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Abstract 

Natural killer (NK) cells are unique from other immune cells in that they can rapidly kill multiple neighboring cells 
without the need for antigenic pre-sensitization once the cells display surface markers associated with oncogenic 
transformation. Given the dynamic role of NK cells in tumor surveillance, NK cell-based immunotherapy is rapidly 
becoming a "new force" in tumor immunotherapy. However, challenges remain in the use of NK cell immunotherapy 
in the treatment of solid tumors. Many metabolic features of the tumor microenvironment (TME) of solid tumors, 
including oxygen and nutrient (e.g., glucose, amino acids) deprivation, accumulation of specific metabolites (e.g., 
lactate, adenosine), and limited availability of signaling molecules that allow for metabolic reorganization, multifacto-
rial shaping of the immune-suppressing TME impairs tumor-infiltrating NK cell function. This becomes a key bar-
rier limiting the success of NK cell immunotherapy in solid tumors. Restoration of endogenous NK cells in the TME 
or overt transfer of functionally improved NK cells holds great promise in cancer therapy. In this paper, we summarize 
the metabolic biology of NK cells, discuss the effects of TME on NK cell metabolism and effector functions, and review 
emerging strategies for targeting metabolism-improved NK cell immunotherapy in the TME to circumvent these barri-
ers to achieve superior efficacy of NK cell immunotherapy.
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Introduction
NK cells are cytotoxic lymphocytes of the innate immune 
system, accounting for approximately 15% of all circu-
lating lymphocytes, and their activation is driven by a 
balance between activating and inhibitory signals, there-
fore, they do not need to be sensitized beforehand to 
lysate target cells and thus exert antitumor effects [1]. 
Activated NK cells induce metabolic changes and drive 
effector functions including the release of cytolytic par-
ticles containing perforin and granzymes or the killing of 
infected or transformed cells by ligating death-inducing 
receptors (TRAIL, FasL). They also contribute to the 
development of adaptive immune responses by produc-
ing various chemokines and pro-inflammatory cytokines 
[2, 3]. NK cells are therefore a valuable therapeutic tool 
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in cancer immunotherapy and a variety of NK cell-
based immunotherapies have been developed, some of 
which have been translationally applied in the clinic [4, 
5]. Encouraging efficacy has been shown in hematologic 
malignancies (e.g., myeloid leukemia, chronic lympho-
cytic leukemia, and acute lymphoblastic leukemia), but 
efficacy in the treatment of solid tumors is usually poor 
[6]. One of the main limiting factors is immunosup-
pressive TME. The function, phenotype, activation, and 
persistence of tumor-infiltrating NK cells are impaired 
in nutrient-depleted, hypoxic, acidic TME, even leading 
to NK cell dysfunction or exhaustion. Consider that cel-
lular metabolism provides the energy and biosynthetic 
requirements of cells to support their effector functions. 
We focused on the effects of inhibitory TME on energy 
expenditure and metabolic reprogramming of NK cells, 
where understanding and regulating NK cell metabolism 
is critical to optimize the efficacy of current and future 
NK cell immunotherapies. Here, we summarize the met-
abolic biology of NK cells, discuss the effects of TME on 
NK cell metabolism and effector functions, and review 
emerging strategies for targeting metabolic improvement 
of NK cell immunotherapy in the TME.

Immune metabolism of NK cells
Biological characteristics of NK cell metabolism
Cell destiny can be determined by metabolic flux. Dif-
ferent developmental stages of NK cells exhibit distinct 
metabolic fluxes. Developing mouse NK cells undergo 
several stages of maturation in the bone marrow and 
can be recognized based on CD11b and CD27 expres-
sion levels. They are mainly categorized into immature 
stage CD11blowCD27hi, CD11blowCD27hi NK cells, 
intermediate stage CD11b hiCD27 hi NK cells and final 
developmental maturation stage CD11bhiCD27low NK 
cells [7]. NK cells’ metabolic activity varies dynamically 
during development, and as they continue to differenti-
ate and mature, they become less dependent on glycolysis 
and cellular glucose uptake [8]. Whereas immature NK 
cells express the amino acid transporter CD98 and the 
transferrin receptor CD71, which gives them increased 
metabolic activity to sustain their proliferation [8]. It 
has been discovered that mTOR, a metabolic regulator, 
plays a crucial role in the integration of NK cell growth 
and metabolism. In mTOR-deficient mice, NK cell devel-
opment is halted in the bone marrow at the CD11b-
hiCD27hi stage, and NK cells are almost nonexistent in 
peripheral organs [8]. Mature, differentiated CD11b-
hiCD27low NK cells arrest and enter a resting state. Rest-
ing mouse and human NK cells have similar low baseline 
metabolic rates, maintaining low levels of glycolysis and 
oxidative phosphorylation (OXPHOS), according to sev-
eral metabolic profile investigations on the cells [9–11]. 

