M, Afaq F, Adhami VM, Mukhtar H. Lupeol modulates NF-kB and PI3K/Akt pathways and inhibitsskin cancer in CD-1 mice. Oncogene. 2004;23(30):5203–14.
Article
CAS
PubMed
Google Scholar
Kumari A, Kakkar P. Lupeol prevents acetaminophen-induced in vivo hepatotoxicity by altering the Bax/Bcl-2 and oxidative stress-mediated mitochondrial signaling cascade. Life Sci. 2012;90(15–16):561–70.
Article
CAS
PubMed
Google Scholar
Tarapore RS, Siddiqui IA, Adhami VM, Spiegelman VS, Mukhtar H. The dietary terpenelupeol targets colorectal cancer cells with constitutively active wnt/β-catenin signaling. Mol Nutr Food Res. 2013;57(11):1950–8.
Article
CAS
PubMed
Google Scholar
Tarapore RS, Siddiqui IA, Saleem M, Adhami VM, Spiegelman VS, Mukhtar H. Specific targeting of wnt/β-catenin signaling in human melanoma cells by a dietarytriterpenelupeol. Carcinogenesis. 2010;31(10):1844–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Avin BRV, Prabhu T, Ramesh CK, Vigneshwaran V, Riaz M, Jayashree K, Prabhakar BT. New role of lupeol in recticence of angiogenesis, the cellular parameter of neoplastic progression in tumorigenesis models through altered gene expression. BBRC. 2014;448(2):139–44.
Google Scholar
Patil SA, Bshara W, Morrison C, Chandrasekaran EV, Matta KL, Neelamegham S. Overexpression of α2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis. Glycoconj J. 2014;31(6–7):509–21.
Article
CAS
PubMed
Google Scholar
Roy B, Chattopadhyay G, Mishra D, Das T, Chakraborty S, Maiti TK. On chip lectin microarray for glycoprofiling of different gastritis types and gastric cancer. Biomicrofluidics. 2014;8(3):034107.
Article
PubMed Central
PubMed
Google Scholar
Funasaka T, Raz A, Nangia-Makker P. Galectin-3 in angiogenesis and metastasis. Glycobiology. 2014;24(10):886–91.
Article
PubMed
Google Scholar
Croci DO, Cerliani JP, Dalotto-Moreno T, Méndez-Huergo SP, Mascanfroni ID, Dergan-Dylon S, Toscano MA, Caramelo JJ, García-Vallejo JJ, Ouyang J, Mesri EA, Junttila MR, Bais C, Shipp MA, Salatino M, Rabinovich GA. Glycosylation dependent lectin receptor interactions preserve angiogenesis in anti-VEGF refractory tumours. Cell. 2014;156(4):744–58.
Article
CAS
PubMed
Google Scholar
Piccolo E, Tinari N, Semeraro D, Traini S, Fichera I, Cumashi A, La Sorda R, Spinella F, Bagnato A, Lattanzio R, D’Egidio M, Di Risio A, Stampolidis P, Piantelli M, Natoli C, Ullrich A, Iacobelli S. LGALS3BP, lectingalactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in humanbreast cancer cells and promotes angiogenesis. J Mol Med (Berl). 2013;91(1):83–94.
Article
CAS
PubMed
Google Scholar
Tatsuta T, Sugawara S, Takahashi K, Ogawa Y, Hosono M, Nitta K. Leczyme: a new candidate drug for cancer therapy. Biomed Res Int. 2014;2014:421415.
Article
PubMed Central
PubMed
Google Scholar
Tatsuta T, Hosono M, Takahashi K, Omoto T, Kariya Y, Sugawara S, Hakomori S, Nitta K. Sialic acid binding lectin (leczyme) induces apoptosis to malignant mesothelioma and exerts synergistic antitumour effects with TRAIL. Int J Oncol. 2014;44(2):377–84.
PubMed Central
CAS
PubMed
Google Scholar
Tatsuta T, Hosono M, Sugawara S, Kariya Y, Ogawa Y, Hakomori S, Nitta K. Sialic acid binding lectin (leczyme)induces caspase-dependent apoptosis mediated mitochondrial perturbation in Jurkat cells. Int J Oncol. 2013;43(5):1402–12.
