Zhai Y, Franco LM, Atmar RL, Quarles JM, Arden N, Bucasas KL, Wells JM, Nino D, Wang X, Zapata GE, et al. Host transcriptional response to influenza and other acute respiratory viral infections–A prospective cohort study. PLoS Pathog. 2015;11: e1004869.
Article
Google Scholar
Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, Geffers R, Schughart K. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS ONE. 2012;7: e41169.
Article
CAS
Google Scholar
Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, Veldman T, Oien NC, McClain MT, Varkey JB, Nicholson B, et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet. 2011;7: e1002234.
Article
CAS
Google Scholar
Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020. https://doi.org/10.1084/jem.20200678.
Article
Google Scholar
Maurya R, Shamim U, Chattopadhyay P, Mehta P, Mishra P, Devi P, Swaminathan A, Saifi S, Khare K, Yadav A. Human-host transcriptomic analysis reveals unique early innate immune responses in different sub-phenotypes of COVID-19. Clin Transl Med. 2022;12: e856.
Article
CAS
Google Scholar
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan China. Intensive Care Med. 2020;46:846–8.
Article
CAS
Google Scholar
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, Jordan TX, Oishi K, Panis M, Sachs D, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(1036–1045): e1039.
Google Scholar
Park A, Iwasaki A. Type I and type III interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020;27:870–8.
Article
CAS
Google Scholar
Tartaro DL, Neroni A, Paolini A, Borella R, Mattioli M, Fidanza L, Quong A, Petes C, Awong G, Douglas S. Molecular and cellular immune features of aged patients with severe COVID-19 pneumonia. Commun Biol. 2022. https://doi.org/10.1038/s42003-022-03537-z.
Article
Google Scholar
Cruz-Pulido D, Ouma WZ, Kenney SP. Differing coronavirus genres alter shared host signaling pathways upon viral infection. Sci Rep. 2022;12:1–12.
Article
Google Scholar
Liu X, Speranza E, Muñoz-Fontela C, Haldenby S, Rickett NY, Garcia-Dorival I, Fang Y, Hall Y, Zekeng EG, Lüdtke A, et al. Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biol. 2017;18:4.
Article
Google Scholar
Petzke MM, Volyanskyy K, Mao Y, Arevalo B, Zohn R, Quituisaca J, Wormser GP, Dimitrova N, Schwartz I, Norris SJ. Global transcriptome analysis identifies a diagnostic signature for early disseminated Lyme disease and its resolution. mBio. 2020;11:e00047-00020.
Article
Google Scholar
Logue JK, Franko NM, McCulloch DJ, McDonald D, Magedson A, Wolf CR, Chu HY. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4:e210830–e210830.
Article
Google Scholar
Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063.
Article
CAS
Google Scholar
Hoagland DA, Møller R, Uhl SA, Oishi K, Frere J, Golynker I, Horiuchi S, Panis M, Blanco-Melo D, Sachs D. Leveraging the antiviral type-I interferon system as a first line defense against SARS-CoV-2 pathogenicity. Immunity. 2021. https://doi.org/10.1016/j.immuni.2021.01.017.
Article
Google Scholar
Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ, Dobias NS, Heymann JC, Foster SL, Levine CB, Medina L. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat Immunol. 2021;22:86–98.
Article
CAS
Google Scholar
Batchu S, Yu S. Age-associated ligand-receptor interactions imputed from nasopharyngeal transcriptomes of COVID-19 patients. Immunol Invest. 2021. https://doi.org/10.1080/08820139.2021.188248.
Article
Google Scholar
Abikhair Burgo M, Roudiani N, Chen J, Santana AL, Doudican N, Proby C, Felsen D, Carucci JA. Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.120750.
Article
Google Scholar
Dai Y, Wang J, Jeong H-H, Chen W, Jia P, Zhao Z. Association of CXCR6 with COVID-19 severity: delineating the host genetic factors in transcriptomic regulation. BioRxiv. 2021. https://doi.org/10.1101/2021.02.17.431554.
