Matsuoka K, Bakiri L, Wolff LI, Linder M, Mikels-Vigdal A, Patiño-García A, Lecanda F, Hartmann C, Sibilia M, Wagner EF. Wnt signaling and Loxl2 promote aggressive osteosarcoma. Cell Res. 2020;30:885–901. https://doi.org/10.1038/s41422-020-0370-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33:3029–35. https://doi.org/10.1200/jco.2014.59.4895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–200. https://doi.org/10.1016/j.cell.2017.05.045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36:177–88. https://doi.org/10.1016/j.tig.2019.12.007.
Article
CAS
PubMed
Google Scholar
Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88. https://doi.org/10.1186/s12943-020-01204-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019;18:103. https://doi.org/10.1186/s12943-019-1033-z.
Article
PubMed
PubMed Central
Google Scholar
Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20:599–614. https://doi.org/10.1038/s41576-019-0145-z.
Article
CAS
PubMed
Google Scholar
Baysal BE, Sharma S, Hashemikhabir S, Janga SC. RNA editing in pathogenesis of cancer. Cancer Res. 2017;77:3733–9. https://doi.org/10.1158/0008-5472.can-17-0520.
Article
CAS
PubMed
Google Scholar
Jain M, Jantsch MF, Licht K. The editor’s I on disease development. Trends Genet. 2019;35:903–13. https://doi.org/10.1016/j.tig.2019.09.004.
Article
CAS
PubMed
Google Scholar
Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC, Martini M, De Angelis B, De Luca G, Vitiani LR, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021;22:51. https://doi.org/10.1186/s13059-021-02271-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Gu J, Xu F, Zhu Q, Chen Y, Ge D, Lu C. Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma. Brief Bioinform. 2020. https://doi.org/10.1093/bib/bbaa225.
Article
PubMed
PubMed Central
Google Scholar
Xu F, Huang X, Li Y, Chen Y, Lin L. m(6)A-related lncRNAs are potential biomarkers for predicting prognoses and immune responses in patients with LUAD. Mol Ther Nucleic Acids. 2021;24:780–91. https://doi.org/10.1016/j.omtn.2021.04.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iliopoulos D, Bimpaki EI, Nesterova M, Stratakis CA. MicroRNA signature of primary pigmented nodular adrenocortical disease: clinical correlations and regulation of Wnt signaling. Cancer Res. 2009;69:3278–82. https://doi.org/10.1158/0008-5472.can-09-0155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Z, Cheng DD, Wei XJ, Li SJ, Guo H, Yang QC. Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym. 2021;258: 117596. https://doi.org/10.1016/j.carbpol.2020.117596.
Article
CAS
PubMed
Google Scholar
Reddy D, Ghosh P, Kumavath R. Strophanthidin attenuates MAPK, PI3K/AKT/mTOR, and Wnt/β-catenin signaling pathways in human cancers. Front Oncol. 2019;9:1469. https://doi.org/10.3389/fonc.2019.01469.
Article
PubMed
Google Scholar
Karaś K, Sałkowska A, Walczak-Drzewiecka A, Ryba K, Dastych J, Bachorz RA, Ratajewski M. The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors. Toxicol Lett. 2018;295:314–24. https://doi.org/10.1016/j.toxlet.2018.07.002.
Article
CAS
PubMed
Google Scholar
McFadden MJ, Horner SM. N(6)-methyladenosine regulates host responses to viral infection. Trends Biochem Sci. 2021;46:366–77. https://doi.org/10.1016/j.tibs.2020.11.008.
Article
CAS
PubMed
Google Scholar
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C, Chen Y. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74. https://doi.org/10.1038/s41392-020-00450-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Wong CM. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol Cancer. 2020;19:44. https://doi.org/10.1186/s12943-020-01172-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Liu J, Zhao Y, He R, Xu X, Guo X, Li X, Xu S, Miao J, Guo J, et al. Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer. 2020;19:130. https://doi.org/10.1186/s12943-020-01249-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19:106. https://doi.org/10.1186/s12943-020-01220-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan Y, Yan G, He M, Lei H, Li L, Wang Y, He X, Li G, Wang Q, Gao Y, et al. ALKBH5 suppresses tumor progression via an m(6)A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis. 2021;12:60. https://doi.org/10.1038/s41419-020-03315-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, et al. Small molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021. https://doi.org/10.1038/s41586-021-03536-w.