PubMed Central
CAS
PubMed
Google Scholar
Liu Xiaofeng, Ouyang Sisheng, Biao Yu, Huang Kai, Liu Yabo, Gong Jiayu, Zheng Sisuan, Li Zhihua, Li Honglin, Jiang Hualiang. PharmMapper Server: a web server for potential drug target identification via pharmacophore mapping approach. Nucleic Acids Res. 2010;38:W609–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kleibeuker EA, Schulkens IA, Castricum KC, Griffioen AW, Thijssen VL. Examination of the role of galectins during in vivo angiogenesis using the chick chorioallantoic membrane assay. Methods Mol Biol. 2015;1207:305–15.
Article
PubMed
Google Scholar
Mishra V, Prasad CVSS. Ligand based virtual screening to find novel inhibitors against plant toxin Ricin by using the ZINC database”. Bioinformation. 2011;7(2):46–51.
Article
PubMed Central
PubMed
Google Scholar
Ding H, Li D, Zhang Y, Zhang T, Zhu H, Xu T, Luo Y, Wang C. Luteolin inhibits smooth muscle cell migration and proliferation by attenuating the production of Nox4, p-Akt and VEGF in endothelial cells. Curr Pharm Biotechnol. 2014;14(12):1009–15.
Article
PubMed
Google Scholar
Pratheeshkumar P, Son YO, Budhraja A, Wang X, Ding S, Wang L, Hitron A, Lee JC, Kim D, Divya SP, Chen G, Zhang Z, Luo J, Shi X. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One. 2012;7(12):e52279.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rao PS, Satelli A, Moridani M, Jenkins M, Rao US. Luteolin induces apoptosis in multidrug resistant cancer cells without affecting the drug transporter function—involvement of cell line specific apoptotic mechanisms. Int J Cancer. 2012;130:2703–14.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chian S, Li YY, Wang XJ, Tang XW. Luteolin sensitizes two oxaliplatin—resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of Nrf 2 pathway. Asian Pac J Cancer Prev. 2014;15(6):2911–6.
Article
PubMed
Google Scholar
Cai Z, Zeng Y, Xu B, Gao Y, Wang S, Zeng J, Chen L, Huang A, Liu X, Liu J. Galectin-4 serves as a prognostic biomarker for the early recurrence/metastasis of hepatocellular carcinoma. Cancer Sci. 2014;105(11):1510–7.
Article
CAS
PubMed
Google Scholar
Zhang CZ, Fang EF, Zhang HT, Liu LL, Yun JP. Moordica Charantialectin exhibits antitumour activity towards hepatocellular carcinoma. Invest New Drugs. 2014;33(1):1–11.
Article
PubMed
Google Scholar
Hirao Y, Matsuzaki H, Iwaki J, Kuno A, Kaji H, Ohkura T, Togayachi A, Abe M, Nomura M, Noguchi M, Ikehara Y, Narimatsu H. Glycoproteomics approach for identifying glycobiomarker candidate molecules for tissue type classification of non small cell lung carcinoma. J Proteome Res. 2014;13(11):4705–16.
Article
CAS
PubMed
Google Scholar
Kim YS, Kim SH, Shin J, Harikishore A, Lim JK, Jung Y, Lyu HN, Baek NI, Choi KY, Yoon HS, Kim KT. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1. PLoS One. 2014;9(10):e109655.
Article
PubMed Central
PubMed
Google Scholar
Sakurai MA, Ozaki Y, Okuzaki D, Naito Y, Sasakura T, Okamoto A, Tabara H, Inoue T, Hagiyama M, Ito A, Yabuta N, Nojima H. Gefitinib and luteolin cause growth arrest of human prostate cancer PC-3 cells via inhibition of cyclin G-associated kinase and induction of miR-630. PLoS One. 2014;9(6):e100124.
Article
PubMed Central
PubMed
Google Scholar
Gray AL, Stephens CA, Bigelow RL, Coleman DT, Cardelli JA. The polyphenols (−)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS One. 2014;9(10):e109208.
Article
PubMed Central
PubMed
Google Scholar