Key Statistics from the National Survey of Family Growth. https://www.cdc.gov/nchs/fastats/infertility.htm. Accessed 15 July 2019.
World Health Organization. WHO Laboratory Manual for the examination and processing of human semen. Geneva: World Health Organization; 2010.
Google Scholar
Ferlin A, Arredi B, Foresta C. Genetic causes of male infertility. Reprod Toxicol. 2006;22:133–41.
Article
CAS
PubMed
Google Scholar
Mastantuoni E, Saccone G, Al-Kouatly HB, Paternoster M, D’Alessandro P, Arduino B, et al. Expanded carrier screening: a current perspective. Eur J Obstet Gynecol Reprod Biol. 2018;230:41–54.
Article
PubMed
Google Scholar
Cariati F, Savarese M, D’Argenio V, Salvatore F, Tomaiuolo R. The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth. Clin Chem Lab Med. 2017;56:40–50.
Article
PubMed
CAS
Google Scholar
Griffin DK, Ogur C. Chromosomal analysis in IVF: just how useful is it? Reproduction. 2018;156:F29–50.
Article
CAS
PubMed
Google Scholar
Hussein N, Weng SF, Kai J, Qureshi N. Preconception risk assessment for thalassaemia, sickle cell disease, cystic fibrosis and Tay-Sachs disease. Cochrane Database Syst Rev. 2015;8:1–29.
Google Scholar
Demain LAM, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet. 2017;91:199–207.
Article
CAS
PubMed
Google Scholar
Committee on Ethics, American College of Obstetricians and Gynecologists, Committee on Genetics, American College of Obstetricians and Gynecologists. ACOG Committee Opinion No. 410: ethical issues in genetic testing. Obstet Gynecol. 2008;111:1495–502.
Article
Google Scholar
Silber SJ. The Y chromosome in the era of intracytoplasmic sperm injection: a personal review. Fertil Steril. 2011;95:2439–48.
Article
CAS
PubMed
Google Scholar
Gravholt CH, Chang S, Wallentin M, Fedder J, Moore P, Skakkebæk A. Klinefelter syndrome: integrating genetics, neuropsychology, and endocrinology. Endocr Rev. 2018;39:389–423.
Article
PubMed
Google Scholar
Maiburg M, Repping S, Giltay J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertil Steril. 2012;98:253–60.
Article
PubMed
Google Scholar
Barseghyan H, Délot E, Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res. 2015;47:312–20.
Article
CAS
PubMed
Google Scholar
Kim IW, Khadilkar AC, Ko EY, Sabanegh ES Jr. 47, XYY syndrome and male infertility. Rev Urol. 2013;15:188–96.
PubMed
PubMed Central
Google Scholar
Vetro A, Dehghani MR, Kraoua L, Giorda R, Beri S, Cardarelli L, et al. Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. Eur J Hum Genet. 2014;23:1025–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest. 2011;121:328–41.
Article
CAS
PubMed
Google Scholar
Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, et al. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet. 2012;158A:1759–64.
Article
PubMed
CAS
Google Scholar
Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling A-L, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;23(11):e1005620.
Article
CAS
Google Scholar
Tuerlings JH, de France HF, Hamers A, Hordijk R, Van Hemel JO, Hansson K, et al. Chromosome studies in 1792 males prior to intra-cytoplasmic sperm injection: the Dutch experience. Eur J Hum Genet. 1998;6:194–200.
Article
CAS
PubMed
Google Scholar
Dul EC, Groen H, van Ravenswaaij Arts CM, Dijkhuizen T, van Echten-Arends J, Land JA. The prevalence of chromosomal abnormalities in subgroups of infertile men. Hum Reprod. 2012;27:36–43.
Article
CAS
PubMed
Google Scholar
Hempel H, Buchholz T. Rare syndromes associated with infertility. J Reproduktionsmed Endokrinol. 2009;6:24–6.
Google Scholar
Quaynor SD, Bosley ME, Duckworth CG, Porter KR, Kim SH, Kim HG, et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol. 2016;437:86–96.