Article
PubMed
Google Scholar
Han J, An O, Hong H, Chan THM, Song Y, Shen H, Tang SJ, Lin JS, Ng VHE, Tay DJT, et al. Suppression of adenosine-to-inosine (A-to-I) RNA editome by death associated protein 3 (DAP3) promotes cancer progression. Sci Adv. 2020;6:eaba5136. https://doi.org/10.1126/sciadv.aba5136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Wang Y, Mojumdar K, Zhou Z, Jeong KJ, Mangala LS, Yu S, Tsang YH, Rodriguez-Aguayo C, Lu Y, et al. A-to-I-edited miRNA-379-5p inhibits cancer cell proliferation through CD97-induced apoptosis. J Clin Invest. 2019;129:5343–56. https://doi.org/10.1172/jci123396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han X, Wang M, Zhao YL, Yang Y, Yang YG. RNA methylations in human cancers. Semin Cancer Biol. 2020. https://doi.org/10.1016/j.semcancer.2020.11.007.
Article
PubMed
PubMed Central
Google Scholar
Wu G, Zhang M. A novel risk score model based on eight genes and a nomogram for predicting overall survival of patients with osteosarcoma. BMC Cancer. 2020;20:456. https://doi.org/10.1186/s12885-020-06741-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wan Y, Qu N, Yang Y, Ma J, Li Z, Zhang Z. Identification of a 3-gene signature based on differentially expressed invasion genes related to cancer molecular subtypes to predict the prognosis of osteosarcoma patients. Bioengineered. 2021;12:5916–31. https://doi.org/10.1080/21655979.2021.1971919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Tang X, Du Y, Dong J, Zhao Z, Hu H, Song T, Guo J, Wang Y, Xu T, et al. Establishment of an autophagy-related clinical prognosis model for predicting the overall survival of osteosarcoma. Biomed Res Int. 2021;2021:5428425. https://doi.org/10.1155/2021/5428425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei T, Qian H, Lei P, Hu Y. Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma. Cancer Sci. 2021;112:4785–98. https://doi.org/10.1111/cas.15131.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu CC, Beird HC, Andrew Livingston J, Advani S, Mitra A, Cao S, Reuben A, Ingram D, Wang WL, Ju Z, et al. Immuno-genomic landscape of osteosarcoma. Nat Commun. 2020;11:1008. https://doi.org/10.1038/s41467-020-14646-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen T, Zhao L. Patrolling monocytes inhibit osteosarcoma metastasis to the lung. Aging (Albany NY). 2020;12:23004–16. https://doi.org/10.18632/aging.104041.
Article
CAS
Google Scholar
Wang Y, Wang Y, Xu C, Liu Y, Huang Z. Identification of novel tumor-microenvironment-regulating factor that facilitates tumor immune infiltration in colon cancer. Mol Ther Nucleic Acids. 2020;22:236–50. https://doi.org/10.1016/j.omtn.2020.08.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kansara M, Thomson K, Pang P, Dutour A, Mirabello L, Acher F, Pin JP, Demicco EG, Yan J, Teng MWL, et al. Infiltrating myeloid cells drive osteosarcoma progression via GRM4 regulation of IL23. Cancer Discov. 2019;9:1511–9. https://doi.org/10.1158/2159-8290.cd-19-0154.
Article
CAS
PubMed
Google Scholar
Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, Wang Y, Zhang Z, Yuan T, Ding X, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 2020;11:6322. https://doi.org/10.1038/s41467-020-20059-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buddingh EP, Kuijjer ML, Duim RA, Bürger H, Agelopoulos K, Myklebost O, Serra M, Mertens F, Hogendoorn PC, Lankester AC, Cleton-Jansen AM. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin Cancer Res. 2011;17:2110–9. https://doi.org/10.1158/1078-0432.ccr-10-2047.
Article
CAS
PubMed
Google Scholar
Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018;7:2654–64. https://doi.org/10.1002/cam4.1518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulman Z, Stern-Ginossar N. The RNA modification N(6)-methyladenosine as a novel regulator of the immune system. Nat Immunol. 2020;21:501–12. https://doi.org/10.1038/s41590-020-0650-4.
Article
CAS
PubMed
Google Scholar
Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, Yu Y, Wu Y, Wang Y, Zhang J, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394. https://doi.org/10.1038/s41467-021-21514-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lan H, Liu Y, Liu J, Wang X, Guan Z, Du J, Jin K. Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m(6)A of TRAF5 and necroptosis in colorectal cancer. Mol Pharm. 2021;18:1026–37. https://doi.org/10.1021/acs.molpharmaceut.0c00961.
Article
CAS
PubMed
Google Scholar
Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao X. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat Commun. 1898;2019:10. https://doi.org/10.1038/s41467-019-09903-6.
Article
CAS
Google Scholar
Morginson WJ, Rich CO, Eskelson YD, Kirkman LW, Utterback M, Burton AM, Coletti JM. Dyclonine hydrochloride: a new topical antipruritic agent. Postgrad Med. 1956;19:605–7. https://doi.org/10.1080/00325481.1956.11708352.