Resting mouse NK cells have a low basal metabolic rate 
and maintain low levels of glycolysis and OXPHOS, and 
the metabolic activity of NK cells does not increase sig-
nificantly under short bursts of cytokine stimulation or 
receptor signaling. However, this low metabolic rate is 
important for maintaining an acute NK cell response, 
and inhibition of OXPHOS or glycolysis would result in 
almost complete elimination of interferon γ (IFN-γ) pro-
duced by receptor stimulation [12]. Elevated OXPHOS 
levels are seen in human NK cells activated with short-
term IL-12/15 or IL-2 cytokines; these levels are crucial 
for effective ATP production, which is needed to acti-
vate human NK cell role [11]. Both human and murine 
NK cells respond to prolonged and sustained cytokine 
stimulation by strong metabolic changes that meet 
the energy requirements for NK cells to carry out their 
effector functions. These changes include increases in 
mitochondrial mass, glycolytic enzyme expression, key 
nutrient transport proteins (e.g., SLC2A1 and SLC1A5), 
and glycolysis rates and OXPHOS ratios [9, 11, 13]. The 
timescales of metabolic reprogramming in human and 
mouse lymphocytes, however, may differ, according to 
recent research, with human lymphocytes demonstrating 
longer metabolic reprogramming times—this is proven 
for T lymphocytes, but more evidence is required for NK 
cells [14]. The aforementioned results direct our empha-
sis toward the topic of how NK cells maintain increased 
levels of glycolysis and OXPHOS by reprogramming cel-
lular metabolic pathways in response to cytokine stimu-
lation. Glucose, the primary fuel for activated NK cells, 
is metabolized by aerobic glycolysis in the cytosol to 
pyruvate, which then generates lactate. Unlike other lym-
phocytes that metabolize pyruvate through the tricar-
boxylic acid (TCA) cycle, NK cells metabolize pyruvate 
across the mitochondrial membrane via the Citrate-
malate shuttle (CMS) (Fig.  1), which drives the produc-
tion of OXPHOS and adenosine triphosphate (ATP) [15], 
a unique metabolic conformation that is regulated by 
the sterol regulatory element binding protein (SREBP) 
transcription factor. It controls the expression of two 
key genes of the CMS: the ATP citrate lyase (ACLY) and 
the citrate-malate reverse transporter protein SLC25A1. 
Thus, SREBP activity is crucial for metabolic reprogram-
ming and obtaining higher glycolysis and OXPHOS in 
NK cells [15]. Furthermore, unlike other types of lym-
phocytes, NK cells do not use glutamine as a fuel to drive 
OXPHOS [13].

NK cells express a glucose transporter through which 
glucose is taken up into the cytoplasm (Glut1). Glucose 
is metabolized through glycolysis to pyruvate, which is 
enzyme-catalyzed to lactate and transported outside 
the cell via the monocarboxylic acid transporter protein 
(MCT). Some of the pyruvate enters the mitochondria, 
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where most of it is further metabolized via the citrate-
malate shuttle (CMS), and only a relatively small amount 
is metabolized via the tricarboxylic acid cycle (TCA). 
Pyruvate in the mitochondria is metabolized to Acetyl 
CoA, which produces NADH. Acetyl CoA binds to 
oxaloacetate to form citrate, which is then transported 
out of the mitochondria via the citrate transporter pro-
tein (SLC25A1). Citric acid in the cytoplasm is catalyzed 
by ATP citrate lyase to produce Acetyl CoA and oxaloac-
etate, which further generates NAD + , which serves as 
an essential cofactor for the glycolytic enzyme 3-phos-
phoglyceraldehyde dehydrogenase to maintain glycolysis. 
Oxaloacetate is converted to malate in the NAD + gen-
erating reaction and re-enters the mitochondria via 
SLC25A1, where it is converted back to oxaloacetate and 
NADH is produced in the mitochondria. Oxaloacetate 
can complete the cycle by reacting with another glucose-
generating Acetyl CoA to form another citrate. NADH 
generated by CMS and TCA enters the electron trans-
port chain (ETC), driving OXPHOS and efficient ATP 
production. In addition, NK cells activated under the 
stimulation of cytokines (IL15, IL-2, IL-12, IL-18) exhibit 
a significant increase in glycolysis rate, OXPHOS rate, 

mitochondrial mass, and metabolic flux to provide the 
energy support required for NK cell growth and effector 
molecule synthesis.