Article
CAS
PubMed
Google Scholar
Katsanis N. The oligogenic properties of Bardet–Biedl syndrome. Hum Mol Genet. 2004;13:R65–71.
Article
CAS
PubMed
Google Scholar
Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat Genet. 2008;40:443–8.
Article
CAS
PubMed
Google Scholar
Green JS, Parfrey PS, Harnett JD, Farid NR, Cramer BC, Johnson G, et al. The cardinal manifestations of Bardet–Biedl syndrome, a form of Laurence–Moon–Biedl syndrome. N Engl J Med. 1989;321:1002–9.
Article
CAS
PubMed
Google Scholar
Raffin-Sanson ML, Oudet B, Salenave S, Brailly-Tabard S, Pehuet M, et al. A man with a DAX1/NR0B1 mutation, normal puberty, and an intact hypothalamic–pituitary–gonadal axis but deteriorating oligospermia during long-term follow-up. Europ J Endocr. 2013;168:K45–50.
Article
CAS
Google Scholar
Al-Semari A, Bohlega S. Autosomal-recessive syndrome with alopecia, hypogonadism, progressive extra-pyramidal disorder, white matter disease, sensory neural deafness, diabetes mellitus, and low IGF1. Am J Med Genet. 2007;43A:149–60.
Article
Google Scholar
Husain N, Yuan Q, Yen YC, Pletnikova O, Sally DQ, Worley P, et al. TRIAD3/RNF216 mutations associated with Gordon Holmes syndrome lead to synaptic and cognitive impairments via Arc misregulation. Aging Cell. 2017;16:281–92.
Article
CAS
PubMed
Google Scholar
Santens P, Van Damme T, Steyaert W, Willaert A, Sablonniere B, De Paepe A, et al. RNF216 mutations as a novel cause of autosomal recessive Huntington-like disorder. Neurology. 2015;84:1760–6.
Article
CAS
PubMed
Google Scholar
Margolin DH, Kousi M, Chan Y-M, Lim ET, Schmahmann JD, Hadjivassiliou M, et al. Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Eng J Med. 2013;368:1992–2003.
Article
CAS
Google Scholar
Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.
Article
CAS
PubMed
Google Scholar
Morrison ED, Brandhagen DJ, Phatak PD, Barton JC, Krawitt EL, El-Serag HB, et al. Serum ferritin level predicts advanced hepatic fibrosis among U.S. patients with phenotypic hemochromatosis. Ann Intern Med. 2003;138:627–33.
Article
CAS
PubMed
Google Scholar
Adams PC, Barton JC, Guo H, Alter D, Speechley M. Serum ferritin is a biomarker for liver mortality in the Hemochromatosis and Iron Overload Screening Study. Ann Hepatol. 2015;14:348–53.
Article
CAS
PubMed
Google Scholar
Adams PC, Reboussin DM, Barton JC, McLaren CE, Eckfeldt JH, McLaren GD, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352:1769–78.
Article
CAS
PubMed
Google Scholar
Boehmer AL, Brinkmann O, Bruggenwirth H, van Assendelft C, Otten BJ, Verleun-Mooijman MC, et al. Genotype versus phenotype in families with androgen insensitivity syndrome. J Clin Endocrinol Metab. 2001;86:4151–60.
Article
CAS
PubMed
Google Scholar
Bianca S, Cataliotti A, Bartoloni G, Torrente I, Barrano B, Boemi G, et al. Prenatal diagnosis of androgen insensitivity syndrome. Fetal Diagn Ther. 2009;26:167–9.
Article
CAS
PubMed
Google Scholar
Paula FJ, Dick-de-Paula I, Pontes A, Schmitt FC, Mendonça BB, Foss MC. Hyperandrogenism due to 3 beta-hydroxysteroid dehydrogenase deficiency with accessory adrenocortical tissue: a hormonal and metabolic evaluation. Braz J Med Biol Res. 1994;27:1149–58.
CAS
PubMed
Google Scholar
Deladoëy J, Flück C, Büyükgebiz A, Kuhlmann BV, Eblé A, Hindmarsh PC, et al. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab. 1999;84:1645–50.
