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Abstract 

Background Intra-tumoral heterogeneity (ITH) is a distinguished hallmark of cancer, and cancer stem cells (CSCs) 
contribute to this malignant characteristic. Therefore, it is of great significance to investigate and even target the 
regulatory factors driving intra-tumoral stemness. c-Myc is a vital oncogene frequently overexpressed or amplified in 
various cancer types, including breast cancer. Our previous study indicated its potential association with breast cancer 
stem cell (BCSC) biomarkers.

Methods In this research, we performed immunohistochemical (IHC) staining on sixty breast cancer surgical speci-
mens for c-Myc, CD44, CD24, CD133 and ALDH1A1. Then, we analyzed transcriptomic atlas of 1533 patients with 
breast cancer from public database.

Results IHC staining indicated the positive correlation between c-Myc and BCSC phenotype. Then, we used bioin-
formatic analysis to interrogate transcriptomics data of 1533 breast cancer specimens and identified an intriguing 
link among c-Myc, cancer stemness and copper-induced cell death (also known as “cuproptosis”). We screened out 
cuproptosis-related characteristics that predicts poor clinical outcomes and found that the pro-tumoral cuproptosis-
based features were putatively enriched in MYC-targets and showed a significantly positive correlation with cancer 
stemness.

Conclusion In addition to previous reports on its oncogenic roles, c-Myc showed significant correlation to stemness 
phenotype and copper-induced cell toxicity in breast cancer tissues. Moreover, transcriptomics data demonstrated 
that pro-tumoral cuproptosis biomarkers had putative positive association with cancer stemness. This research 
combined clinical samples with large-scale bioinformatic analysis, covered description and deduction, bridged classic 
oncogenic mechanisms to innovative opportunities, and inspired the development of copper-based nanomaterials in 
targeting highly heterogeneous tumors.
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Introduction
Breast cancer is the most common malignant tumor in 
women, leading to over 684,000 deaths according to lat-
est report by CA Cancer J Clin [1, 2]. Though long-term 
prognosis of breast cancer is much better than other 
highly malignant tumors, such as melanoma, challenges 
including recurrence, distant metastasis and drug resist-
ance still limit therapeutic effects and survival. Cancer 
stem cells (CSCs) are a self-renewal population critical to 
tumorigenesis, intra-tumoral heterogeneity, therapeutic 
resistance and recurrence [3]. Plasticity, quiescence, dif-
ferentiative potential, and even its low mutational state 
means that CSCs have considerable research value [4–6].

High expression of CD44, CD133, ALDH and low 
expression of CD24 are well-acknowledged biomark-
ers in maintaining the stemness of CSC in solid tumors, 
including breast cancer and lung cancer [7–9]. For 
breast cancer cases, the CD44 high/CD24 low pheno-
type exacerbates aggressiveness, accelerates antitumor 
drug resistance and facilitates tumor progression [10, 
11]. Moreover, even CSCs present varying phenotypes 
and spatial characteristics. Our previous research inves-
tigated clinical specimens of triple-negative breast can-
cer (TNBC), and termed this observation intra-tumoral 
stemness heterogeneity (ITSH) and concluded that ITSH 
is a promising biomarker of poor clinical outcomes [12]. 
CSCs differentiate into heterogeneous cancer cell clusters 
by asymmetrical division, decrease energy consumption 
in nutrition-deprived tumor microenvironment (TME), 
or maintain in a low-mutant state to survive immune 
attack [4]. However, molecular progenitors and driving 
mechanisms underlying cancer stemness are still elusive.

c-Myc elevation or hyperactivation exists in vari-
ous cancers [13]. c-Myc exerts pro-tumoral effects via 
regulating cell cycle and activating downstream prolif-
erative signaling pathways [14, 15]. In vitro experiments 
showed that c-Myc overexpression transforms normal 
breast epithelial cells into breast cancer cells and induces 
epithelial-mesenchymal transition (EMT) process [16]. 
For metastasis-initiating cells, cancer cell colonization 
is accompanied by increased proliferation and elevated 
c-Myc expression [17]. Clinically, c-Myc amplification 
is associated with greater benefit from trastuzumab for 
patients with HER2-positive breast cancer [18]. Our 
previous bioinformatic analysis proposed that c-Myc 
dysfunction is a potential regulator of cancer stemness 
and participates in rewiring intracellular molecular 
interactions and metabolisms [19, 20]. Therefore, in 
this research, we aimed to investigate the mechanisms 
between c-Myc, breast cancer stemness and clinical out-
comes of patients.

