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Abstract 

Background Acute myocardial infarction (AMI) has two clinical characteristics: high missed diagnosis and dysfunc-
tion of leukocytes. Transcriptional RNA on leukocytes is closely related to the course evolution of AMI patients. We 
hypothesized that transcriptional RNA in leukocytes might provide potential diagnostic value for AMI. Integration 
machine learning (IML) was first used to explore AMI discrimination genes. The following clinical study was performed 
to validate the results.

Methods A total of four AMI microarrays (derived from the Gene Expression Omnibus) were included in bioanalysis 
(220 sample size). Then, the clinical validation was finished with 20 AMI and 20 stable coronary artery disease patients 
(SCAD). At a ratio of 5:2, GSE59867 was included in the training set, while GSE60993, GSE62646, and GSE48060 were 
included in the testing set. IML was explicitly proposed in this research, which is composed of six machine learn-
ing algorithms, including support vector machine (SVM), neural network (NN), random forest (RF), gradient boost-
ing machine (GBM), decision trees (DT), and least absolute shrinkage and selection operator (LASSO). IML had 
two functions in this research: filtered optimized variables and predicted the categorized value. Finally, The RNA 
of the recruited patients was analyzed to verify the results of IML.

Results Thirty-nine differentially expressed genes (DEGs) were identified between controls and AMI individuals 
from the training sets. Among the thirty-nine DEGs, IML was used to process the predicted classification model 
and identify potential candidate genes with overall normalized weights > 1. Finally, two genes (AQP9 and SOCS3) 
show their diagnosis value with the area under the curve (AUC) > 0.9 in both the training and testing sets. The clinical 
study verified the significance of AQP9 and SOCS3. Notably, more stenotic coronary arteries or severe Killip classifica-
tion indicated higher levels of these two genes, especially SOCS3. These two genes correlated with two immune cell 
types, monocytes and neutrophils.

Conclusion AQP9 and SOCS3 in leukocytes may be conducive to identifying AMI patients with SCAD patients. 
AQP9 and SOCS3 are closely associated with monocytes and neutrophils, which might contribute to advancing AMI 
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Introduction
Acute myocardial infarction (AMI), the most severe form 
of cardiovascular disease, is associated with [1, 2] mil-
lions of deaths annually around the world [3, 4]. Gener-
ally, the diagnosis of AMI includes clinical syndrome, 
electrocardiogram, and serum changes in enzyme levels 
[5]. However, AMI is easily misdiagnosed because of the 
following three aspects: nonclassic clinical symptoms 
[6, 7], atypical underappreciation [8], and an untimely 
serum peak. Because of the above three problems, a pre-
vious study [9] reported that the missed diagnosis rate of 
AMI is higher than 0.9%. The diagnosis and treatment of 
AMI must be prompt; otherwise, it may trigger irrevers-
ible results. Therefore, exploring new markers of AMI to 
decrease missed diagnoses is essential and urgent.

Leukocytes play an important and varied role in the 
entire evolution of AMI. During the acute injury phase of 
AMI, leukocytes promote a severe inflammatory cascade 
response through the polarization of M1 macrophages 
[10]. During the repair phase of AMI, M2 macrophages 
in leukocytes suppress inflammation and mediate the 
repair of injured myocardium [11]. Furthermore, leuko-
cyte alteration positively correlates with AMI severity 
and, inversely, with patient survival [12, 13].

RNAs are involved in the evolution of AMI. For exam-
ple, miR-155 correlated positively with the concentra-
tion of inflammatory cytokines, such as IL-6 and TNF-α 
[14], in AMI. Neutrophil-derived S100A8/A9 amplify 
granulopoiesis and cardiac injury in AMI mice [15]. Con-
versely, M2 macrophage-derived exosomes carry miR-
1271-5p [16] to alleviate AMI-related cardiac injury. In 
conclusion, RNA on leukocytes plays a different role in 
the evolution of AMI, possibly related to different leuko-
cyte subtypes. However, numerous studies have focused 
on integrating target interventions [12, 17] and leukocyte 
complications [17, 18]. Few studies have focused on the 
diagnostic value of leukocytes’ RNA. Because the leu-
kocytes’ RNA is involved in the evolution of AMI, these 
RNA might have diagnosing value for AMI patients. The 
diagnosis value might be related to various leukocyte 
subtypes.

Machine learning (ML) helps humans learn pat-
terns from complex data to predict future behavioural 
outcomes and trends. ML was widely utilized in vari-
able filtering. A previous study used a single ML algo-
rithm or two integrated ML algorithms (e.g., support 

vector machine [18] or least absolute shrinkage and 
selection operator [19]) to optimize variables. Still, these 
approaches may have missed potential genes [20]. Com-
pared with a single ML algorithm, the integrated ML 
(IML) approach [21–23] we developed is more advan-
tageous in variable screening and model building. IML 
helps identify potential genes mistakenly deleted by a 
single ML and find more meaningful variables [21]. IML 
integrates the advantages of a single ML, and its predic-
tive classification value is better [23]. Based on a favoura-
ble filtration value in transcriptomics, IML might be used 
to comprehensively explore the diagnostic value in AMI 
patients.