PubMed
Google Scholar
Abrão MG, Leite MV, Carvalho LR, Billerbeck AE, Nishi MY, Barbosa AS, et al. Combined pituitary hormone deficiency (CPHD) due to a complete PROP1 deletion. Clin Endocrinol. 2006;65:294–300.
Article
CAS
Google Scholar
Lee PA, Houk CP, Ahmed SF, Hughes IA, International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics. 2006;118:e488–500.
Article
PubMed
Google Scholar
Andersson S, Berman DM, Jenkins EP, Russell DW. Deletion of steroid 5-alpha-reductase 2 gene in male pseudohermaphroditism. Nature. 1991;354:159–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hochberg Z, Chayen R, Reiss N, Falik Z, Makler A, Munichor M, et al. Clinical, biochemical, and genetic findings in a large pedigree of male and female patients with 5-alpha-reductase 2 deficiency. J Clin Endocr Metab. 1996;81:2821–7.
CAS
PubMed
Google Scholar
Canto P, Escudero I, Soderlund D, Nishimura E, Carranza-Lira S, Gutierrez J, et al. A novel mutation of the insulin-like 3 gene in patients with cryptorchidism. J Hum Genet. 2003;48:86–90.
Article
CAS
PubMed
Google Scholar
Ferlin A, Simonato M, Bartoloni L, Rizzo G, Bettella A, Dottorini T, et al. The INSL3-LGR8/GREAT ligand-receptor pair in human cryptorchidism. J Clin Endocr Metab. 2003;88:4273–9.
Article
CAS
PubMed
Google Scholar
Auchus RJ. Steroid 17-hydroxylase and 17,20-lyase deficiencies, genetic and pharmacologic. J Steroid Biochem Molec Biol. 2017;165:71–8.
Article
CAS
PubMed
Google Scholar
McCandless SE, Committee on Genetics. Clinical report-health supervision for children with Prader–Willi syndrome. Pediatrics. 2011;127:195–204.
Article
PubMed
Google Scholar
Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader–Willi syndrome. Genet Med. 2012;14:10–26.
Article
CAS
PubMed
Google Scholar
Heksch R, Kamboj M, Anglin K, Obrynba K. Review of Prader–Willi syndrome: the endocrine approach. Transl Pediatr. 2017;6:274–85.
Article
PubMed
PubMed Central
Google Scholar
Tartaglia M, Zampino G, Gelb BD. Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol. 2010;1:2–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller RF. The Denys–Drash syndrome. J Med Genet. 1994;31:471–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patek CE, Little MH, Fleming S, Miles C, Charlieu J-P, Clarke AR, et al. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys–Drash syndrome. Proc Nat Acad Sci. 1999;96:2931–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seidel NE, Arlen AM, Smith EA, Kirsch AJ. Clinical manifestations and management of prune–belly syndrome in a large contemporary pediatric population. Urology. 2015;85:211–5.
Article
PubMed
Google Scholar
Zugor V, Schott GE, Labanaris AP. The Prune Belly syndrome: urological aspects and long-term outcomes of a rare disease. Pediatr Rep. 2012;4:e20.
Article
PubMed
PubMed Central
Google Scholar
Conte FA, Grumbach MM, Ito Y, Fisher CR, Simpson ER. A syndrome of female pseudohermaphrodism, hypergonadotropic hypogonadism, and multicystic ovaries associated with missense mutations in the gene encoding aromatase (P450arom). J Clin Endocr Metab. 1994;78:1287–92.
CAS
PubMed
Google Scholar
Jones MEE, Boon WC, McInnes K, Maffei L, Carani C, Simpson ER. Recognizing rare disorders: aromatase deficiency. Nat Clin Pract Endocr Metab. 2007;3:414–21.
Article
CAS
Google Scholar
Guo YW, Chiu CY, Liu CL, Jap TS, Lin LY. Novel mutation of RUNX2 gene in a patient with cleidocranial dysplasia. Int J Clin Exp Pathol. 2015;8:1057–62.