Cuproptosis is a unique form of cell death induced 
by copper overloading that targets the tricarboxylic 

acid (TCA) cycle [21]. Some studies reported its role in 
cancer progression [22–24], but it remains to be seen 
whether this new concept offers druggable targets for 
use in clinical practice. In this study, we used transcrip-
tomic profiling from large-scale databases of breast 
cancer patients, conducted rounds of screening and iden-
tified that cuproptosis was associated with poor clinical 
outcomes of breast cancer and cuproptosis engaged in 
c-Myc mediated breast cancer stemness. Thus, we pro-
posed that cuproptosis-based risk scoring evaluation is 
conducive to predicting clinical outcomes of breast can-
cer. This research bridged the classic oncogene c-Myc 
and the new concept cuproptosis, proposed for the first 
time that cuproptosis may engaged in c-Myc-mediated 
breast cancer stemness, and identified a new cupropto-
sis-based scoring system that could be used for clinical 
applications.

Materials and methods
Clinical samples
Slices of breast cancer tissue and corresponding lymph 
nodes with cancer cell infiltration were collected from 
sixty patients after breast cancer surgery. Histological 
grading was performed based on the criteria of the World 
Health Organization (2019 World Health Organiza-
tion classification of tumours of the breast) [25]. Patho-
logic staging was evaluated by pathologists according to 
the current International Union against Cancer Tumor 
Lymph Node Metastasis.

IHC staining
IHC staining of breast tumor tissue samples was per-
formed using antibodies against c-Myc, CD44, CD24, 
CD133 and ALDH1A1. Pathologic staging was deter-
mined by the current International Union against Cancer 
Tumor Lymph Node metastasis classification. Scanning 
files or images on paraffin-embedded specimens were 
collected by digital tissue scanner or imaging system, and 
the tissue measurement area was performed by patholo-
gists. The number of weak, medium and strong positive 
cells in the measurement area was analyzed and calcu-
lated respectively (negative without staining, 0 points; 
weak positive light yellow, count 1 point; medium posi-
tive brown yellow, count 2 points; strong positive tan 
count 3 points), total cell count, positive cumulative opti-
cal density IOD value, positive pixel area, tissue area mm. 
The following results were calculated to reflect the degree 
of positivity [26].

Data sources and normalization
Clinical information and gene expression profil-
ing data (fragments per kilobase million, FPKM) of 
patients with Breast invasive carcinoma (BRCA) were 
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downloaded from Gene Expression Omnibus (GEO) 
database and The Cancer Genome Atlas (TCGA) 
database. Three GEO BRCA cohorts (GSE42568, 
GSE48390, and GSE88770) and TCGA cohorts were 
obtained for subsequent analyses (Table  1) [27–30]. 
The FPKM values of TCGA-Breast invasive carci-
noma (BRCA) were transformed into transcripts per 
kilobase million (TPM), as previously described, and 
were believed to be identical to those from microar-
rays. Four datasets were combined, and batch effect 
removal were performed by applying the “combat” 
algorithm of the SVA package, and the filtered expres-
sion matrix was normalized using Seurat’s Normal-
izeData function [31–34]. After data normalization, 
highly variable genes were identified and used for the 
following principal component analysis (PCA). A total 
of 1533 patients with BRCA from four data sets were 
enrolled in this study, including 104 patients from 
GSE42568, 81 patients from GSE48390, 117 patients 
from GSE88770, and 1091 patients from TCGA data-
base [27–30]. The clinical variables included age, gen-
der, grade, tumor stage, TNM Stage, HER2 mutation, 
ER mutation, follow-up time, and survival status.

Nonnegative matrix factorization (NMF) clustering analysis 
of cuproptosis biomarkers
Ten cuproptosis biomarkers (FDX1, LIAS, LIPT1, 
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A) 
were retrieved from previous publications [21]. R 
package “NMF” was employed to divide all samples 
into two CuRGcluster 1 and CuRGcluster 2 accord-
ing to expression of cuproptosis biomarkers [35]. This 
clustering was performed based on the following crite-
ria. First, the cumulative distribution function (CDF) 
curve increased gradually and smoothly. Second, no 
groups had a small sample size. Lastly, after clustering, 
the intra-group correlation increased, while the inter-
group correlation decreased.