In summary, we aim to explore the potential diagnostic 
value of transcriptome within leukocytes for identifying 
AMI patients. Because of IML’s good variable screening 
and excellent predictive value, IML was first used to mine 
diagnostic genes in AMI leukocytes with multiple micro-
arrays. Single microarray data might have inherent biases 
in capturing the entire transcriptomic landscape, so mul-
tiple microarrays are integrated after resolving batch 
effects to reduce bias and validate each other. And clini-
cal validation was added to confirm the result. The rela-
tionship between transcriptome and leukocyte subtypes 
was unclear, so the correlation between immune cells and 
target transcriptome was subsequently accomplished. We 
expect to explore the functional roles of the identified 
genes in AMI pathophysiology, investigating their poten-
tial as therapeutic targets.

Methods
Data acquisition
The raw data were obtained from the Gene Expres-
sion Omnibus (GEO, March 27, 2022). AMI patients 
have similar symptoms to stable coronary artery disease 
(SCAD), which were set as the controls. An increasing 
leukocyte may influence the result of other cardiovascu-
lar diseases (e.g., stroke [24, 25] and heart failure [26]), 
which will be excluded. Based on the above, the follow-
ing inclusion and exclusion criteria were set: (I) inclusion 
criteria—(i) diagnosed as AMI patients on admission; (ii) 
transcriptome was obtained from leukocytes in blood; 
(iii) initial data were free and accessible; and (iv) the con-
trol individuals were diagnosed with health or SCAD; 
and (II) exclusion criteria—(i) other cardiovascular 

diagnosis and shed light on novel genetic markers. Multiple clinical characteristics, multicenter, and large-sample 
relevant trials are still needed to confirm its clinical value.

Keywords Acute myocardial infarction, Diagnostic gene identification, Machine learning, AQP9, SOCS3, Immune cell 
correlation
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diseases suspected and (ii) blood were taken more than 
one day after hospitalization.

Data processing
To ensure the reliability of the data, the R package sva 
(version 3.46.0) was applied to data integration to mini-
mize the branch effects with the ComBat function and 
parametric adjustments. Regarding the distribution ratio 
of previous literature (1.64:1 [27] to 5:1 [28]) and to mini-
mize the branching effect, this research was distributed 
in the training or testing sets at a ratio of 5:2. GSE59867 
was included in the training set. In contrast, GSE60993, 
GSE62646, and GSE48060 were included in the testing 
set. In brief, the training set was applied to explore can-
didate diagnostic genes, and the testing set was used for 
validation. Based on the differential DEGs, three func-
tional enrichment analyses were developed via the Kyoto 
Encyclopedia of Genes and Genomes Gene Set Enrich-
ment Analysis (KEGG-GSEA), Gene Ontology (GO), 
and Disease Ontology (DO). In addition, the GO terms 
included three branches: molecular function (MF), bio-
logical process (BP), and cellular components (CC). 
Notably, the novel IML served two functions: developing 
classification ML and exploring the candidate variable. 
Finally, the above candidate genes were verified in the 
testing group and clinical study, and an immune analysis 
among the candidate genes was performed. CIBERSORT 
was processed for immune correlation analysis in the 
corrplot R package (version 0.92). And the primary code 
was linked with https:// github. com/ Linzh ang- BiuBi uBiu/ 
ML- for- diagn osis- genes.

Searching for DEGs
Because the same gene may have multiple sequences, 
the transcriptome will appear to have several expression 
data for the same genes. For the same genes, limma (ver-
sion 3.54.0) was employed to identify the DEGs with the 
average gene expression. According to the Benjamini and 
Hochberg method, two thresholds were established: a log 
of fold change (|logFC|) > 0.7 (previous studies were 0.5 
[29]–1 [23]) and a false discovery rate [30] < 0.05.

IML of six ML algorithms
Classification models of IML, composed of six ML 
algorithms, were processed, covering support vector 
machine (SVM), neural network (NN), random for-
est (RF), gradient boosting machine (GBM), decision 
trees (DT), and least absolute shrinkage and selection 
operator (LASSO). In brief, IML was used to identify 
candidate genes with the overall normalized weights. 
The six ML algorithms were developed to optimize 
parameter settings, model development in the training 
sets, and validation in the testing sets. For stability, all 

ML algorithms were tenfold cross-validated. Notably, 
an accuracy value was applied to evaluate the predictive 
classification value, and a higher accuracy value showed 
a better classification value of the six ML algorithms.

LASSO was processed with the glmnet (version 4.1-6) 
R package. cv.glmnet was utilized to majorize lambda. 
For the parameters, the scale of "lambda" was set 
between 0 and 100 with "binomial" and "class".Based 
on the minimum lambda, glmnet was processed to the 
LASSO with alpha and a "binomial" method in training 
sets.

SVM was developed with the e1071 R package (ver-
sion 1.7–12). tune.svm was adopted to optimize the set-
tings parameter with the kernel of "linear", and the cost 
between 1 and 20. Next, based on the optimized number 
of support vectors in the training set, the SVM model 
was finished.

DT was processed with rpart (version 4.1.19) and rpart.
plot (version 3.1.1). Based on the "class" method and a cp 
value of 0.001, the rpart function was adopted for the DT 
model.