Article
CAS
PubMed
Google Scholar
Ju D, Wang X, Xie Y. Dyclonine and alverine citrate enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells. Int J Mol Med. 2009;23:205–9.
CAS
PubMed
Google Scholar
Abhishek Shah A, Shah A, Lewis S, Ghate V, Saklani R, Narayana Kalkura S, Baby C, Kumar Singh P, Nayak Y, Chourasia MK. Cyclodextrin based bone regenerative inclusion complex for resveratrol in postmenopausal osteoporosis. Eur J Pharm Biopharm. 2021. https://doi.org/10.1016/j.ejpb.2021.07.008.
Article
PubMed
Google Scholar
Xu N, Wang L, Fu S, Jiang B. Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells. Arch Med Sci. 2021;17:166–76. https://doi.org/10.5114/aoms.2020.100777.
Article
CAS
PubMed
Google Scholar
Li Y, Bäckesjö CM, Haldosén LA, Lindgren U. Resveratrol inhibits proliferation and promotes apoptosis of osteosarcoma cells. Eur J Pharmacol. 2009;609:13–8. https://doi.org/10.1016/j.ejphar.2009.03.004.
Article
CAS
PubMed
Google Scholar
Alkhalaf M, Jaffal S. Potent antiproliferative effects of resveratrol on human osteosarcoma SJSA1 cells: novel cellular mechanisms involving the ERKs/p53 cascade. Free Radic Biol Med. 2006;41:318–25. https://doi.org/10.1016/j.freeradbiomed.2006.04.019.
Article
CAS
PubMed
Google Scholar
Zhang Y, Shi T, He Y. GPR35 regulates osteogenesis via the Wnt/GSK3β/β-catenin signaling pathway. Biochem Biophys Res Commun. 2021;556:171–8. https://doi.org/10.1016/j.bbrc.2021.03.084.
Article
CAS
PubMed
Google Scholar
Monz K, Maas-Kück K, Schumacher U, Schulz T, Hallmann R, Schnäker EM, Schneider SW, Prehm P. Inhibition of hyaluronan export attenuates cell migration and metastasis of human melanoma. J Cell Biochem. 2008;105:1260–6. https://doi.org/10.1002/jcb.21925.
Article
CAS
PubMed
Google Scholar
Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA. Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci USA. 2001;98:7846–51. https://doi.org/10.1073/pnas.141124698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oguri T, Achiwa H, Sato S, Bessho Y, Takano Y, Miyazaki M, Muramatsu H, Maeda H, Niimi T, Ueda R. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Mol Cancer Ther. 2006;5:1800–6. https://doi.org/10.1158/1535-7163.mct-06-0025.
Article
CAS
PubMed
Google Scholar
Radi AM, Mohammed ET, Abushouk AI, Aleya L, Abdel-Daim MM. The effects of abamectin on oxidative stress and gene expression in rat liver and brain tissues: modulation by sesame oil and ascorbic acid. Sci Total Environ. 2020;701: 134882. https://doi.org/10.1016/j.scitotenv.2019.134882.
Article
CAS
PubMed
Google Scholar
Chen MH, Yang WL, Lin KT, Liu CH, Liu YW, Huang KW, Chang PM, Lai JM, Hsu CN, Chao KM, et al. Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PLoS ONE. 2011;6: e27186. https://doi.org/10.1371/journal.pone.0027186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matesic DF, Abifadel DN, Garcia EL, Jann MW. Effect of thioridazine on gap junction intercellular communication in connexin 43-expressing cells. Cell Biol Toxicol. 2006;22:257–68. https://doi.org/10.1007/s10565-006-0047-7.
Article
CAS
PubMed
Google Scholar
Pfitzinger PL, Fangmann L, Wang K, Demir E, Gürlevik E, Fleischmann-Mundt B, Brooks J, D’Haese JG, Teller S, Hecker A, et al. Indirect cholinergic activation slows down pancreatic cancer growth and tumor-associated inflammation. J Exp Clin Cancer Res. 2020;39:289. https://doi.org/10.1186/s13046-020-01796-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Zhou J, Zhang Y, Zhang J, Li X, Yan Q, Han J, Hu F. Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-β1/Smad aixs in liver cancer. Cancer Cell Int. 2021;21:304. https://doi.org/10.1186/s12935-021-01890-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai W, Tang Y, Huang XR, Ming-Kuen Tang P, Xu A, Szalai AJ, Lou TQ, Lan HY. C-reactive protein promotes acute kidney injury via Smad3-dependent inhibition of CDK2/cyclin E. Kidney Int. 2016;90:610–26. https://doi.org/10.1016/j.kint.2016.06.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, Yun JY, Kang JA, Kang J, Lee SE, et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell. 2016;18:508–21. https://doi.org/10.1016/j.stem.2016.01.013.
Article
CAS
PubMed
Google Scholar