Relationship between molecular subtypes and the clinical 
features and prognosis of breast cancer
To examine the clinical value of the two subtypes iden-
tified by NMF clustering, we compared the relationships 
between molecular subtypes, clinicopathological char-
acteristics, and prognosis. Clinicopathological features 
included age, gender, grade, tumor stage, TNM stage, 
HER2 mutation, ER status, follow-up time, and sur-
vival status. Furthermore, the differences in overall sur-
vival (OS) among different subtypes were assessed using 
Kaplan–Meier curves generated by R packages “survival” 
and “survminer” [36].

Correlations of cuproptosis‑based clustering with TME 
in breast cancer
The ESTIMATE algorithm was employed to evaluate 
the immune and stromal scores of each patient [37]. In 
addition, the proportion of 22 human immune cell sub-
sets of every breast cancer sample were calculated by the 
CIBERSORT algorithm [38]. Furthermore, immune cell 
infiltration in the breast cancer TME were also deter-
mined using a single-sample gene set enrichment analysis 
(ssGSEA) algorithm [39].

Differentiated expressed genes (DEGs) identification 
and functional annotation
DEGs between CuRGcluster C1 and C2 were identi-
fied using R package “limma” with a fold-change of 0.05 
and an adjusted p-value of < 0.05. In order to further 
explore the potential functions of cuproptosis pattern-
related DEGs and identify the related gene functions 
and enriched pathways, functional enrichment analy-
ses were executed on the DEGs using the R package 
“clusterprofiler”.

Construction of the cuproptosis‑related prognostic CuRG_
score
To investigate whether cuproptosis was associated 
with the outcomes of breast cancer patients, we aimed 
to establish a CuRG_score. First, the top three highly 
expressed cuproptosis-related genes in geneclusterC 

Table 1 Clinical information of public datasets used in this study

Dataset Size Age Tumor size Pathology Grade Follow‑up

GSE42568 104 31–89 years 0.6–8.0 cm IDC: 82
ILC: 17
Other: 5

I: 11
II: 40
III: 53

Max: 3026 days
Mean: 1887 days

GSE48390 81  < 70 years NA Invasive breast cancer I: 5
II: 40
III: 36

0.1–5.8 years

GSE88770 117 35–89 years 0.9–1.7 cm ILC I–III Min: 5 years
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were exposed to the univariate Cox regression analysis 
and two significant genes were subsequently exposed to 
a LASSO cox regression analysis to compute the exact 
coefficient values of each identified association. Then, all 
BRCA patients were randomly categorized into training 
(n = 686) and testing (n = 685) sets at a ratio of 1:1, then 
the former was used to construct the cuproptosis-related 
prognostic CuRG_score. Eventually, two candidate 
genes were established to get a prognostic CuRG_score 
in the training set. The CuRG_score was calculated as: 
CuRG_score = -0.469160009286577*(LIPT1) + 0.32295
3604620369*(DLAT). Based on the median risk score, a 
total of 686 patients in the training set were divided into 
low-risk (CuRG_score < median value) and high-risk 
(CuRG_score > median value) groups and then subjected 
to Kaplan–Meier survival analysis. Afterwards, princi-
pal component analysis (PCA) was performed using R 
package “ggplot2”. Similarly, the testing and all sets were 
divided into low- and high-risk groups, each of which 
was subjected to Kaplan–Meier survival analysis and the 
generation of receiver operating characteristic (ROC) 
curves.

Clinical correlation and stratification analyses of the 
CuRG_score. Chi-square tests were used to explore the 
relationships between the CuRG_score and the clinical 
characteristics (age, gender, TNM stage, HER2 status, 
and ER status). To assess whether risk scores were inde-
pendent of other available clinicopathological features, 
we subjected the training and testing sets to univariate 
and multivariate analyses. In addition, we performed a 
stratified analysis to determine whether the CuRG_score 
retained its predictive ability in different subgroups 
according to age, gender, T stage, N stage, M stage, tumor 
stage, HER2 status, and ER status.