RF was completed with the R package randomForest 
(version 4.7-1.1). First, the tuneRF function was adopted 
to optimize 0-700 trees with one step size. RF was devel-
oped based on the minimum error rate to optimize the 
number of trees.

NN was processed with neuralnet (version 1.44.2) with 
neuralnet function, five layers (an input, an output, and 
three hidden layers), err.fct of "sse", and the linear.

Compared with the other 5 ML algorithms, GBM pro-
cessed more steps and was prone to making mistakes. 
The GMB was developed with h2o (version 3.38.0.1). 
First, the Java operating environment was installed, 
which is the virtual environment of GBM. Essential for 
running the memory setting in h2o.init, the model mem-
ory of GBM was adjusted to 8G. The h2o data type in 
GBM was inevitable, and the as.h2o function was utilized 
to transform the data format. Next, h2o.gbm tuned the 
parameters and developed the model with the "Bernoulli" 
distribution, 200 trees, a learning rate of 0.001, and a 
sample rate of 90%.

Furthermore, with the weights of the above six ML 
algorithms in DEGs, the normalized sum weight of IML 
was calculated as follows: overall weights = abs(RF)/
abs(RFmax) + abs(SVM)/abs(SVMmax) + abs(LASSO)/
abs(LASSOmax) + abs(NN)/abs(NNmax) + abs(GBM)/
abs(GBMmax) + abs(DT)/abs(DTmax). For instance, 
if the weight of interleukin-6 in six ML algorithms was 
30, -22, 20, -2, 320, and -8, the maximum absolute value 
weights in the six ML algorithms were 60, 88, 80, 8, 640, 
and 16. Therefore, the overall weight of interleukin-6 
was |30|/60 +|− 22|/88 +|20|/80 +|− 2|/8 +|320|/640 +|
− 8|/16 = 2.25. With normalized overall weights > 1, the 

https://github.com/Linzhang-BiuBiuBiu/ML-for-diagnosis-genes
https://github.com/Linzhang-BiuBiuBiu/ML-for-diagnosis-genes
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candidate genes were estimated by the area under the 
curve (AUC).

Clinical validation
The clinical trial was performed according to the Decla-
ration of Helsinki guidelines. All AMI and SCAD patients 
provided individual written informed consent from 
October 10, 2022, to December 31, 2022, and the Ethics 
Review Committee of Jinghai District Hospital approved 
the study. There was no increase in the cost of treatment 
for the patients, no addition of other intervention in the 
treatment, and the blood samples used were taken from 
the discarded blood of the patients after their routine 
blood tests on the same day. If the patient did not have 
a routine blood test on that day, then the patient was 
excluded. All AMI patients underwent coronary angiog-
raphy, and blood samples were collected in anticoagulant 
tubes on admission. Density gradient centrifugation [31, 
32] was performed for leukocyte isolation (mainly mono-
cytes and lymphocytes). In brief, 8  mL of Ficoll solu-
tion was added to 8 mL of anticoagulated blood, and the 
upper plasma layer was discarded after centrifugation. 
The white cell layer at the isolate’s junction was aspirated, 
added to 10  mL of saline, and centrifuged; the bottom 
layer was the leukocytes (mainly monocytes and lympho-
cytes). RNA, isolated from leukocytes, was synthesized 
with reverse transcription kits (Takara, Shiga, Japan). 
Quantitative reverse transcription PCR was executed on 
an ABI7900HI (Thermo Fisher Scientific). According to 
previous literature, the relative content of the candidate 
genes was scaled to the reference gene (GAPDH [33]), 
and Table 1 lists the primer sequences.

Results
Included datasets
A total of 4 datasets (Table 2) (220 sample sizes), namely, 
GSE59867, GSE60993, GSE62646, and GSE48060, were 
integrated for this study. The training set was obtained 
from GSE59867 (46 controls and 111 AMI patients) 
based on a raw ratio of 5:2. Furthermore, the testing set 
was integrated with the other three datasets (28 controls 
and 35 AMI patients), namely, GSE60993, GSE62646, and 
GSE48060. The following analysis is presented in Fig. 1.

DEG identification
Thirty-nine DEGs were identified (Additional file  1: 
Table S1) in a training set from 17,049 RNAs. Compared 
to the control group (SCAD), 28 genes were upregulated 
(SOCS3, HP, ECRP, AQP9, FAM20A, CES1, STAB1, 
NRG1.1, NRG1, DYSF, RNASE1, RNASE2, ASGR2, 
CYP1B1, MERTK, FCGR1A.2, MIR21, FCGR1A.1, 
TCN2, VSIG4, PPARG, FCGR1A, SLED1, S100A9, 
FMN1.1, CD163, TMEM176A, and SERPINB2) and 11 
genes were downregulated (KLRC3, KLRD1, KLRA1P, 
DTHD1, KLRC4, MYBL1, CLC, KLRC2, KLRC4-KLRK1, 
SNORD20, and SNORD45B) in AMI individuals (Fig. 2).