Metabolic characteristics of different subpopulations of NK 
cells
Human blood NK cells are divided into two main sub-
populations: the CD56bright and CD56dim NK cells. 
CD56dim cells have higher cytotoxicity compared to 
CD56bright cells, whereas CD56bright NK cells are the 
main producers of cytokines, including IFN-γ and tumor 
necrosis factor-α (TNF-α) [1, 16]. The two have differ-
ent metabolic profiles, with CD56bright cells being more 
metabolically active than CD56dim cells upon IL-2 or 
IL-12 stimulation. They preferentially upregulate nutri-
ent receptors and show higher rates of glucose uptake. 
CD56bright cells require elevated levels of OXPHOS 
to support cytotoxicity and IFN-γ production in all NK 
cells [11]. In addition, human NK cells from blood and 
tissue-resident (e.g., spleen and liver) exhibit different 
metabolic profiles, and although tissue-resident NK cells 
also increase trophic receptor expression following stim-
ulation, this increase is less than that of blood NK cells 

Fig. 1 Citrate-Malate Shuttle (drawed by Figdraw)
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[17]. Human decidual NK cells are a unique type of tis-
sue-resident NK cells. Integration of metabolomics and 
proteomics data revealed that 29 metabolites involved in 
the metabolism of glycerophospholipids and glutathione 
were significantly reduced in decidual NK cells compared 
to peripheral blood NK cells. In addition, decidual NK 
cells have an altered redox balance and tend to have more 
ROS, which may be associated with their reduced cyto-
toxicity [18].

NK cell metabolism in pathological states
Evidence suggests that NK cell metabolism is altered in 
chronic diseases such as cancer, obesity, and viral infec-
tions, which are key contributors to NK cell dysfunction. 
In obesity, NK cells take up lipids from the environment, 
which interferes with their cellular bioenergetics, leading 
to metabolic paralysis and a greatly reduced metabolic 
rate. This metabolic dysfunction is associated with per-
oxisome proliferator-activated receptor (PPAR)-driven 
lipid accumulation in NK cells, and PPARα/δ target 
genes are highly up-regulated in obesity, which inhibits 
mTOR-mediated glycolysis as well as downstream tran-
scription of cytotoxic particles and IFN-γ production. In 

addition, obesity severely impedes the ability of NK cells 
to direct cleaved particles to tumor cells and degranulate 
them at the synapse, which is critical for NK cells to exert 
cytotoxicity and thus effectively kill tumors [19]. Glu-
cose metabolism is vital for NK cell-mediated control of 
Mouse Cytomegalovirus (MCMV) infection, and when 
aerobic glycolysis is inhibited by cell-specific deletion of 
Lactate Dehydrogenase A (LDHA), the NK cell’s ability 
to generate a robust effector and memory response to 
MCMV infection is dramatically diminished [20, 21].

How TME affects metabolic reprogramming of NK 
cells
TME refers to the surrounding microenvironment in 
which tumor cells exist, including surrounding blood 
vessels, immune cells, fibroblasts, bone marrow-derived 
inflammatory cells, various signaling molecules, and 
extracellular matrix (ECM) (Fig. 2) [22, 23]. The immune 
function of the TME can be shaped by competition for 
nutrients in the TME, inhibitory effects of accumulated 
metabolites, and signals that limit metabolic reorganiza-
tion [24].