Evaluation of immune status, microsatellite instability 
(MSI), and stemness index between the high‑ and low‑risk 
groups
To evaluate the proportions of tumor infiltrating immune 
cells in the TME, CIBERSORT was employed to quantify 
the abundance of 22 infiltrating immune cells in hetero-
geneous samples in the low- and high-risk groups. We 
explored the associations between the fractions of 22 
types of infiltrating immune cells and eight genes in the 
CuRG_score. Boxplots were used to examine the differ-
ential expression levels of immune checkpoints between 
the low- and high-score groups. Furthermore, we ana-
lyzed the relationships between the two risk groups and 
MSI and CSC.

Mutation and drug susceptibility analysis
To determine the somatic mutations of breast cancer 
patients between high- and low-risk groups, the mutation 

annotation format from the TCGA database was gener-
ated using the “maftools” R package. We also calculated 
the tumor mutation burden (TMB) score for each patient 
with BRCA in the two groups. To explore differences in 
the therapeutic effects of chemotherapeutic drugs in 
patients in the two groups, we calculated the semi-inhib-
itory concentration (IC50) values of chemotherapeutic 
drugs commonly used to treat BRCA using the “pRRo-
phetic” package.

Establishment and validation of a nomogram scoring 
system
The clinical characteristics and risk score were used to 
develop a predictive nomogram using the “rms” package 
based on the outcome of the independent prognosis anal-
ysis. In the nomogram scoring system, each variable was 
matched with a score, and the total score was obtained 
by adding the scores across all variables of each sample. 
Time-dependent ROC curves for 1-, 3-, and 5-year sur-
vivals were used to assess the nomogram. Calibration 
plots of the nomogram were used to depict the predictive 
value between the predicted 1-, 3-, and 5-year survival 
events and the virtually observed outcomes.

Statistical analyses
All statistical analyses were performed using R version 
4.1.0. Statistical significance was set at p < 0.05.

Results
c‑Myc was a potential regulator of breast cancer 
intra‑tumoral heterogeneity
We first investigated the expression of the oncoprotein 
c-Myc and four breast cancer stem cell (BCSC) bio-
markers: CD44, CD24, CD133 and ALDH1A1 [40]. We 
performed immunohistochemical (IHC) staining on sur-
gical specimens of the primary cancer tissue (PC) and an 
axillary lymph node with cancer evasion (LN +). Paired 
surgical specimens were derived from 60 patients diag-
nosed with various breast cancer subtypes (Table S1). For 
60 breast cancer cases, paraffin-embedded tissue from 
primary cancers and lymph nodes was available for a 
total of 120 samples. Protein expression of each sample 
was assessed based on mean expression of three slices. 
Then, we evaluated the expression of c-Myc, CD44, 
CD24, CD133, and ALDH1A1 of sixty primary cancers 
and paired lymph nodes with cancer evasion (Fig.  1A). 
In both PC and LN + , c-Myc expression positively cor-
related with CD44, CD133, and ALDH1A1, and nega-
tively correlated with CD24 (Fig.  1B and Table  2). This 
finding verified the positive correlation between c-Myc 
and BCSC biomarkers [41–44]. Since these tissues were 
collected from paired PC and LN + of the same patients, 
we also performed Spearman’s correlation analysis on 
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Fig. 1 Immunohistochemical staining demonstrates the positive association between c-Myc and BCSC phenotype. A Pathological slides staining 
BCSC biomarkers (CD44, CD24, CD133 and ALDH1A1) in c-Myc-high and c-Myc-low group. B Statistical analysis scoring expression of c-Myc and 
BCSC biomarkers demonstrating that in c-Myc high group, BCSC biomarkers have higher expression. (BCSC, breast cancer cell.) (*P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001)

Table 2 Spearman’s rank correlation between c-Myc, CD44, CD24, CD133 and ALDH1A1 in primary cancer and positive lymph nodes 
of our breast cancer cohort

(*P < 0.05; **P < 0.01.)