Article
Google Scholar
Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, Surapaneni NS, Matusov YP, Chiang GC, Kassar AG. Cell-type-specific immune dysregulation in severely Ill COVID-19 patients. Cell Rep. 2021;34: 108590.
Article
CAS
Google Scholar
Sabioni L, De Lorenzo A, Lamas C, Muccillo F, Castro-Faria-Neto HC, Estato V, Tibirica E. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis. Microvasc Res. 2021;134: 104119.
Article
CAS
Google Scholar
Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X, Zhou X, Niu X, Wang L, Su M. The molecular mechanism of multiple organ dysfunction and targeted intervention of COVID-19 based on time-order transcriptomic analysis. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.729776.
Article
Google Scholar
Sohn KM, Lee S-G, Kim HJ, Cheon S, Jeong H, Lee J, Kim IS, Silwal P, Kim YJ, Paik S. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci. 2020. https://doi.org/10.3346/jkms.2020.35.e343.
Article
Google Scholar
Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front Immunol. 2020;11:3446.
Article
Google Scholar
Nilsson-Payant BE, Uhl S, Grimont A, Doane AS, Cohen P, Patel RS, Higgins CA, Acklin JA, Bram Y, Chandar V. The NF-κB transcriptional footprint is essential for SARS-CoV-2 replication. J Virol. 2021;95:e01257-e11221.
Article
CAS
Google Scholar
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Javanmard G, Rezaee M, Kastelic J, Barkema H. Differential co-expression network analysis reveals key hub-high traffic genes as potential therapeutic targets for COVID-19 pandemic. Front Immunol. 2021;12:789317–789317.
Article
CAS
Google Scholar
Vastrad B, Vastrad C, Tengli A. Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech. 2020;10:1–65.
Article
Google Scholar
Farahani M, Niknam Z, Amirabad LM, Amiri-Dashatan N, Koushki M, Nemati M, Pouya FD, Rezaei-Tavirani M, Rasmi Y, Tayebi L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother. 2022;145: 112420.
Article
CAS
Google Scholar
Ferreira-Gomes M, Kruglov A, Durek P, Heinrich F, Tizian C, Heinz GA, Pascual-Reguant A, Du W, Mothes R, Fan C. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun. 2021;12:1–14.
Article
Google Scholar
Shen W-X, Luo R-C, Wang J-Q, Chen Z-S. Features of cytokine storm identified by distinguishing clinical manifestations in COVID-19. Front Public Health. 2021;9:614.
Article
Google Scholar
Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: the possible therapy against pandemic COVID-19. Gene reports. 2020;20: 100765.
Article
CAS
Google Scholar
Dinarello C, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289.
Article
Google Scholar
Harms RZ, Creer AJ, Lorenzo-Arteaga KM, Ostlund KR, Sarvetnick NE. Interleukin (IL)-18 binding protein deficiency disrupts natural killer cell maturation and diminishes circulating IL-18. Front Immunol. 2017;8:1020.
Article
Google Scholar
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383:2255–73.
Article
CAS
Google Scholar
Wang P, Jin X, Zhou W, Luo M, Xu Z, Xu C, Li Y, Ma K, Cao H, Huang Y. Comprehensive analysis of TCR repertoire in COVID-19 using single cell sequencing. Genomics. 2021;113:456–62.
Article
CAS
Google Scholar
Luo L, Liang W, Pang J, Xu G, Chen Y, Guo X, Wang X, Zhao Y, Lai Y, Liu Y. Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell discovery. 2021;7:1–17.
Article
Google Scholar
Tang-Huau T-L, Gueguen P, Goudot C, Durand M, Bohec M, Baulande S, Pasquier B, Amigorena S, Segura E. Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat Commun. 2018;9:1–12.
Article
CAS
Google Scholar
Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012;12:295–305.