Fig. 2 Tumor Microenvironment (drawed by Figdraw). The tumor microenvironment (TME) is the surrounding microenvironment in which 
tumor cells exist, including the surrounding vasculature, extracellular matrix (ECM), fibroblasts, myeloid-derived inflammatory cells, immune cells, 
and a variety of cytokines and signaling molecules. Cytokine signaling molecules released by immune cells infiltrated in the TME are involved 
in mediating immune-suppressive and/or immune-responsive events. DC Dendritic cell, NK CELL Natural killer cell, MDSC Myeloid-derived 
suppressor cell, CAF Cancer-associated fibroblast, TAM Tumor-associated macrophage, IL Interleukin, TNF-α Tumor necrosis factor-α, CXCL 
Chemokine, VEGF Vascular endothelial growth factor, TGF-β Transforming growth factor-β, Arg-1 Arginine-1, iNOS Inducible nitric oxide synthase, 
ROS Reactive oxygen species
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Hypoxia and its metabolite buildup
Hypoxia
In rapidly growing and expanding tumors, the over-
all TME is characterized by hypoxia due to the increase 
in oxygen consumption and diffusion caused by pro-
liferation and the incomplete internal vascular system 
of the tumor tissues, resulting in an insufficient supply 
of oxygen within the tumor tissues. In advanced cancer 
patients, hypoxic stress shapes NK cells into a tumor-
resistant and immunosuppressive phenotype. A way 
for cells to adapt to hypoxia is to upregulate the pro-
tein expression of hypoxia-inducible factor 1α (HIF-1α). 
Under normoxia conditions, HIF-1α is thought to be dis-
pensable for glycolysis and NK cell metabolic activation, 
as HIF1α-deficient mouse NK cells have normal levels of 
glycolysis and OXPHOS responses to IL2 + IL12 cytokine 
stimulation [13]. However, under hypoxic conditions, 
HIF-1α appears to be a central player in the activation 
of NK cell glycolysis. Stable expression of HIF-1α dur-
ing hypoxia promotes the metabolic shift from OXPHOS 
to glycolysis in NK cells, overcoming hypoxia-mediated 
apoptosis and tumor cytotoxicity damage in NK cells 
maximizing NK cell effector function [25–27]. Notably, 
researchers have emphasized the importance of pre-
cytokine such as IL-2 stimulation on the stable expres-
sion of HIF-1α in NK cells, which seems to provide new 
evidence to achieve high-functioning NK cells in hypoxic 
microenvironments for adoptive cell therapy [26, 27]. 
Furthermore, the HIF-1α metabolic pathway in resting 
NK cells differs from that in activated NK cells, where 
HIF-1α is a regulator of tryptophan metabolism and cel-
lular nicotinamide adenine dinucleotide (NAD) levels, 
which prevents the generation of ROS during OXPHOS, 
thus blocking DNA damage and apoptosis of NK cells 
under homeostatic conditions [25]. Nevertheless, the 
question of whether HIF-1α promotes or impairs NK cell 
effector functions remains a controversial issue. Avail-
able evidence suggests that the absence of HIF-1α in NK 
cells is also beneficial, although this results in attenuated 
cytotoxicity while showing increased bioavailability of 
the angiogenic cytokine vascular endothelial growth fac-
tor (VEGF), which stimulates non-productive angiogen-
esis and thus inhibits tumor growth [28]. In addition, Ni 
et al. found that inhibition of HIF-1α released the antitu-
mor activity of NK cells by establishing single-cell RNA 
sequencing in mice with conditional targeting deficiency 
of HIF-1α in NK cells, as evidenced by the inhibition of 
tumor growth, activation of markers, elevation of expres-
sion of the effector molecule IFN-γ, and enrichment of 
the NF-κB pathway in tumor-infiltrating NK cells [29]. 
HIF-1α regulation is complex, and the effects of hypoxia 
and HIF-1α may depend on microenvironmental condi-
tions, which require further study.