RPC (P value) C‑myc CD44 CD24 ALDH1A1 CD133

C-myc 0.543** (0.000) − 0.460** (0.000) 0.356** (0.006) 0.213 (0.105)

CD44 0.543** (0.000) − 0.082 (0.536) 0.184 (0.166) 0.176 (0.182)

CD24  − 0.460** (0.000)  − 0.082 (0.536)  − 0.115 (0.389)  − 0.195 (0.139)

ALDH1A1 0.356** (0.006) 0.184 (0.166) −0.115 (0.389) 0.239 (0.068)

CD133 0.213 (0.105) 0.176 (0.182) −0.195 (0.139) 0.239 (0.068)

RLN + (P value)

 C-myc 0.428** (0.001) − 0.234 (0.075) 0.312* (0.017) 0.043 (0.747)

 CD44 0.428** (0.001) − 0.119 (0.369) 0.153 (0.253) 0.253 (0.053)

 CD24  − 0.234 (0.075)  − 0.119 (0.369) 0.047 (0.729)  − 0.117 (0.376)

 ALDH1A1 0.312* (0.017) 0.153 (0.253) 0.047 (0.729)  − 0.117 (0.382)

 CD133 0.043 (0.747) 0.253 (0.053)  − 0.117 (0.376)  − 0.117 (0.382)
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stemness biomarkers in respective tumor sites and iden-
tified that a more prominent positive correlation between 
c-Myc and BCSC phenotype in PC compared with 
LN + (Table 2), suggesting a potentially more prominent 
regulation of c-Myc to stemness in the primary tissue. 
This finding was consistent with our previous report that 
PC-derived BCSC differentiated into cancer cell subclus-
ters with better metastatic potential [4]. Therefore, based 
on IHC staining of 120 breast cancer surgical specimens, 
we identified the positive correlation between c-Myc 
and BCSC phenotypes, and supposed that the oncopro-
tein c-Myc was a driving regulator of cancer stemness in 
breast cancer.

Cuproptosis was dysregulated in breast cancer tissues
Copper-induced cell death (cuproptosis) is a newly 
reported form of cell death. Excessive copper binds to 
constituents of the TCA cycle in mitochondria, lead-
ing to lipoylated protein aggregation, proteotoxic stress 
and ultimately cell death [21]. Seven genes (FDX1, LIAS, 
LIPT1, DLD, DLAT, PDHA1, and PDHB) were veri-
fied to rescue cells from copper toxicity, and three genes 
(MTF1, GLS, and CDKN2A) exacerbated cell death 
induced by copper overloading. Since dysregulation of 
intracellular homeostasis and cell cycle contribute to 
multiple pathologies including cancer [45], we inter-
rogated the expression of cuproptosis biomarkers in 
breast cancer specimens (Fig.  2A). We conducted tran-
scriptome analysis on a large-scale sample derived from 
four open databases (TCGA, GSE42568, GSE48390, and 
GSE88770). Nine out of ten cuproptosis biomarkers were 
differentially expressed between breast cancer tissues and 
normal control. PDHB and CDKN2A expression were 
significantly higher in breast cancer tissues compared 
with control. PDHB encodes pyruvate dehydrogenase, 
which links glycolysis to the TCA cycle and can be medi-
ated by the oncogenic AMPK signaling pathway [46]. 
Moreover, murine models demonstrated that ectopic 
activation of the pyruvate dehydrogenase complex by 
exogenous expression of PDHB increased metastatic 
potential and survival of cancer cells [47]. CDKN2A is a 
tumor suppressor gene and its target, p16, inactivates the 
cyclinD-CDK4/6 complex and leads to cell cycle arrest 
[48]. CDKN2A alteration is a contributor of tumorigene-
sis, however, its overexpression was also reported in sev-
eral types of cancers due to its association with aberrant 
apoptosis, senescence, angiogenesis and cancer migra-
tion [49, 50]. Inverse correlation between Rb and p16 
was reported in several cancers, including breast can-
cer. Additionally, p16 overexpression and heterozygous 
Rb loss are predictors to CDK4/6 resistance in hormone 
receptor-positive breast cancer [51]. Survival analysis 

demonstrated that among the cuproptosis biomarkers, 
FDX1, PDHA1, DLAT, and DLD predicts poor prognosis 
(Fig. 2B–E).