CAS
PubMed
PubMed Central
Google Scholar
Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov. 2016;2:16047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giabicani E, Boule M, Galliani E, Netchine I. Sleep apneas in Silver Russell syndrome: a constant finding. Horm Res Paediatr. 2015;84(Suppl 1):262.
Google Scholar
Wakeling EL, Brioude F, Lokulo-Sodipe O, O’Connell SM, Salem J, Bliek J, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol. 2017;13:105–24.
Article
CAS
PubMed
Google Scholar
Marshall CR, Scherer SW, Zariwala MA, Lau L, Paton TA, Stockley T. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia. G3 (Bethesda). 2015;5:1775–81.
Article
PubMed Central
Google Scholar
Kamsteeg EJ, Kress W, Catalli C, Hertz JM, Witsch-Baumgartner M, Buckley MF, et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20:1203–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitao H, Takata M. Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol. 2011;93:417–24.
Article
CAS
PubMed
Google Scholar
Kee Y, D’Andrea AD. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 2010;24:1680–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghedir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45.
Article
CAS
PubMed
Google Scholar
Perrin A, Coat C, Nguyen MH, Talagas M, Morel F, Amice J, et al. Molecular cytogenetic and genetic aspects of globozoospermia: a review. Andrologia. 2013;45:1–9.
Article
CAS
PubMed
Google Scholar
Ben Khelifa M, Coutton C, Blum MG, Abada F, Harbuz R, Zouari R, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod. 2012;27:3337–46.
Article
CAS
PubMed
Google Scholar
Eloualid A, Rouba H, Rhaissi H, Barakat A, Louanjli N, Bashamboo A, et al. Prevalence of the Aurora kinase C c.144delC mutation in infertile Moroccan men. Fertil Steril. 2014;101:1086–90.
Article
CAS
PubMed
Google Scholar
Ounis L, Zoghmar A, Coutton C, Rouabah L, Hachemi M, Martinez D, et al. Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men. Asian J Androl. 2015;17:68–73.
Article
CAS
PubMed
Google Scholar
Amiri-Yekta A, Coutton C, Kherraf Z-E, Karaouzène T, Le Tanno P, Sanatiet MH, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod. 2016;31:2872–80.
Article
CAS
PubMed
Google Scholar
Zenteno JC, Canto P, Kofman-Alfaro S, Mendez JP. Evidence for genetic heterogeneity in male pseudohermaphroditism due to Leydig cell hypoplasia. J Clin Endocr Metab. 1999;84:3803–6.
CAS
PubMed
Google Scholar
Wu S-M, Chan W-Y. Male pseudohermaphroditism due to inactivating luteinizing hormone receptor mutations. Arch Med Res. 1999;30:495–500.
Article
CAS
PubMed
Google Scholar
Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci USA. 2014;111:1120–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Malekpour M, Al-Madani N, Kahrizi K, Zanganeh M, Lohr NJ, et al. Sensorineural deafness and male infertility: a contiguous gene deletion syndrome. J Med Genet. 2007;44:233–40.
Article
CAS
PubMed
Google Scholar
Gu X, Guo L, Ji H, Sun S, Chai R, Wang L, et al. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations. Clin Genet. 2015;87:588–93.
Article
CAS
PubMed
Google Scholar
Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24:5581–8.
Article
CAS
PubMed
Google Scholar
Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372:2097–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colombo R, Pontoglio A, Bini M. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecol Obstet Invest. 2017;82:283–6.
Article
CAS
PubMed
Google Scholar
Choi Y, Jeon S, Choi M, Lee MH, Park M, Lee DR, et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia. Hum Mutat. 2010;31:788–93.
Article
CAS
PubMed
Google Scholar
Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362:1714–9.
Article
CAS
PubMed
Google Scholar
Venables JP, Elliott DJ, Makarova OV, Makarov EM, Cooke HJ, Eperon IC. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2-beta and affect splicing. Hum Mol Genet. 2000;9:685–94.
Article
CAS
PubMed
Google Scholar
Saxena R, de Vries JWA, Repping S, Alagappan RK, Skaletsky H, Brown LG, et al. Four DAZ genes in two clusters found in the AZFc region of the human Y chromosome. Genomics. 2000;67:256–67.