Adenosine accumulation
Moreover, extracellular adenosine (eADO) buildup 
is brought on by hypoxia. Cancer cells release large 
amounts of ATP in hypoxic environments within 
tumors. These ATP molecules are then converted to 
adenosine (ADO) by the exonucleotidase enzymes 
CD39 and CD73, and ultimately the ADO is expelled 
externally [30, 31]. It has been suggested that the 
current purinergic signaling effect on the immune 
response is a balance between the pro-inflammatory, 
immunosurveillance effects of extracellular adenosine 
triphosphate (eATP) and the anti-inflammatory, immu-
nosuppressive effects of eADO [32]. Exonucleotidase 
enzymes are more abundant in solid tumors than in 
non-malignant tissues, which promotes the hydroly-
sis of eATP to eADO [30]. G protein-coupled recep-
tors A1, A2A, A2B, and A3 bind to eAOD to initiate 
downstream signaling pathways. A2A and A2b recep-
tors bind to eAOD to inhibit immune cell activation by 
producing intracellular cyclic adenosine monophos-
phate (cAMP) and activating protein kinase A (PKA) 
during the subacute inflammatory phase that follows 
tissue damage [31]. The ability of IL-2/nkp46-activated 
NK cells to produce IFN-γ, tumor necrosis factor α 
(TNF-α), and macrophage colony-stimulating factor is 
dramatically inhibited by A2A-CAMP-PKA signaling, 
which in turn influences cytotoxicity [33]. Furthermore, 
it appears that ADO signaling has a multipathway effect 
on the ability of NK cells to kill. It has been discovered 
that ADO and its analogs hinder the cleavage and lysis 
of IL-2-activated NK cells by interfering with the kill-
ing pathways mediated by FAS ligand and perforin, 
which are accompanied by increased levels of cAMP 
[34]. Increased ATP hydrolysis was seen as a result of 
dysregulated CD39 and CD73 cell surface expression 
on non-malignant T and NK cell populations in an 
in  vivo study of sezary syndrome. The effective killing 
of ADCC by NK cells and the restoration of non-malig-
nant CD4 + and CD8 + T cell proliferation can both be 
achieved through inhibition of the CD39/CD73/ADO 
pathway [35]. Interestingly, NK cells show the highest 
amounts of A2A receptor expression, even though A2A 
receptors are found on the majority of immune cells 
[36]. Research has revealed that the A2A receptor func-
tions as a checkpoint to restrict NK cell development 
by directly impeding NK cell maturation in the TME. 
The percentage of terminally developed NK cells in the 
TME can rise when the A2A receptor is conditionally 
deleted [37]. Thus, NK cell effector function may be 
restored and immune surveillance may be improved 
by targeting ADO-related signaling molecules in the 
purinergic signaling cascade.
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Acidic TME shaped by glucose restriction and its metabolic 
end products
Glucose limitation
Most tumors are characterized by a high degree of gly-
colysis, even in the presence of oxygen, and cancer cells 
are thought to rely more on glycolysis than mitochondrial 
OXPHOS for energy production, i.e., aerobic glycolysis or 
the "Warburg effect". High glucose consumption in can-
cer cells leads to low levels of glucose available for TME 
and a lack of fuel for NK cell activation resulting in meta-
bolic limitation, which affects NK cell activation, impairs 
IFN-γ production, and blunts the NK cell antitumor 
response [11, 38]. However, whether extrinsic cellular 
competition for nutrients or intrinsic cellular reprogram-
ming leads to metabolic dysregulation of tumor-promot-
ing immune cells remains a controversial issue. The study 
by Bradley et  al. challenged the hypothesis that cancer 
cells induce immune cell nutrient deficiencies and dys-
function in the TME by competing for glucose with the 
TME. Their findings suggest that glucose is preferentially 
utilized by tumor-associated immune cells, in contrast to 
cancer cells that exhibit the greatest uptake of glutamine. 
Different cells in the TME have different nutrient uptake 
programs, which are cell-intrinsically programmed 
through mTORC1 signaling as well as glucose- and glu-
tamine-related gene expression. This interfered with 
glutamine metabolism in cancer cells, which increases 
glucose uptake to generate energy using glutamine 
metabolism as a specific strategy to impede cancer cell 
growth while increasing glucose consumption and conse-
quently altering the immune phenotype in TME [39].

LDH‑derived lactic acid accumulation
Lactate dehydrogenase (LDH) is a key enzyme in glycoly-
sis, and it catalyzes the reversible conversion of pyruvate 
to lactic acid and NADH to NAD, the last step in the gly-
colytic process [40] (Fig. 1). High serum LDH levels are 
frequently linked to a bad prognosis in a variety of can-
cer types, such as melanoma, bladder, nasopharyngeal, 
pancreatic, non-small-cell lung carcinoma, etc. [41–45]. 
Elevated serum LDH levels were linked to a lower chance 
of survival for solid tumors, specifically prostate cancer, 
renal cell carcinoma, and melanoma, according to a meta-
analysis of 76 studies [46]. The potential of variations in 
serum LDH levels as biomarkers to forecast treatment 
outcomes and dynamically monitor therapy response 
has also been emphasized by several clinical investiga-
tions. In metastatic colorectal cancer, for instance, serum 
LDH can function as a measure of tumor angiogenesis 
activation, hence predicting the effectiveness of beva-
cizumab in suppressing angiogenesis [47]. LDH seems 
a biomarker for the anti-PD-1 immunotherapy result in 
esophageal squamous cell cancer [48]. Overexpression 