Identifying predictive biomarkers of breast cancer based 
on cuproptosis
To further identify the potential correlation between 
cuproptosis and breast cancer prognosis, we conducted 
unsupervised clustering on all breast cancer cases and 
grouped all patients into two CuRGClusters (C1 and C2, 
Fig.  2F). Bioinformatic analysis of the survival curve for 
the two CuRGClusters identified that patients from C2 
had worse prognosis than C1 (Fig.  2G). We then investi-
gated the expression of cuproptosis-related genes in the two 
CuRGClusters. Expression of FDX1, DLD, DLAT, PDHA1, 
GLS and CDKN2A were more enriched in the cluster with 
worse prognosis (Fig.  3A). C1 showed significantly higher 
expression of LIAS, LIPT1, and PDHB. C2 showed signifi-
cantly higher expression of FDX1, DLD, DLAT, PDHA1, 
GLS, and CDKN2A. For C2, we identified increased enrich-
ment of pathways including ROS pathway, glycolysis and 
mTORC1 signaling. Because cuproptosis-mediated cellular 
damage mainly targets mitochondrial TCA, and c-Myc was 
reported to maintain breast cancer stemness by increas-
ing oxidative phosphorylation (OXPHOS) and producing 
reactive oxygen species (ROS) [52], we interrogated the 
enrichment of c-Myc-associated pathways in these breast 
cancer specimens. Notably, we found that tissue samples of 
C2 cluster showed putative enrichment of c-Myc-targeted 
pathways (Fig.  3B). This finding prompted us to speculate 
that cuproptosis was the potential downstream of c-Myc-
mediated tumor progression. Additional file 1.

To investigate whether cuproptosis exerts effects on 
the TME, we evaluated the immune cell infiltration of 
breast cancer patients. In the breast cancer subgroup 
with worse prognosis, inhibitory immune response was 
identified by a higher proportion of inhibitory T cells 
and immunosuppressive components represented by 
myeloid-derived suppressor cells (MDSC) and regulatory 
T (Treg) cells (Fig. 3C). A larger proportion of γδT also 
suggested immune tolerance in the breast cancer sam-
ples from C2. γδT is a CD4-negative and CD8-negative 
T-cell subgroup having both anti- and pro-tumoral func-
tions during cancer progression [53]. On the one hand, 
γδT present antigens and exert direct cytotoxicity, on the 
other, certain γδT subgroups express exhausted ligands, 
facilitate pro-tumoral chronic inflammation and attenu-
ate adaptive immunity [54]. Based on transcriptomics 
and the enriched functional pathways, both CuRGClus-
ters (C1 and C2) are active in mitochondrial biological 
functions such as acetyl-CoA metabolism, purine nucleo-
side bisphosphate biosynthesis, and reducing equivalents 
production (Fig. 3D).
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Cuproptosis was predictive to clinical outcomes of breast 
cancer
To further identify the pro-tumoral effects of cupropto-
sis-related mechanisms and compute the exact coeffi-
cient values of each identified association, we performed 
univariate Cox regression analysis on the differentially 

expressed cuproptosis biomarkers of C1 and C2. The 
univariate Cox regression demonstrated that LIPT1, 
PDHA1, and DLAT as predictor to poor survival and 
further classified breast cancer samples into three gene-
Clusters (geneClusterA, geneClusterB and geneClus-
terC, Fig. 4A, B). Then, we performed LASSO regression 

Fig. 2 Primary clustering of breast cancer patients by cuproptosis-related genes. A Expression of cuproptosis-related genes in breast cancer tissues 
and normal control. B–E Representatives of Kaplan–Meier plots showing the relationship between cuproptosis-related genes and overall survival. F 
Consensus matrix clustered all breast cancer patients into two clusters based on the cuproptosis-related genes. G Survival curves of patients from 
two CuRGclusters. (*P < 0.05; **P < 0.01; ***P < 0.001)
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Fig. 3 Cuproptosis-related poor prognosis is a potential target of c-Myc. A Heatmap showing cuproptosis-related genes of breast cancer patients. 
The columns above illustrate the clinicopathological features of patients. B Top pathways enriched by cuproptosis-related genes that mediated 
poor breast cancer prognosis. C Immune components identified by bioinformatic analysis of two clusters. D Top pathways enriched by two 
CuRGclusters according to transcriptomic profiling. (BP, biological process; CC, cellular component; MF, molecular function.) (*P < 0.05; **P < 0.01; 
***P < 0.001)



Page 9 of 13Wang et al. Journal of Translational Medicine          (2023) 21:409  

analysis on the three genes to establish a CuRG_score 
that evaluate the degree of cuproptosis in breast cancer 
samples (Fig.  4C). Eventually, we got the CuRG_score 
calculated as: CuRG_score =  − 0.469160009286577* 
(LIPT1) + 0.322953604620369* (DLAT). Breast cancer 
samples were divided into the high- and low-risk group 
based on CuRG_score (Fig.  4D). We checked the cor-
respondence between CuRGclusters classified by dif-
ferentially expressed cuproptosis biomarkers (C1 and 