Functional analysis
Based on the above DEGs, 45 GSEA terms (Additional 
file 1: Table S2) were identified, and the top 5 are shown 
in Fig. 3A, B; 160 GO terms (Additional file 1: Table S3) 
were identified, and the top 5 are shown in Fig. 3C; and 
the top 15 of 57 DO terms (Additional file 1: Table S4) are 
shown in Fig. 3D. In GSEA-KEGG of AMI, the top 3 were 
Fc gamma R-mediated phagocytosis, Huntington disease, 
and Leishmania infection. In GO, the top 3 in BP were 
the stimulatory C-type lectin receptor signalling path-
way, response to lectin, and cellular response to lectin. In 
DO terms, the top 3 were atherosclerosis, arteriosclerotic 
cardiovascular disease, and arteriosclerosis.

IML of six ML algorithms
Six ML algorithms (Fig. 4) and their accuracies (Table 3) 
were assessed. Eight genes were identified in LASSO 
(Fig. 4A), and the training and testing sets’ accuracy value 
was 70.70% (Table  3). In SVM, 13 genes were filtered 

Table 1 List of primers for real-time PCR analysis in GAPDH, 
AQP9, and SOCS3

Gene Primer sequences

GAPDH F: TGT GGG CAT CAA TGG ATT 
TGG 

R: ACA CCA TGT ATT CCG GGT 
CAAT 

AQP9 F: GCC ATC GGC CTC CTG 
ATT AT

R: GCC CAC TAC AGG AAT CCA 
CC

SOCS3 F: TCC AAA CAG GGG ACA 
CTT CG

R: GGG GGT GTG ACC ATT TCC TT

Table 2 Fundamental information in the 4 datasets

ID Public time Institution Plat form Country Con AMI Microarray/RNA-seq method

GSE59867 21-May-2015 Institute of Biochemistry and Biophysics GPL6244 Poland 46 111 Affymetrix GCS 3000 GeneArray Scanner

GSE60993 23-May-2015 Ajou University of Korea GPL6884 South 
Korea

7 7 HumanHT-12 v3 Expression BeadChip

GSE62646 23-Oct-2014 Institute of Biochemistry and Biophysics GPL6244 Poland 0 28 Affymetrix GCS 3000 GeneArray Scanner

GSE48060 28-Feb-2014 Mayo Clinic GPL570 USA 21 0 GeneChip Scanner 3000 7G
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(Fig.  4B), and the accuracies were 88.46% and 91.84%, 
respectively. The error rate of RF (Fig. 4C) decreased with 
an increasing number of trees. Until 161 trees, the error 
rate of RF was minimized, and the accuracy of the two sets 
was 98.09% and 100%. In DT (Fig. 4D), the gene expres-
sion of 9.8 in AQP9 could discriminate the control and 
AMI groups, while the accuracies were unstable, 94.27%, 
and 75.52%. In GBM (Fig.  4E), sixfold methods were 
established to optimize the diagnosis genes, but unstable 
accuracies, such as the above ML algorithms, were 93.30% 
and 85.71%. In the NN (Fig.  4F), although sufficient for 
discriminating the controls and AMI patients with three 
hidden layers, the accuracy was either 83.74% or 71.43%. 
Among the above ML algorithms, the primary weights 
of 39 DEGs were identified (Additional file  1: Table  S5). 
Interestingly, RF had the highest and most stable accu-
racy value among all ML algorithms. The normalized 

overall weights (Table  4) were calculated to filter the 
candidate variables. Twenty-six genes (ASGR2, SOCS3, 
AQP9, PPARG, RNASE1, DYSF, S100A9, FCGR1A, 
VSIG4, STAB1, MYBL1, KLRD1, ECRP, TCN2, FAM20A, 
MERTK, HP, RNASE2, DTHD1, CLC, SNORD20, CD163, 
NRG1, SNORD45B, CYP1B1, and KLRC2) were identi-
fied because of overall weights > 1 (Table 4).

With the basis of overall normalized weights > 1, 26 
candidate genes were filtered for subsequent diagnosis in 
AMI and control groups in the training and testing sets. 
Among the 26 genes, 10 were excluded because of no dif-
ferentiation in the testing set. Sixteen genes were signifi-
cant in the two sets (Fig. 5).

Diagnosis value of candidate genes
Sixteen candidate genes were included in the following 
ROC analysis. The AUC values of SOCS3, AQP9, and 

Fig. 1 The workflow of this study contains four parts: GEO datasets for training and testing sets, machine learnings for classification and variable 
filtration, diagnosis value verification, and immune correlation
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ASGR2 were greater than 0.85 in both the training and 
testing sets. In particular, 2 genes, SOCS3 and AQP9, 
were greater than 0.9 (Fig. 6). The AUC value of the two 
genes indicated a potential diagnostic value in AMI.

Correlation analysis
Immune correlation was performed with the 220 sam-
ples (Fig. 7). The infiltration landscape (Fig. 7A) showed 
22 immune distributions in the control and AMI groups. 
Nine types of immune cells (T cells CD8, T cells CD4 
naive, T cells regulatory (Tregs), NK cells resting, mono-
cytes, macrophages M0, macrophages M2, eosino-
phils, and neutrophils) infiltrated significantly between 
the control and AMI groups (Additional file  1: Fig. S1). 
Moreover, the correlations between 22 immunized cells 
and the two diagnostic genes, AQP9 and SOCS3, based 
on Spearman analysis (Fig. 7B, C) showed significant cor-
relations with 9 immune cells (monocytes, neutrophils, 
T cells CD8, NK cells resting, T cells CD4 naive, eosino-
phils, macrophages M2, dendritic cells activated, and B 
cells memory). More importantly, two immune cell types 
(monocytes and neutrophils) possessed a higher correla-
tion coefficient (Fig. 7B, C) than the other 7 immune cell 
types (Additional file  1: Figs. S2, S3). In particular, the 
correlation coefficients of monocytes (Fig.  7B, C) were 
highest for the two genes (0.56 for SOCS3 and 0.76 for 
AQP9).