Article
CAS
PubMed
Google Scholar
Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod. 2012;27:25–35.
Article
CAS
PubMed
Google Scholar
Tomaiuolo R, Fausto M, Elce A, Strina I, Ranieri A, Amato F, et al. Enhanced frequency of CFTR gene variants in couples who are candidates for assisted reproductive technology treatment. Clin Chem Lab Med. 2011;49:1289–93.
Article
CAS
PubMed
Google Scholar
Amato F, Bellia C, Cardillo G, Castaldo G, Ciaccio M, Elce A, et al. Extensive molecular analysis of patients bearing CFTR-related disorders. J Mol Diagn. 2012;14:81–9.
Article
CAS
PubMed
Google Scholar
Tomaiuolo R, Nardiello P, Martinelli P, Sacchetti L, Salvatore F, Castaldo G. Prenatal diagnosis of cystic fibrosis: an experience of 181 cases. Clin Chem Lab Med. 2013;51:2227–32.
Article
CAS
PubMed
Google Scholar
Ríos Orbañanos I, Vela Desojo A, Martinez-Indart L, Grau Bolado G, Rodriguez Estevez A, Rica Echevarria I. Turner syndrome: from birth to adulthood. Endocrinol Nutr. 2015;62:499–506.
Article
PubMed
Google Scholar
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98.
Article
CAS
PubMed
Google Scholar
Qin Y, Jiao X, Simpson JL, Chen Z-J. Genetics of primary ovarian insufficiency: new developments and opportunities. Hum Reprod Update. 2015;21:787–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenkinson EM, Rehman AU, Walsh T, Clayton-Smith J, Lee K, Morell RJ, et al. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet. 2013;92:605–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, et al. Diversity and function of mutations in P450 oxidoreductase in patients with Antley–Bixler syndrome and disordered steroidogenesis. Am J Hum Genet. 2005;76:729–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shackleton C, Marcos J, Malunowicz EM, Szarras-Czapnik M, Jira P, Taylor NF, et al. Biochemical diagnosis of Antley–Bixler syndrome by steroid analysis. Am J Med Genet. 2004;128A:223–31.
Article
PubMed
Google Scholar
Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocr Metab. 2004;89:2745–9.
Article
CAS
PubMed
Google Scholar
Chen Z-J, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011;43:55–9.
Article
PubMed
CAS
Google Scholar
Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.
Article
CAS
PubMed
Google Scholar
Fallahian M, Sebire NJ, Savage PM, Seckl MJ, Fisher RA. Mutations in NLRP7 and KHDC3L confer a complete hydatidiform mole phenotype on digynic triploid conceptions. Hum Mutat. 2013;34:301–8.
Article
CAS
PubMed
Google Scholar
Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ. WNT4 deficiency—a clinical phenotype distinct from the classic Mayer–Rokitansky–Kuster–Hauser syndrome: a case report. Hum Reprod. 2007;22:224–9.
Article
CAS
PubMed
Google Scholar
Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ. A WNT4 mutation associated with mullerian-duct regression and virilization in a 46,XX woman. N Eng J Med. 2004;351:792–8.
Article
CAS
Google Scholar
Philibert P, Biason-Lauber A, Rouzier R, Pienkowski C, Paris F, Konrad D, et al. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and mullerian duct abnormalities: a French collaborative study. J Clin Endocr Metab. 2008;93:895–900.
Article
CAS
PubMed
Google Scholar
Brucker SY, Frank L, Eisenbeis S, Henes M, Wallwiener D, Riess O, et al. Sequence variants in ESR1 and OXTR are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Acta Obstet Gynecol Scand. 2017;96:1338–46.
Article
CAS
PubMed
Google Scholar
Henes M, Jurow L, Peter A, Schoenfisch B, Taran FA, Huebner M, et al. Hyperandrogenemia and ovarian reserve in patients with Mayer–Rokitansky–Küster–Hauser syndrome type 1 and 2: potential influences on ovarian stimulation. Arch Gynecol Obstet. 2018;297:513–20.