C2), geneClusters classified by univariate Cox regres-
sion (A, B, C), and the risk groups classified by CuRG_
scores (Fig. 4E). It turned out that previous clusters with 
comparatively poor outcomes (C2 compared with C1, 
geneClusterC compared with geneClusterA and gene-
ClusterB) showed putatively higher scores of cuproptosis. 
Furthermore, survival curve further verified that higher 
CuRG_score is associated with poorer clinical prognosis 
(Fig.  4F). The high-risk group had higher expression of 

Fig. 4 Key gene panel that mediates cuproptosis-related poor prognosis of breast cancer samples. A, B Secondary clustering based on significantly 
expressed cuproptosis-related genes grouped breast cancer patients into three geneClusters with different prognosis. C Nomogram performed in 
preparation for CuRG_score establishment. D, E The corresponding relationship of previous clustering. F Survival curves of two subclusters divided 
by the CuRG_score. G Expression of cuproptosis-related genes in the high- and low-CuRG_score groups. (*P < 0.05; **P < 0.01; ***P < 0.001)
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DLAT, DLD, FDX1, GLS, MTF1, and PDHA1, and lower 
expression of LIAS and LIPT1 compared with the low-
risk group (Fig. 4G). Based on the above analysis of large-
scale transcriptomics, we identified that cuproptosis was 
predictive to poorer clinical outcomes of patients with 
breast cancer.

Cuproptosis engaged in c‑Myc‑mediated cancer stemness
c-Myc is an oncogene regulating cancer cell prolifera-
tion through multiple mechanisms and modulating tis-
sue-specific chemotherapy sensitivity via mitochondrial 
apoptosis [55]. Moreover, c-Myc contributes to maintain-
ing BCSC by increasing OXPHOS and producing ROS 
[52]. The above bioinformatic analysis identified that 
cuproptosis predicted poor clinical outcomes of patients 
with breast cancer, and suggested that this pro-tumoral 
effect was significantly associated with c-Myc-medi-
ated downstream targets, we inferred that cuproptosis 

engaged in c-Myc-mediated tumor progression. To fur-
ther investigate whether the relationship between c-Myc 
and cuproptosis was also associated to cancer stemness, 
an embodiment of c-Myc-mediated carcinogenic prop-
erty, we performed another correlation analysis on 
stemness and cuproptosis. We found a significant posi-
tive correlation between CuRG_score and breast cancer 
stemness phenotype (Fig.  5A). These findings collec-
tively indicated that cuproptosis [21] was engaged in the 
c-Myc-mediated breast cancer stemness and malignancy.

It is acknowledged that cancer stem cell is a regulator 
of intra-tumoral heterogeneity and a marker of chemo- 
and radio-resistance. To test whether this CuRG_score 
predicted therapeutic effects, we investigated the sen-
sitivity to several anti-tumor drugs that were frequently 
used. The high-risk group had better responses to AKT 
inhibitors and vinorelbine than the low-risk group 
(Fig.  5B). AKT inhibitors in combination with first-line 

Fig. 5 Characteristics of cuproptosis-predicted breast cancer samples. A Bioinformatic analysis showed positive correlation between CuRG_score 
and cancer stemness. B Drug sensitivity of AKT inhibitor and vinorelbine in two groups with high and low CuRG_score. C TMB of classic oncogenes 
showed that the high-risk group had a lower TMB compared with the low-risk group. (TMB, tumor mutation burden.)



Page 11 of 13Wang et al. Journal of Translational Medicine          (2023) 21:409  

chemotherapy [56] and vinorelbine-based combinato-
rial therapy [57, 58] both showed therapeutic effects 
in breast cancer cases, and we demonstrated that high 
CuRG_score was significantly associated with higher 
 IC50 of these drugs. TMB has promising predictive abil-
ity to identify patients who derive clinically significant 
improvement in survival from immunotherapy [59, 60]. 
Bioinformatic analysis demonstrated that high CuRG_
score was correlated with lower TMB (Fig.  5C). These 
findings suggested that cuproptosis engaged in c-Myc-
mediated breast cancer stemness, therefore rendering 
breast cancer cells in a dormient and less mutative state 
that is insensitive to chemotherapy and immunotherapy.