Clinical validation
Finally, 40 individuals (20 SCAD and 20 AMI patients) 
were recruited. The general information of these indi-
viduals was shown in Table 5. Among 39 clinical char-
acteristics were summarized, and 13 had significance 
between the SCAD and AMI patients, including WBC, 
NeP, MonP, Lym, GAT, D-dimer, CRP, SOCS3, AQP9, 
LDH, cTnT, CK-MB, and Albumin.

The relative RNA levels (Fig.  8A) of AQP9 and 
SOCS3 were both significant. The SOCS3 content of 
coronary arteries differed by the number of lesions 
(Fig.  8B): three lesions showed significantly higher 
SOCS3 than two and one (Fig. 8B). In Fig. 8C, two AMI 
patients were excluded because of unclear Killip grad-
ing. Patients with III-IV Killip classification had higher 
SOCS3 compared to those with I-II (Fig. 8C). Although 
more stenotic coronary arteries were associated with 
higher levels of AQP9, the difference was less signifi-
cant than for SOCS3 (Fig.  8B). In addition, different 
Killip classifications associated with AQP9 possessed 
no significant differences (Fig. 8C). Furthermore, the 9 
significant clinical features were analysed with Pearson 
correlation test (Additional file 1: Fig. S4). And SOCS3 
had a positive correlation with AQP9. Both genes had a 
negative correlation with Albumin.

Fig. 2 Heatmap and volcano plot of 39 DEGs in the AMI and control groups. A Red in the heat map indicates high expression, and a blue indicates 
low expression. B Green in the volcano map suggests lower expression, and red indicates high expression
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Discussion
To our knowledge, our work is the first to filter AMI 
diagnosis genes based on the overall normalized weights 
of IML. Four microarrays with 220 samples were adopted 
for data analysis, and further clinical studies were per-
formed to validate the results. Two genes, AQP9 and 
SOCS3, showed an AUC > 0.9 in both the training set 
and testing set (Fig. 6). Both genes showed a typical and 
highest correlation coefficient (Fig. 7) in monocytes. The 
clinical study verified the significance between AMI and 
SCAD controls, indicating a potential diagnostic value 
of AQP9 and SOCS3. Compared with previous studies, 
we reached similar conclusions that AQP9 presented 

diagnostic value for AMI [34, 35], and we further 
explored the immune correlation of AQP9. Additionally, 
Prof. Zhu [36] identified SOCS3 as an immune-related 
gene in AMI, and we expanded it to have diagnostic 
value. More importantly, this study is the first to reveal 
the RNA correlation of AQP9 and SOCS3, especially 
SOCS3, between the number of stenotic coronary arter-
ies and the Killip classification.

AQP9, a cell membrane protein, transports water 
down the concentration gradient. ERK1/2 can be 
reversed in AMI rats by silencing AQP9, attenuating 
cardiomyocytes’ inflammatory response and apopto-
sis and upregulating cardiac function [37]. The above 

Fig. 3 Functional analysis of GSEA, GO, and DO terms. A The top 5 GSEA-KEGG pathways in controls. B The top 5 GSEA-KEGG pathways in AMI 
patients. C The top 5 GO terms in BP, CC, and MF. D The top 15 DO terms
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Fig. 4 Six ML algorithms for classification with 39 DEGs. A LASSO for eight candidate genes and the error bars mean the fluctuation range 
of Binomial Deviance; B SVM for 13 candidate genes. C RF discriminated between the control and AMI groups. And the red, black, and green 
lines represent the Con, out-of-bag (OOB), and AMI groups respectively. D DT discriminated between the control and AMI groups. E A sixfold 
GBM submodel was constructed. The heat map illustrates the importance of genes in each respective submodel. The intensity of the color 
corresponds to the significance of the gene in the particular submodel. F NN discriminated between the control and AMI groups. All 39 DEGs were 
involved in modelling in NN, and there are ten because of space limitations. If an edge is colored red, it indicates a positive correlation, meaning 
that the current feature positively affects the classification result. Conversely, if the edge is gray, it implies a negative correlation. Furthermore, 
the thickness of the edge signifies the weight’s magnitude
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research indicated the crucial role of AQP9 in the 
pathogenesis of AMI. In human polymorphonuclear 
leukocytes, AQP9-related inflammation may result 
from the NK-κB [38] and F-actin polymerization [39]. 
In our work, the ROC curve of AQP9 was > 0.9. There-
fore, AQP9 might be a potential genetic marker for 
diagnosing AMI with SCAD.