Article
CAS
Google Scholar
Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V (D) J recombination. Cell. 2002;109:S45–55.
Article
CAS
Google Scholar
Wang G, Wang Y, Jiang S, Fan W, Mo C, Gong W, Chen H, He D, Huang J, Ou M. Comprehensive analysis of TCR repertoire of COVID-19 patients in different infected stage. Genes Genom. 2022. https://doi.org/10.1007/s13258-022-01261-w.
Article
Google Scholar
Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol. 2006;533:327–40.
Article
CAS
Google Scholar
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res: the official journal of the International Society for Interferon and Cytokine Research. 2009;29:313–26.
Article
CAS
Google Scholar
Carmen J, Gowing G, Julien JP, Kerr D. Altered immune response to CNS viral infection in mice with a conditional knock-down of macrophage-lineage cells. Glia. 2006;54:71–80.
Article
Google Scholar
Ito C, Sato H, Ando K, Watanabe S, Yoshiba F, Kishi K, Furuya A, Shitara K, Sugimoto S, Kohno H, et al. Serum stem cell growth factor for monitoring hematopoietic recovery following stem cell transplantation. Bone Marrow Transplant. 2003;32:391–8.
Article
CAS
Google Scholar
Kennedy AE, Cook L, Breznik JA, Cowbrough B, Wallace JG, Huynh A, Smith JW, Son K, Stacey H, Ang J, et al. Lasting changes to circulating leukocytes in people with mild SARS-CoV-2 infections. Viruses. 2021;13:2239.
Article
CAS
Google Scholar
Han Q, Wen X, Wang L, Han X, Shen Y, Cao J, Peng Q, Xu J, Zhao L, He J, Yuan H. Role of hematological parameters in the diagnosis of influenza virus infection in patients with respiratory tract infection symptoms. J Clin Lab Anal. 2020;34: e23191.
Article
CAS
Google Scholar
Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, Palomba P, Mirabella M, Cascioli S, Palange P, et al. Different innate and adaptive immune responses to SARS-CoV-2 infection of asymptomatic, mild, and severe cases. Front Immunol. 2020;11: 610300.
Article
CAS
Google Scholar
Liu J, Yang X, Wang H, Li Z, Deng H, Liu J, Xiong S, He J, Feng X, Guo C, et al. Analysis of the long-term impact on cellular immunity in COVID-19-recovered individuals reveals a profound NKT cell impairment. mBio. 2021. https://doi.org/10.1128/mBio.00085-21.
Article
Google Scholar
Aghbash PS, Eslami N, Shamekh A, Entezari-Maleki T, Baghi HB. SARS-CoV-2 infection: the role of PD-1/PD-L1 and CTLA-4 axis. Life Sci. 2021;270: 119124.
Article
CAS
Google Scholar
Sharif-Askari NS, Sharif-Askari FS, Mdkhana B, Al Heialy S, Alsafar HS, Hamoudi R, Hamid Q, Halwani R. Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection. Mol Ther-Methods Clin Dev. 2021;20:109–21.
Article
Google Scholar
Neidleman J, Luo X, George AF, McGregor M, Yang J, Yun C, Murray V, Gill G, Greene WC, Vasquez J. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. Cell Rep. 2021;36: 109414.
Article
CAS
Google Scholar
Hou H, Zhang Y, Tang G, Luo Y, Liu W, Cheng C, Jiang Y, Xiong Z, Wu S, Sun Z. Immunologic memory to SARS-CoV-2 in convalescent COVID-19 patients at 1 year postinfection. J Allergy Clin Immunol. 2021;148(1481–1492): e1482.
Google Scholar
Li X, Garg M, Jia T, Liao Q, Yuan L, Li M, Wu Z, Wu W, Bi Y, George N. Single-cell analysis reveals the immune characteristics of myeloid cells and memory T cells in recovered COVID-19 patients with different severities. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2021.781432.