Article
PubMed
Google Scholar
Waschk DE, Tewes AC, Römer T, Hucke J, Kapczuk K, Schippert C, et al. Mutations in WNT9B are associated with Mayer–Rokitansky–Küster–Hauser syndrome. Clin Genet. 2016;89:590–6.
Article
CAS
PubMed
Google Scholar
Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36:327–39.
Article
CAS
PubMed
Google Scholar
Ventimiglia E, Montorsi F, Salonia A. Comorbidities and male infertility: a worrisome picture. Curr Opin Urol. 2016;26:146–51.
Article
PubMed
Google Scholar
Jungwirth A, Diemer T, Kopa Z, Krausz C, Tournaye H. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012;62:324–32.
Article
PubMed
Google Scholar
Oud MS, Volozonoka L, Smits RM, Vissers LELM, Ramos L, Veltman JA. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod. 2019. https://doi.org/10.1093/humrep/dez022.
Article
PubMed
PubMed Central
Google Scholar
Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–84.
Article
CAS
PubMed
Google Scholar
Krausz C, Escamilla AR, Chianese CK. Genetics of male infertility: from research to clinic. Reproduction. 2015;150:R159–74.
Article
CAS
PubMed
Google Scholar
Pylyp LY, Spinenko LO, Verhoglyad NV, Kashevarova OO, Zukin VD. Chromosomal abnormalities in patients with infertility. Cytol Genet. 2015;49:33–9.
Article
CAS
Google Scholar
Krausz C, Degl’Innocenti S. Y chromosome and male infertility: update, 2006. Front Biosci. 2006;11:3049–61.
Article
CAS
PubMed
Google Scholar
Krausz C, Hoefsloot L, Simoni M, Tüttelmann F, European Academy of Andrology, European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19.
Article
CAS
PubMed
Google Scholar
Stuppia L, Gatta V, Calabrese G, Guanciali Franchi P, Morizio E, Bombieri C, et al. A quarter of men with idiopathic oligo-azoospermia display chromosomal abnormalities and microdeletions of different types in interval 6 of Yq11. Hum Genet. 1998;102:566–70.
Article
CAS
PubMed
Google Scholar
Patsalis PC, Sismani C, Quintana-Murci L, Taleb-Bekkouche F, Krausz C, McElreavey K. Effects of transmission of Y chromosome AZFc deletions. Lancet. 2002;360:1222–4.
Article
CAS
PubMed
Google Scholar
Asero P, Calogero AE, Condorelli RA, Mongioi L, Vicari E, Lanzafame F, et al. Relevance of genetic investigation in male infertility. J Endocrinol Investig. 2014;37:415–27.
Article
CAS
Google Scholar
Kuroda-Kawaguchi T, Skaletsky H, Brown LG, Minx PJ, Cordum HS, Waterston RH, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet. 2001;29:279–86.
Article
CAS
PubMed
Google Scholar
Ferlin A, Garolla A, Foresta C. Chromosome abnormalities in sperm of individuals with constitutional sex chromosomal abnormalities. Cytogenet Genome Res. 2005;111:310–6.
Article
CAS
PubMed
Google Scholar
Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA. 2003;100:12201–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aston KI. Genetic susceptibility to male infertility: news from genome-wide association studies. Andrology. 2014;2:315–21.
Article
CAS
PubMed
Google Scholar
Morin SJ, Eccles J, Iturriaga A, Zimmerman RS. Translocations, inversions and other chromosome rearrangements. Fertil Steril. 2017;107:19–26.
Article
CAS
PubMed
Google Scholar
Folsom LJ, Fuqua JS. Reproductive issues in women with turner syndrome. Endocrinol Metab Clin North Am. 2015;44:723–37.
Article
PubMed
PubMed Central
Google Scholar
Oktay K, Bedoschi G, Berkowitz K, Bronson R, Kashani B, McGovern P, et al. Fertility preservation in women with turner syndrome: a comprehensive review and practical guidelines. J Pediatr Adolesc Gynecol. 2016;29:409–16.