SOCS3 is increased in AMI mice [29] and regulates 
the T-cell repertoire with STAT3/SOCS3 signalling 
[40]. More importantly, cardiac-specific silencing of 
SOCS3 triggers sustained STAT3 and decreases myo-
cardial apoptosis [41]. Therefore, SOCS3 is the domi-
nant negative modulator [42] of Th17 via STAT3 [43]. 
Apoptosis regulates the pathophysiological evaluation 
of AMI [44]. In vitro, SOCS3 can trigger the apoptosis 
of mammary cells [45], and knocking out SOCS3 regu-
lates the expression of apoptosis in 3T3-L1 preadipo-
cytes [46]. The above research emphasized the immune 
regulation of SOCS3 and the regulation of apoptosis 
with STAT3. In our work, the ROC curve of SOCS3 
was > 0.9. Therefore, SOCS3 might be an effective 
genetic marker for diagnosing AMI.

Additionally, the CIBERSORT algorithm showed 
that the proportion of neutrophils and monocytes in 
the AMI group was higher than in the control group. 
The progression of AMI is correlated with immune 
disorder. For example, the white blood cell count cor-
relates highly with in-hospital mortality after AMI 
[47]. Neutrophils are increased in peripheral blood, 
and researchers have emphasized that neutrophils-
lymphocytes [48, 49] and monocytes/macrophages 
[50] can be easily acquired factors for the prognosis of 
AMI. Macrophages were dominant in infarcted myo-
cardium, especially over the first week of AMI [51]. 
However, NK cells have diminished cytotoxic func-
tion [52], and the targeted regulation of NK cells may 
indicate a dominant role in the cure of AMI. At the 
beginning of AMI, inflammation deteriorates with 
increased neutrophils and monocytes [53], and inflam-
mation decreases over time with the reduced function 

of NK cells. Innate immunity is a vital regulatory fac-
tor in the inflammatory, proliferative, and maturation 
phases [3, 54, 55]. AMI leads to a deteriorated inflam-
matory process. Currently, novel therapeutic interven-
tions targeting the immune system may regulate slant 
inflammation, which is conducive to resolving patho-
logical conditions. In a previous clinical trial of 182 
NSTEMI patients (a subtype of AMI), the patient’s 
intake of IL-1 blockers decreased acute inflammation 
[56]. Another immune study showed that short-term 
blockade of S100A9 downregulates inflammation [57] 
in permanent coronary ischemia mice. However, the 
above immune interventions are still experimental and 
not in the clinic. In summary, regulating immune cells 
along with the progression of AMI and immune inter-
vention in AMI might be a potential target.

AQP9 expression was highest in human polymorpho-
nuclear leukocytes [39] compared with the spleen and 
liver, suggesting a possible correlation between AQP9 
and immunity or inflammation. AQP9 regulates water 
flow on leukocytes [58], which regulates cellular mor-
phology and motility, a change that facilitates the migra-
tion of leukocytes to inflammatory sites. Similar to our 
result, Hawang [59] indicated the correlation between 
AQP9 and neutrophile granulocytes. Research [29, 60, 
61] emphasizes the correlation between SOCS3 and neu-
trophils in inflammation. In our research, both genes had 
a higher correlation with two immune cells, neutrophils 
and monocytes. The immune cell correlation indicated 
that the targeted gene therapy of immune cells may bene-
fit the course of AMI—potential feasibility of using AQP9 
and SOCS3 as therapeutic targets or predictors of treat-
ment response.

ML algorithms are widely performed for various car-
diovascular diseases, such as optimizing variables, 
classification, and congression. For variable filtration, 
numerous studies take only single or double ML algo-
rithms (e.g., weighted gene coexpression network analy-
sis [60], LASSO, and SVM). However, only the single or 
double ML algorithms might unconsciously delete the 
potential genes. For example, AQP9 will be ignored if we 
only take DT because the weights of AQP9 were zero in 
DT (Table 4). Taking only a single ML might miss some 
potential genes. For example, although LASSO can 
detect candidate genes with big data when highly corre-
lated features exist, the LASSO regression method tends 
to select one of them and ignore all the other features, 
leading to the instability of the results [61]. In pigmented 
skin lesions [62], SVM and NN displayed their talent 
classification value. In preoperative postsurgical mortal-
ity [63], GBM is optimized rather than DT, RF, and SVM. 
Various ML algorithms may show different weights even 
in the same variable (Table  4). Necessarily, the overall 

Table 3 Accuracy of six MLs based on 39 DEGs in the training 
and test sets

MLs Training sets (%) Testing sets (%)

LASSO 70.7 70.7

SVM 88.46 91.84

RF 98.09 100

DT 94.27 75.52

GBM 93.3 85.71

NN 83.74 71.43
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normalized weights of IML were taken to filter genes. 
Surprisingly, IML explores two potential, unreported 
diagnostic genes in AMI. In our study, IML has good 
value in both variable screening and model prediction.