of LDH in tissues supports a range of malignant biologi-
cal behaviors of tumor cells, including the epithelial-to-
mesenchymal transition (EMT) [49], promotion of cell 
invasion and migration [50–52], angiogenesis [53], and 
cytoskeletal remodeling [54]. These findings are sup-
ported by numerous in vitro and in vivo experiments. It 
is also associated with resistance to anticancer therapies, 
and it has been found that impeding glycolytic metabo-
lism in cancer cells through LDH inhibition can over-
come resistance to chemotherapeutic agents [55–60]. 
Notably, serum LDH levels do not always correspond 
with the level of LDH in tumor tissues, and it is unclear if 
elevated serum LDH levels are a result of tumor cell leak-
age or the rapid growth of metastases destroying non-
malignant tissues [61]. Still, tissue LDH levels and serum 
LDH levels can cooperate and complement one another.

One of the features of TME is the high enrichment of 
lactate, and LDHA has a considerable ability to affect 
immunity in TME by boosting lactate production. On the 
one hand, tumor-associated fibroblasts, the primary stro-
mal cells in TME, use lactate produced by LDH as fuel. 
LDH facilitates the mutual nutrition exchange between 
stromal and tumor cells and encourages the growth 
of tumors [62]. Lactate, on the other hand, makes the 
TME acidic. Acidic TME inhibits the antitumor immune 
response, supports Treg cell differentiation and tumor-
associated macrophage polarization toward M2, encour-
ages the recruitment of myeloid suppressor cells, and 
prevents dendritic cell maturation, limits NK cell toxic-
ity, which suppresses intrinsic and acquired immunity 
[61]. NK cells are affected by high TME lactate levels 
as follows: Lactate is a metabolic end product of glyco-
lysis, and its high enrichment is one of the characteris-
tics of the TME, which is increasingly being studied in 
closely related to the immunosuppressive microenviron-
ment. Lactate causes acidification of TME, and lactate 
uptake by NK cells leads to intracellular acidification and 
impaired energy metabolism. 15  mM lactate has com-
pletely blocked IFN-γ production, and lactate concen-
trations higher than 20  mM led to apoptosis of T cells 
and NK cells [63]. Similar results were obtained in liver-
resident NK cells treated with lactic acid [64]. Ge et  al. 
verified in vivo and in vitro experiments in a pancreatic 
cancer model that the SIX1/LDHA axis promotes the 
accumulation of tumor lactate and thus inhibits the func-
tion of NK cells [65]. In addition, lactate-induced acidi-
fication inhibits the nuclear factor of activated T-cells 
(NFAT) for transcription, an important transcription 
factor involved in the transcriptional control of IFN-γ, 
which likewise leads to a decrease in IFN-γ production 
by NK cells [63]. Elevated lactate levels not only directly 
limit the cellular function of NK cells, but also indirectly 
inhibit NK cells by increasing the number of MDSCs.
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Decreased available amino acids
Arginine
Tumor cells consume large amounts of amino acids, 
which synergize with tumor-associated cells to cre-
ate a nutritionally depleted and immunosuppressive 
TME. Additionally, elevated catabolism of tryptophan 
and arginine (Arg) is a common hallmark of TME [66]. 
Previous data suggest that Arg plays a critical role in T 
cell activation and proliferation, and is also required for 
optimal proliferation of NK cells [67, 68]. Arg depletion 
reduces NK cell proliferation and IFN-γ production while 
decreasing NK ζ-chain expression inhibits activation 
signaling to control NK cell cytotoxicity [69]. A recent 
study indicated that mitochondria-derived damage-
associated molecular pattern (mitoDAMP) inhibited NK 
cell-mediated cytotoxicity, IFN-γ production, T cell pro-
liferation, and in vivo activation of antiviral T cells. Mass 
spectrometry analysis of mitoDAMP revealed enrich-
ment of Arg and its enzymatic activity products, and fur-
ther addition of Arg or arginase inhibitors could reverse 
the inhibitory effect of MitoDAMP preparations. Fur-
ther supporting that Arg depletion is responsible for the 
altered immune polarity [70]. However, it has also been 
reported that NK cell granule exocytosis and cytotoxic-
ity are not related to extracellular Arg [71]. Although the 
effects of Arg deprivation on NK cytotoxicity are contro-
versial, they all point to the fact that lack of Arg impairs 
IFN-γ expression in NK cells through a post-transcrip-
tional mechanism [69–71].