Article
PubMed
Google Scholar
Collins J, Diedrich K, Franks S, Geraedts JPM, Jacobs PA, Karges B, et al. Genetic aspects of female reproduction. Hum Reprod Update. 2008;14:293–307.
Article
CAS
Google Scholar
Chen M, Wei S, Hu J, Quan S. Can comprehensive chromosome screening technology improve IVF/ICSI outcomes? A meta-analysis. PLoS ONE. 2015;10:e0140779.
Article
PubMed
PubMed Central
CAS
Google Scholar
D’Argenio V, Nunziato M, D’Uonno N, Borrillo F, Vallone R, Conforti A, et al. Indications and limitations for preimplantation genetic diagnosis. Biochim Clin. 2017;41:314–21.
Google Scholar
Man L, Lekovich J, Rosenwaks Z, Gerhardt J. Fragile X-associated diminished ovarian reserve and primary ovarian insufficiency from molecular mechanisms to clinical manifestations. Front Mol Neurosci. 2017;10:290.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoyos LR, Thakur M. Fragile X premutation in women: recognizing the health challenges beyond primary ovarian insufficiency. Assist Reprod Genet. 2017;34:315–23.
Article
Google Scholar
Stavljenić-Rukavina A. Prenatal diagnosis of chromosomal disorders—molecular aspects. EJIFCC. 2008;19:2–6.
PubMed
PubMed Central
Google Scholar
Committee on Genetics. Committee opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol. 2017;129:e41–55.
Article
Google Scholar
Bennett RL. The family medical history as a tool in preconception consultation. J Community Genet. 2012;3:175–83.
Article
PubMed
PubMed Central
Google Scholar
Mathijssen IB, Holtkamp KCA, Ottenheim CPE, van Eeten-Nijman JMC, Lakeman P, Meijers-Heijboer H, et al. Preconception carrier screening for multiple disorders: evaluation of a screening offer in a Dutch founder population. Eur J Hum Genet. 2018;26:166–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorney E, Black KI. Preconception care. Aust J Gen Pract. 2018;47:424–9.
Article
PubMed
Google Scholar
Elce A, Boccia A, Cardillo G, Giordano S, Tomaiuolo R, Paolella G, et al. Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis. Clin Chem. 2009;55:1372.
Article
CAS
PubMed
Google Scholar
Allyse M, Minear MA, Berson E, Sridhar S, Rote M, Hung A, et al. Non-invasive prenatal testing: a review of international implementation and challenges. Int J Womens Health. 2015;7:113–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu EKL, Hui WWI, Chiu RWK. cfDNA screening and diagnosis of monogenic disorders—where are we heading? Prenat Diagn. 2018;38:52–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saba L, Masala M, Capponi V, Marceddu G, Massidda M, Rosatelli MC. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the sardinian population. Eur J Hum Genet. 2017;25:600–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
New M, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Li X, Ge HJ, Xiao B, Zhang YY, Ying XM, et al. Haplotype-based approach for noninvasive prenatal tests of Duchenne muscular dystrophy using cell-free fetal DNA. Genet Med. 2015;17:889–96.
Article
CAS
PubMed
Google Scholar
Liñán A, Lawrenz B, El Khatib I, Bayram A, Arnanz A, Rubio C, et al. Clinical reassessment of human embryo ploidy status between cleavage and blastocyst stage by Next Generation Sequencing. PLoS ONE. 2018;13:e0201652.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rubio C, Bellver J, Rodrigo L, Castillón G, Guillén A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107:1122–9.
Article
PubMed
Google Scholar
Munné S. Status of preimplantation genetic testing and embryo selection. Reprod Biomed Online. 2018;37:393–6.
Article
PubMed
Google Scholar
Vanneste E, Melotte C, Voet T, Robberecht C, Debrock S, Pexsters A, et al. PGD for a complex chromosomal rearrangement by array comparative genomic hybridization. Hum Reprod. 2011;26:941–9.
Article
CAS
PubMed
Google Scholar
D’Argenio V, Tomaiuolo R, Cariati F. La, “whole genome amplification” su singola cellula. Biochim Clin. 2016;40:293–301.