Inevitably, four limitations exist in this work, although 
the best efforts were taken to eliminate them. Primar-
ily, small sample size verification might possess some 
bias. So, multicentre collaborations or leveraging larger 

external datasets is crucial for further verification. 
Although testing sets and clinical validation were devel-
oped to assess the stability of the diagnostic value, the 
bias of single-centre validation might exist. More confir-
mation, clinical trials and animal experiments are indis-
pensable for solid verification. Next, the ML algorithms 
contained limitations (e.g., the black box phenomenon 
[64]), especially NN, which has numerous layers [65]. The 

Table 4 Overall weights of six classification models were constructed to optimize the candidate diagnostic genes

ID SVM RF NN GBM DT LASSO Overall weights

ASGR2 1 1 0.97 0.21 1 0.61 4.79

SOCS3 0.98 0.34 0.52 0.24 0.59 0.61 3.28

AQP9 0.61 0.1 0.68 1 0 0.52 2.91

PPARG 0.76 0.15 1 0.25 0 0.5 2.66

RNASE1 0.74 0.22 0.24 0.1 0.41 0.74 2.45

DYSF 0.2 0.68 0.01 0.57 0 0.72 2.18

S100A9 0.53 0.09 0.01 0.74 0 0.63 2

FCGR1A 0.17 0.51 0 0.57 0 0.68 1.93

VSIG4 0.44 0.3 0.1 0.19 0.01 0.86 1.9

STAB1 0.47 0.58 0.05 0.14 0 0.61 1.85

MYBL1 0.68 0.15 0.2 0 0.26 0.52 1.81

KLRD1 0.26 0.65 0.01 0.05 0 0.73 1.7

ECRP 0.44 0.24 0.11 0 0.34 0.54 1.67

TCN2 0.46 0.27 0.07 0 0 0.78 1.58

FAM20A 0.31 0.08 0.15 0 0 1 1.54

MERTK 0.19 0.21 0.01 0.1 0.14 0.71 1.36

HP 0.09 0.78 0 0 0 0.45 1.32

RNASE2 0.16 0.42 0.01 0 0 0.7 1.29

DTHD1 0.13 0.45 0.05 0 0 0.66 1.29

CLC 0.11 0.72 0.02 0 0 0.36 1.21

SNORD20 0.14 0.24 0.01 0.13 0.1 0.5 1.12

CD163 0.15 0.29 0 0.11 0 0.57 1.12

NRG1 0.2 0.25 0.02 0 0 0.63 1.1

SNORD45B 0.12 0.64 0.01 0 0 0.33 1.1

CYP1B1 0.14 0.25 0 0 0 0.66 1.05

KLRC2 0.07 0.51 0 0 0 0.46 1.04

TMEM176A 0.08 0.67 0 0 0 0.24 0.99

SLED1 0.09 0.24 0.02 0.05 0 0.49 0.89

FCGR1A.2 0.23 0 0 0.62 0 0 0.85

SERPINB2 0.08 0.21 0 0 0 0.54 0.83

FCGR1A.1 0.18 0 0 0.62 0 0 0.8

KLRC4 0.13 0.21 0 0 0 0.43 0.77

KLRA1P 0.1 0.07 0 0.08 0 0.51 0.76

MIR21 0.08 0.09 0.01 0 0 0.5 0.68

CES1 0.12 0.05 0.03 0 0 0.47 0.67

KLRC4-KLRK1 0.07 0 0 0.08 0 0.43 0.58

KLRC3 0.07 0.1 0 0 0 0.39 0.56

NRG1.1 0.13 0 0 0 0 0 0.13

FMN1.1 0.07 0 0.01 0 0 0 0.08
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Fig. 5 The 16 DEGs also differed in the testing set
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Fig. 6 ROC curves for AQP9, SOCS3, and ASGR2 in the training and testing sets
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Fig. 7 Immune correlation analysis of AQP9 and SOCS3 between the control and AMI groups. A The stacked column graph between the control 
and AMI groups. B The lollipop map and scatterplot of the different immune cell types in SOCS3 C The lollipop map and scatterplot of the different 
immune cell types in AQP9. * mean < 0.05, ** mean < 0.01, ***mean < 0.001
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set of operations an ML performs in making a predic-
tion is unknown, even if a human knows precisely what 
the model is doing at each step of the decision-making 
process. The operations performed cannot be described 
in terms of human-understandable semantics. And the 
interpretability techniques for ML models always catch 
the eye of developers, which enhances the transparency 
and reliability of the ML. Thirdly, because of the limi-
tations of our laboratory extraction process, clinically 
validated acquired leukocytes are predominantly lym-
phocytes and monocytes. Finally, limited clinical features 
were obtained (e.g., age [66], ethnicity, and race [67]). 
Clinical features could potentially enhance the predic-
tive accuracy of the diagnostic model and provide a more 
comprehensive understanding of AMI. For example, vari-
ous combinations (e.g., sex, smoking or not, and labora-
tory indicators) of clinical variables [68] are calibrated to 

Table 5 The general characteristics of the 40 patients

RBC: red blood cell count; WBC: white blood cell count; NeP: neutrophils 
percentage; MonP: monocyte percentage; Mon: monocyte count; Lym: 
lymphocyte count; RDW: red blood cell distribution width; PDW: platelet 
distribution width; Pla: platelet count; MCHC: mean corpuscular haemoglobin 
concentration; Hg: haemoglobin; GAT: glutamic transaminase; CRP: c-reactive 
protein; LDH: lactate dehydrogenase; cTnT: cardiac troponin t; CK-MB: 
creatine kinase isoenzymes; LDL: low-density lipoprotein; HDL: high-density 
lipoprotein; TC: total cholesterol; TG: total triglycerides; Cys: homocysteine; GGT: 
gammaglutaminase; IBIL: indirect bilirubin; DBIL: direct bilirubin; TBIL: total bile 
acid; ALP: alkaline phosphatase