Tryptophan
Many cancer and tumor-associated cells in TME [e.g., 
tumor-associated macrophages (TAMs), tumor-asso-
ciated dendritic cells (DCs), and fibroblasts] express 
increased indoleamine 2,3-dioxygenase (IDO) and tryp-
tophan-2,3-dioxygenase (TDO), and large quantities of 
tryptophan are converted to kynurenine by the enzymes 
[72, 73]. On the one hand, this leads to tryptophan 
depletion and reduced availability of essential amino 
acids, inhibiting tumor-infiltrating lymphoid (TIL) cell 
responses. On the other hand, accumulation of kynure-
nine in TME enters TILs via the amino acid transporter 
protein SLC7A5 and impairs TIL proliferation and effec-
tor function [73]. In NK cells, exposure to IDO-derived 
kynurenine also induces apoptosis via reactive oxy-
gen species-mediated pathways and also decreases the 
expression of the NK cell activation receptor NKG2D and 
natural cytotoxicity triggering receptor 1 (NCR1, also 
known as NKp46). But the limiting effect of kynurenine 
is selective and it does not affect the cytotoxicity effects 
mediated by NKp30 or CD16 [74, 75]. Inhibition of IDO 
may be a potential anticancer target. Silencing of IDO in 
ovarian cancer cells enhances cancer cell sensitivity to 

NK cells in vitro, and in vivo and manifests as inhibition 
of tumor growth, reduction of peritoneal dissemination, 
and promotion of NK cell accumulation in the tumor 
stroma [76].

Glutamine
Previously, we mentioned that cancer cells consume the 
highest amount of glutamine, while immune cells con-
sume the highest amount of glucose [39]. The predatory 
uptake of glutamine by tumor cells in the TME results in 
limited utilization of glutamine by immune cells. In NK 
cells, SLC7A5-mediated glutamine uptake is required 
to regulate c-MYC-dependent NK cell activation. Glu-
tamine-deficient NK cells exhibit reduced c-MYC protein 
expression, growth restriction, and impaired immune 
function. However, the inhibition of glutamine catabo-
lism did not affect NK cells driving OXPHOS, suggest-
ing that although glutamine is not an essential fuel for 
NK cells, glutamine is important for maintaining the 
signaling of metabolic regulators such as MYC [13, 77]. 
Targeting glutamine metabolism enhances NK cell-
based therapies by impairing tumor fuel supply without 
decreasing NK cell function.

Strategies for targeting immunometabolism 
to optimize NK cell immunotherapy
Targeted hypoxia and its metabolites
Targeted hypoxia
Although it is not yet clear whether the expression of 
HIF-1α in NK cells has a promoting or impairing effect 
on NK cell effector function, downregulation of HIF-
1a signaling within the tumor itself can also enhance 
immune activity. A variety of HIF-1α inhibitors are being 
developed to improve cancer immunotherapy. For adop-
tive cellular therapy, preactivated NK cells using IL-2 
can restore the killing potential of NK cells exposed to 
hypoxic TME. When NK cells are in an active prolifera-
tive state, the proliferative signaling of NK cells is suffi-
cient to amplify hypoxia-induced activation of ERK1/2 
and STAT3, thereby shifting to anti-apoptotic and 
pro-survival pathways to resist the deleterious hypoxic 
immunosuppressive environment [27]. In addition, 
dysfunctional vasculature in tumor cells contributes 
to hypoxia and tumor drug resistance, thus normaliz-
ing the vasculature to reduce hypoxia in the TME takes 
on a strong role. Treatment with a novel Fc-VEGF chi-
meric antibody drug (Fc-VFD) inhibits the secretion 
of pro-angiogenic factors VEGF-A and IL-6 by cancer 
cells in TME, suppressing excessive angiogenesis and 
overcoming hypoxia resistance in cancer cells. Single-
cell RNA sequencing also revealed that it inhibited M2 
macrophage polarization and increased immune cell 
infiltration, including cytotoxic T cells, NK cells, and 
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M1 macrophages [78]. The use of the anti-vascular drug 
5,6-Dimethylxanthenone-4-acetic Acid (DMXAA) in 
combination with the HIF-1α inhibitor Digoxin inhibited 
tumor growth and stimulated immunity in a melanoma 
model, demonstrating a significant increase in the per-
centage of CD8 cytotoxic lymphocytes and NK cells [79]. 
In addition, HIF-1α is associated with PD-L1, and HIF-1α 
binds to hypoxia-responsive elements in the PD-L1 pro-
moter to regulate PD-L1 expression. Combination ther-
apy with a PD-L1 antibody and a HIF-1α inhibitor may 
improve the immune response of patients and enhance 
immune efficacy [80]. Castration-resistant prostate can-
cer (CRPC) cells highly express PD-L1, and the cytotox-
icity of NK cells against hypoxia-induced CRPC cells was 
enhanced by the inhibition of JAK1, STAT3 (upstream 
regulators of PD-L1) in combination with PD-L1 anti-
body [81].