Article
Google Scholar
Shekhawat J, Gauba K, Gupta S, Purohit P, Mitra P, Garg M, Misra S, Sharma P, Banerjee M. Interleukin-6 perpetrator of the COVID-19 cytokine storm. Indian J Clin Biochem. 2021;36:440–50.
Article
CAS
Google Scholar
Chen LY, Hoiland RL, Stukas S, Wellington CL, Sekhon MS. Confronting the controversy: interleukin-6 and the COVID-19 cytokine storm syndrome. Eur Respiratory Soc. 2020. https://doi.org/10.1183/13993003.03006-2020.
Article
Google Scholar
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976–88.
Article
CAS
Google Scholar
Didangelos A. COVID-19 hyperinflammation: what about neutrophils? MSphere. 2020;5:e00367-e1320.
Article
CAS
Google Scholar
Chevrier S, Zurbuchen Y, Cervia C, Adamo S, Raeber ME, de Souza N, Sivapatham S, Jacobs A, Bachli E, Rudiger A. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep Med. 2021;2: 100166.
Article
CAS
Google Scholar
Mardi A, Meidaninikjeh S, Nikfarjam S, Majidi Zolbanin N, Jafari R. Interleukin-1 in COVID-19 infection: immunopathogenesis and possible therapeutic perspective. Viral Immunol. 2021;34:679–88.
Article
CAS
Google Scholar
Galbraith MD, Kinning KT, Sullivan KD, Araya P, Smith KP, Granrath RE, Shaw JR, Baxter R, Jordan KR, Russell S. Specialized interferon action in COVID-19. Proc Natl Acad Sci. 2022;119: e2116730119.
Article
CAS
Google Scholar
Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun. 2021;120: 102644.
Article
CAS
Google Scholar
Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte AC, Robl R, Shrotri S, Grammer AC, Lipsky PE. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Sci Rep. 2021;11:1–19.
Article
Google Scholar
Mathieu NA, Paparisto E, Barr SD, Spratt DE. HERC5 and the ISGylation pathway: critical modulators of the antiviral immune response. Viruses. 2021;13:1102.
Article
CAS
Google Scholar
Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD. Immunology of COVID-19: current state of the science. Immunity. 2020;52:910–41.
Article
CAS
Google Scholar
Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23:194–202.
Article
CAS
Google Scholar
Zapor M. Persistent detection and infectious potential of SARS-CoV-2 virus in clinical specimens from COVID-19 patients. Viruses. 2020. https://doi.org/10.3390/v12121384.
Article
Google Scholar
van Doorn AS, Meijer B, Frampton CMA, Barclay ML, de Boer NKH. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther. 2020;52:1276–88.
Google Scholar
Morone G, Palomba A, Iosa M, Caporaso T, De Angelis D, Venturiero V, Savo A, Coiro P, Carbone D, Gimigliano F, et al. Incidence and persistence of viral shedding in COVID-19 post-acute patients with negativized pharyngeal swab: a systematic review. Front Med (Lausanne). 2020;7:562.
Article
Google Scholar
LaVergne SM, Stromberg S, Baxter BA, Webb TL, Dutt TS, Berry K, Tipton M, Haberman J, Massey BR, McFann K, et al. A longitudinal SARS-CoV-2 biorepository for COVID-19 survivors with and without post-acute sequelae. BMC Infect Dis. 2021;21:677.
Article
CAS
Google Scholar
Yang T, Yang Y, Wang D, Li C, Qu Y, Guo J, Shi T, Bo W, Sun Z, Asakawa T. The clinical value of cytokines in chronic fatigue syndrome. J Transl Med. 2019;17:213.
Article
Google Scholar
Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier C, Patel SK, Juno JA, Burrell LM, Kent SJ, Dore GJ. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022. https://doi.org/10.1038/s41590-021-01113-x.
Article
Google Scholar