Characteristic SCAD (n = 20) AMI (n = 20) P-value

Hypertension, % 16.00 (80) 16.00 (80) > 0.05

Diabetes mellitus, % 6.00 (30) 7.00 (35) > 0.05

Stroke, % 4.00 (20) 4.00 (20) > 0.05

Hyperlipemia, % 4.00 (20) 6.00 (30) > 0.05

Age, year 66 (63, 72) 70 (58, 77) > 0.05

Sex (Male), % 10.00 (50.00) 12.00 (60.00) > 0.05

RBC, million cells/μL 4.37 (3.80, 4.49) 4.03 (3.55, 4.35) > 0.05

WBC, 1000 cells/μL 6.02 (4.85, 6.84) 8.33 (6.84, 11.24) < 0.001

NeP, % 69 (58, 74) 80 (75, 86) < 0.001

MonP, % 8.00 (6.15, 9.23) 5.55 (3.98, 7.68) < 0.05

Mon, 1000 cells/μL 0.44 (0.35, 0.48) 0.42 (0.19, 0.73) > 0.05

Lym, 1000 cells/μL 1.37 (1.06, 1.77) 0.96 (0.62, 1.42) < 0.05

RDW, % 13.00 (12.55, 13.30) 13.55 (12.88, 14.98)  > 0.05

PDW, % 11.85 (10.48, 13.90) 13.25 (11.68, 16.15) > 0.05

Pla, 1000 cells/μL 214 (163, 245) 219 (173, 244) > 0.05

MCHC, g/L 334 (329, 342) 329 (319, 338) > 0.05

Hg, g/L 131 (113, 140) 119 (109, 134) > 0.05

GAT, U/L 16 (14, 21) 28 (17, 51) < 0.05

D-dimer, mg/L 0.46 (0.27, 0.69) 1.01 (0.62, 2.70) < 0.01

CRP, mg/L 1 (1, 2) 12 (7, 26) < 0.001

SOCS3 1.57 (1.22, 1.76) 1.97 (1.86, 2.20) < 0.001

AQP9 0.90 (0.85, 1.03) 1.44 (1.16, 1.66) < 0.001

LDH, U/L 152 (141, 194) 260 (228, 303) < 0.001

cTnT, μg/mL 12 (9, 18) 140 (92, 264) < 0.001

CK-MB, U/L 2 (1, 4) 19 (9, 33) < 0.001

LDL, mmol/L 1.83 (1.57, 2.68) 2.38 (1.74, 3.62) > 0.05

HDL, mmol/L 1.04 (0.96, 1.16) 1.11 (0.96, 1.34) > 0.05

TC, mmol/L 3.59 (2.87, 4.52) 4.15 (3.27, 5.80) > 0.05

TG, mmol/L 1.13 (0.71, 1.58) 0.98 (0.89, 1.22) > 0.05

Glucose, mg/L 5.36 (4.73, 5.81) 6.05 (5.12, 9.15) > 0.05

Cys,μmol/L 11.7 (10.1, 16.4) 14.2 (8.7, 22.1) > 0.05

Albumin, g/L 41.8 (38.9, 43.3) 38.6 (34.9, 40.3) < 0.01

Total protein, g/L 65 (63, 67) 65 (60, 67) > 0.05

GGT, U/L 13 (11, 22) 17 (12, 33) > 0.05

IBIL, μmol/L 3.65 (2.50, 6.03) 4.95 (3.50, 7.30) > 0.05

DBIL,μmol/L 4.00 (2.58, 4.78) 4.30 (2.85, 7.75) > 0.05

TBIL,μmol/L 7.8 (5.2, 10.7) 10.0 (6.3, 17.4) > 0.05

Globulin, g/L 24.7 (21.2, 25.8) 25.6 (23.5, 26.9) > 0.05

ALP, U/L 72 (61, 87) 87 (72, 108) > 0.05

Fig. 8 Relative RNA levels of AQP9 and SOCS3 in AMI patients 
and SCAD controls. A The relative content of SOCS3 and AQP9 in AMI 
patients and SCAD controls. B The comparison of AQP9 and SOCS3 
in the number of coronary arteries with different stenoses in AMI. C 
The comparison of AQP9 and SOCS3 in various Killip classifications 
in AMI. * mean < 0.05, ** mean < 0.01, *** mean < 0.001, ns mean 
no significance
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analyze the relationship between the target variable and 
the outcome.

Conclusion
Based on the overall normalized weights of IML, the 
research successfully merges four microarrays and 
uncovers hidden diagnostic genes AQP9 and SOCS3 for 
leukocytes of AMI patients. AQP9 and SOCS3 are closely 
associated with monocytes and neutrophils, which might 
contribute to advancing AMI diagnosis and shedding 
light on novel genetic markers, including AMI pathogen-
esis, targeted therapies, and potential precision medicine. 
Although clinical validation copies the result again. Mul-
tiple clinical characteristics, multicenter, and large-sam-
ple relevant trials are still needed to confirm its clinical 
value.
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