Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.
Article
CAS
PubMed
Google Scholar
Kramer GC, Kinsky MP, Prough DS, Salinas J, Sondeen JL, Hazel-Scerbo ML, Mitchell CE. Closed-loop control of fluid therapy for treatment of hypovolemia. J Trauma. 2008;64:S333–41.
Article
PubMed
Google Scholar
Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, Du B, McArthur C, Myburgh J. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care. 2010;14:R185.
Article
PubMed Central
PubMed
Google Scholar
Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.
Article
CAS
PubMed
Google Scholar
Jacob M, Bruegger D, Rehm M, Welsch U, Conzen P, Becker BF. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology. 2006;104:1223–31.
Article
CAS
PubMed
Google Scholar
Schick MA, Baar W, Bruno RR, Wollborn J, Held C, Schneider R, Flemming S, Schlegel N, Roewer N, Neuhaus W, Wunder C. Balanced hydroxyethylstarch (HES 130/0.4) impairs kidney function in-vivo without inflammation. PLoS One. 2015;10:e0137247.
Article
PubMed Central
PubMed
Google Scholar
Feng X, Hu Y, Ding J, Ge Y, Song J, Ai Q, Zhang Z, Xu J. Early treatment with hydroxyethyl starch 130/0.4 causes greater inhibition of pulmonary capillary leakage and inflammatory response than treatment instituted later in sepsis induced by cecal ligation and puncture in rats. Ann Clin Lab Sci. 2007;37:49–56.
CAS
PubMed
Google Scholar
Feng X, Liu J, Yu M, Zhu S, Xu J. Protective roles of hydroxyethyl starch 130/0.4 in intestinal inflammatory response and survival in rats challenged with polymicrobial sepsis. Clin Chim Acta. 2007;376:60–7.
Article
CAS
PubMed
Google Scholar
Lu WH, Jin XJ, Jiang XG, Wang Z, Wu JY, Shen GG. Resuscitation with hydroxyethyl starch 130/0.4 attenuates intestinal injury in a rabbit model of sepsis. Indian J Pharmacol. 2015;47:49–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang P, Li Y, Li J. Protective roles of hydroxyethyl starch 130/0.4 in intestinal inflammatory response and oxidative stress after hemorrhagic shock and resuscitation in rats. Inflammation. 2009;32:71–82.
Article
CAS
PubMed
Google Scholar
Zausig YA, Chappell D, Becker BF, Potschka D, Busse H, Nixdorf K, Bitzinger D, Jacob B, Jacob M. The impact of crystalloidal and colloidal infusion preparations on coronary vascular integrity, interstitial oedema and cardiac performance in isolated hearts. Crit Care. 2013;17:R203.
Article
PubMed Central
PubMed
Google Scholar
Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol. 1999;277:G495–9.
CAS
PubMed
Google Scholar
Sun Z, Wang X, Andersson R. Role of intestinal permeability in monitoring mucosal barrier function. History, methodology, and significance of pathophysiology. Dig Surg. 1998;15:386–97.
Article
CAS
PubMed
Google Scholar
Sun ZW, Wang XD, Deng XM, Wallen R, Gefors L, Hallberg E, Andersson R. The influence of circulatory and gut luminal challenges on bidirectional intestinal barrier permeability in rats. Scand J Gastroenterol. 1997;32:995–1004.
Article
CAS
PubMed
Google Scholar
Blikslager AT, Roberts MC, Young KM, Rhoads JM, Argenzio RA. Genistein augments prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol. 2000;278:G207–16.
CAS
PubMed
Google Scholar
Alhamoruni A, Wright KL, Larvin M, O’Sullivan SE. Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability. Br J Pharmacol. 2012;165:2598–610.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kimberger O, Arnberger M, Brandt S, Plock J, Sigurdsson GH, Kurz A, Hiltebrand L. Goal-directed colloid administration improves the microcirculation of healthy and perianastomotic colon. Anesthesiology. 2009;110:496–504.
Article
CAS
PubMed
Google Scholar
Lobo SM, Orrico SR, Queiroz MM, Contrim LM, Cury PM. Comparison of the effects of lactated Ringer solution with and without hydroxyethyl starch fluid resuscitation on gut edema during severe splanchnic ischemia. Braz J Med Biol Res. 2008;41:634–9.
Article
CAS
PubMed
Google Scholar
Wong YL, Lautenschlager I, Dombrowsky H, Zitta K, Bein B, Krause T, Goldmann T, Frerichs I, Steinfath M, Weiler N, Albrecht M. Hydroxyethyl starch (HES 130/0.4) impairs intestinal barrier integrity and metabolic function: findings from a mouse model of the isolated perfused small intestine. PLoS One. 2015;10:e0121497.
Article
PubMed Central
PubMed
Google Scholar
Mc MJ. Histological and histochemical uses of periodic acid. Stain Technol. 1948;23:99–108.
Article
Google Scholar
Lautenschlager I, Dombrowsky H, Frerichs I, Kuchenbecker SC, Bade S, Schultz H, Zabel P, Scholz J, Weiler N, Uhlig S. A model of the isolated perfused rat small intestine. Am J Physiol Gastrointest Liver Physiol. 2010;298:G304–13.