Google Scholar
Harton GL, De Rycke M, Fiorentino F, Moutou C, SenGupta S, Traeger-Synodinos J, et al. ESHRE PGD consortium best practice guidelines for amplification-based PGD. Hum Reprod. 2011;26:33–40.
Article
CAS
PubMed
Google Scholar
Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. Med Genet. 2010;47:651–8.
Article
Google Scholar
Natesan SA, Handyside AH, Thornhill AR, Ottolini CS, Sage K, Summers MC, et al. Live birth after PGD with confirmation by a comprehensive approach (karyomapping) for simultaneous detection of monogenic and chromosomal disorders. Reprod Biomed Online. 2014;29:600–5.
Article
PubMed
Google Scholar
Thornhill AR, Handyside AH, Ottolini C, Natesan SA, Taylor J, Sage K, et al. Karyomapping-a comprehensive means of simultaneous monogenic and cytogenetic PGD: comparison with standard approaches in real time for Marfan syndrome. J Assist Reprod Genet. 2015;32:347–56.
Article
PubMed
PubMed Central
Google Scholar
Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT. Evaluation of targeted next-generation sequencing–based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 2013;99:1377–84.
Article
CAS
PubMed
Google Scholar
Peters BA, Kermani BG, Alferov O, Agarwal MR, McElwain MA, Gulbahce N, et al. Detection and phasing of single base de novo mutations in biopsies from human in vitro fertilized embryos by advanced whole-genome sequencing. Genome Res. 2015;25:426–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kung A, Munne S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online. 2015;31:760–9.
Article
CAS
PubMed
Google Scholar
Harper JC, Coonen E, De Rycke M, Harton G, Moutou C, Pehlivan T, et al. ESHRE PGD consortium data collection X: cycles from January to December 2007 with pregnancy follow-up to October 2008. Hum Reprod. 2010;25:2685–707.
Article
CAS
PubMed
Google Scholar
Brezina PR, Kutteh WH. Clinical applications of preimplantation genetic testing. Br Med J. 2015;350:g7611.
Article
Google Scholar
Van der Aa N, Zamani Esteki M, Vermeesch JR, Voet T. Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med. 2013;5:71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wells D. Next-generation sequencing: the dawn of a new era for preimplantation genetic diagnostics. Fertil Steril. 2014;101:1250–1.
Article
PubMed
Google Scholar
Handyside AH. 24-chromosome copy number analysis: a comparison of available technologies. Fertil Steril. 2013;100:595–602.
Article
PubMed
Google Scholar
Martin J, Cervero A, Mir P, Martinez JAC, Pellicer A, Simón C, et al. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil Steril. 2013;99:1054–61.
Article
CAS
PubMed
Google Scholar
Rubio C. Next-generation sequencing: challenges in reproductive genetics. Fertil Steril. 2014;101:1252–3.
Article
PubMed
Google Scholar
Sermon K. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy. Expert Rev Mol Diagn. 2017;17:71–82.
Article
CAS
PubMed
Google Scholar
Cariati F, D’Uonno N, Borrillo F, Iervolino S, Galdiero G, Tomaiuolo R. Bisphenol a: an emerging threat to male fertility. Reprod Biol Endocrinol. 2019;17:6.
Article
PubMed
PubMed Central
Google Scholar
Bieniek JM, Lo KC. Recent advances in understanding & managing male infertility. F1000Res. 2016;5:2756.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eisenberg ML, Lathi RB, Baker VL, Westphal LM, Milki AA, Nangia AK. Frequency of the male infertility evaluation: data from the national survey of family growth. J Urol. 2013;189:1030–4.
Article
PubMed
Google Scholar
Alviggi C, Conforti A, Santi D, Esteves SC, Andersen CY, Humaidan P, et al. Clinical relevance of genetic variants of gonadotrophins and their receptors in controlled ovarian stimulation: a systematic review and meta-analysis. Hum Reprod Update. 2018;24:599–614.
Article
PubMed
Google Scholar
Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, et al. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet. 2018;26:12–33.
Article
CAS
PubMed
Google Scholar