Discussion
Since the first report of copper-induced cell death in 
March 2022, there has been a great deal of interest in this 
novel concept. So far, various bioinformatic analysis have 
linked this new form of cell death to multiple diseases, 
including cancers and non-malignant diseases such as 
rheumatoid arthritis [61, 62]. Moreover, revelation of the 
exact mechanisms also boosted copper-based nanomate-
rials and enriched optional carrier for cancer treatment 
[62]. Though various studies have established prognos-
tic models or simulated the tumor immune microenvi-
ronment based on public database, few focused on the 
molecular mechanisms and the therapeutic potential 
of this newly identified cell death. The Science report 
verified ten genes related to cuproptosis among which 
seven genes (LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, 
FDX1) rescued cells from copper overloading and mito-
chondrial failure, while the other three (MTF1, GLS, 
CDKN2A) offers synergy and promotes cuproptosis 
[21]. Another form of metal-dependent cell death that 
arouses enormous interest is ferroptosis. After ferropto-
sis was reported, researchers expanded their study into 
the molecular pathways and utilized cell death resulted 
from ferroptosis-mediated lipid peroxide accumulation 
to target cancerous proliferation. The key enzymes and 
regulatory mechanisms involved in cuproptosis have 
been identified. However, its role in pathological condi-
tions as well as the potential in clinical practice remains 
unclear. Inspired by ferroptosis-mediated cancer biology, 
researchers devoted to the potential value of cuprop-
tosis in cancer. By combining copper toxicity with RNA 
methylation, a report on hepatocellular carcinoma dem-
onstrates the RNA regulators of cuproptosis biomarkers 
and shows correlation with tumor mutation which partly 
predicts sensitivity to immunotherapy [63]. Moreo-
ver, studies in combination with lncRNA network indi-
cate that cuproptosis-related lncRNAs can predict the 

recruitment and infiltration of immune components in 
TME [64]. These interesting findings motivate us to take 
cuproptosis as an opportunity to extend our research in 
oncology.

Heterogeneity is one of the challenges of cancer treat-
ment. Intratumoral heterogeneity, demonstrated in spa-
tiotemporal evolution and instability, greatly contributed 
to failure of monotherapy, therefore leading to tumor 
progression and metastasis. CSCs are a unique cancer 
cell population comparatively immune-privileged than 
other subclusters that drive the initiation, metastasis 
and therapeutic resistance of most neoplasms [65, 66]. 
Investigation into heterogeneity, as well as the contribut-
ing factors underlying this intratumoral heterogeneity, is 
highly valuable to research and clinical practice. c-Myc 
has been recognized as a “grand orchestrator” of carcino-
genesis that mediates tumor progression. In addition to 
being an important transcriptional factor of cancer cells, 
c-Myc dysregulates the TME and remodels antitumor 
immunity [67].

Our previous bioinformatic analysis suggested that 
c-Myc was a driving factor of breast cancer stemness. 
Therefore, we aimed to further specify the specific mech-
anisms by which c-Myc mediates breast cancer stemness 
and intratumoral heterogeneity. Start with IHC stain-
ing of breast cancer surgical specimens, we verified that 
c-Myc is putatively related to BCSC phenotype. Our 
analysis based on large-scale transcriptomics profiles 
supported that cuproptosis-related poor prognosis is 
a downstream target of c-Myc-mediated mechanisms. 
Further statistical analysis and screening established 
a CuRG_score as an indicator to poor prognosis and 
showed putative correlation with breast cancer stemness. 
The above findings proposed a novel mechanism of 
cuproptosis in breast cancer, that is cuproptosis engaged 
in breast cancer stemness via c-Myc-related mechanisms. 
We proposed that cuproptosis was a potential target of 
the classic oncogene c-Myc, the intermediator of c-Myc-
mediated breast cancer stemness and a predictor to poor 
prognosis of breast cancer.

Conclusion
In conclusion, based on a sample size of 1,533 breast 
cancer cases, we combined large-scale transcriptomics 
analysis and pathological examination and revealed that 
cuproptosis engaged in c-Myc-mediated breast cancer 
stemness. This finding suggests the potential of innova-
tive nanomaterials that pack c-Myc-targeted inhibitors 
with copper polymers.
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