Article
PubMed
Google Scholar
Burchardi H. Die Intensivmedizin. Springer; 2011.
Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol. 2003;105:586–92.
CAS
PubMed
Google Scholar
Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, Amasheh S, Fromm M. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta. 2010;1798:2048–57.
Article
CAS
PubMed
Google Scholar
Haase N, Perner A. Is hydroxyethyl starch 130/0.4 safe? Crit Care. 2012;16:116.
Article
PubMed Central
PubMed
Google Scholar
Vogt NH, Bothner U, Lerch G, Lindner KH, Georgieff M. Large-dose administration of 6 % hydroxyethyl starch 200/0.5 total hip arthroplasty: plasma homeostasis, hemostasis, and renal function compared to use of 5 % human albumin. Anesth Analg. 1996;83:262–8.
CAS
PubMed
Google Scholar
Vogt N, Bothner U, Brinkmann A, de Petriconi R, Georgieff M. Peri-operative tolerance to large-dose 6 % HES 200/0.5 in major urological procedures compared with 5 % human albumin. Anaesthesia. 1999;54:121–7.
Article
CAS
PubMed
Google Scholar
Jurecka W, Szepfalusi Z, Parth E, Schimetta W, Gebhart W, Scheiner O, Kraft D. Hydroxyethylstarch deposits in human skin–a model for pruritus? Arch Dermatol Res. 1993;285:13–9.
Article
CAS
PubMed
Google Scholar
Stander S, Szepfalusi Z, Bohle B, Stander H, Kraft D, Luger TA, Metze D. Differential storage of hydroxyethyl starch (HES) in the skin: an immunoelectron-microscopical long-term study. Cell Tissue Res. 2001;304:261–9.
Article
CAS
PubMed
Google Scholar
Wiedermann CJ, Joannidis M. Accumulation of hydroxyethyl starch in human and animal tissues: a systematic review. Intensive Care Med. 2014;40:160–70.
Article
CAS
PubMed
Google Scholar
Kim JM, Eckmann L, Savidge TC, Lowe DC, Witthoft T, Kagnoff MF. Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest. 1998;102:1815–23.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abreu MT, Palladino AA, Arnold ET, Kwon RS, McRoberts JA. Modulation of barrier function during Fas-mediated apoptosis in human intestinal epithelial cells. Gastroenterology. 2000;119:1524–36.
Article
CAS
PubMed
Google Scholar
Voth M, Holzberger S, Auner B, Henrich D, Marzi I, Relja B. I-FABP and L-FABP are early markers for abdominal injury with limited prognostic value for secondary organ failures in the post-traumatic course. Clin Chem Lab Med. 2015;53:771–80.
Article
CAS
PubMed
Google Scholar
van der Voort PH, Westra B, Wester JP, Bosman RJ, van Stijn I, Haagen IA, Loupatty FJ, Rijkenberg S. Can serum L-lactate, D-lactate, creatine kinase and I-FABP be used as diagnostic markers in critically ill patients suspected for bowel ischemia. BMC Anesthesiol. 2014;14:111.
Article
PubMed Central
PubMed
Google Scholar
Cui Y, Sun B, Wang C, Liu S, Li P, Shi J, Li E. Effects of different types of hydroxyethyl starch (HES) on microcirculation perfusion and tissue oxygenation in patients undergoing liver surgery. Int J Clin Exp Med. 2014;7:631–9.
PubMed Central
CAS
PubMed
Google Scholar
Holbeck S, Grande PO. Effects on capillary fluid permeability and fluid exchange of albumin, dextran, gelatin, and hydroxyethyl starch in cat skeletal muscle. Crit Care Med. 2000;28:1089–95.
Article
CAS
PubMed
Google Scholar
Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653–66.
Article
CAS
PubMed
Google Scholar
Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402.
Article
CAS
PubMed
Google Scholar
Zeng Y, Tarbell JM. The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress. PLoS One. 2014;9:e86249.
Article
PubMed Central
PubMed
Google Scholar
Thuy AV, Reimann CM, Hemdan NY, Graler MH. Sphingosine 1-phosphate in blood: function, metabolism, and fate. Cell Physiol Biochem. 2014;34:158–71.
Article
CAS
PubMed
Google Scholar
Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest. 2001;108:689–701.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilkerson BA, Argraves KM. The role of sphingosine-1-phosphate in endothelial barrier function. Biochim Biophys Acta. 2014;1841:1403–12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Takuwa Y, Okamoto Y, Yoshioka K, Takuwa N. Sphingosine-1-phosphate signaling in physiology and diseases. BioFactors. 2012;38:329–37.
Article
CAS
PubMed
Google Scholar
Zeng Y, Adamson RH, Curry FR, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol. 2014;306(3):H363–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Voyvodic PL, Min D, Liu R, Williams E, Chitalia V, Dunn AK, Baker AB. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem. 2014;289:9547–59.
Article
PubMed Central
CAS
PubMed
Google Scholar
Westphal M, James MF, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches: different products–different effects. Anesthesiology. 2009;111:187–202.
Article
CAS
PubMed
Google Scholar