Targeting adenosine
ADO has a key role in remodeling the immunosuppres-
sive TME. The utilization of immunotherapy or inhibitors 
of signaling to promote immune cells against malig-
nant tumors may be a promising therapeutic approach. 
Recently, a human anti-CD73 monoclonal antibody Ole-
clumab has completed phase I clinical trials and demon-
strated a manageable safety profile when administered 
alone or in combination with Durvalumab and showed 
antitumor activity in immunotherapy-resistant tumor 
types [82, 83]. ARL67156, a dual inhibitor of CD39/73, 
enhanced the cytotoxic effects produced by NK tumor 
cell lines [84]. In addition, it was found that antagonism 
of A2A ADO receptors decreased the percentage of 
CD56bright NK cells and promoted the accumulation of 
highly cytotoxic CD56dim NK cells. This suggests that 
A2A receptor antagonism enhances adoptive NK cell 
immunotherapy [37]. There have been several reports 
using combinations of A2A receptor antagonists and NK 
cell-based therapies that can promote NK cell-mediated 
antitumor immunity [85–88].

Targeted glucose metabolism and its metabolic end 
products
Targeted glucose metabolism
In the TME where tumors consume glucose and have 
high rates of glycolysis, inhibition of glycolysis may be 
a promising therapeutic strategy to alleviate glucose 
deprivation and limit tumor growth in TME. Single 
or combination therapies with the glycolysis inhibitor 
2-deoxyglucose (2-DG) have entered clinical trials [89, 
90]. However, glucose is also a key fuel for the activa-
tion of NK cells, and one has to question whether target-
ing the glycolytic pathway would inhibit glycolysis in NK 
cells in the context of TME thereby impairing the ability 

of NK cells to kill tumor cells. The effect of 2-DG on NK 
cell cytotoxicity is currently unknown. One data showed 
decreased NK cell proliferation and cytotoxicity in CMV-
infected mice treated with 2-DG [21]. In contrast, other 
data suggests that it is glucose starvation rather than 
2-DG treatment that impairs NK cell cytotoxicity [91]. 
However, the preactivation of NK cells with cytokines for 
adoptive cell therapy may be able to overcome metabolic 
inhibition. It has been shown that even in the presence 
of 2-DG, NK cells preactivated with IL-12/15/18 exhib-
ited higher cytotoxic activity than control NK cells. This 
suggests that cytokine-induced memory-like (CIML) 
NK cells can maintain higher anti-tumor activity under 
glycolysis-restricted conditions (e.g., TME) [92]. In addi-
tion to this, some inhibitors were used to assess the effect 
on glycolysis in NK cells. Administration of the aldose 
reductase inhibitor Fidarestat downregulated AKR1B10 
expression in NK cells and promoted NK cell glycolysis 
to enhance its killing activity against hepatocellular car-
cinoma cells [93]. Adoptive transfer of NK cells treated 
with MB05032, an inhibitor of the gluconeogenic enzyme 
FBP1, restored NK cell glycolysis and effector functions 
and slowed down tumor growth in a murine lung cancer 
model [94].

Targeting lactate
Targeting lactate metabolism to regulate the pH of the 
TME is a promising approach due to the damage to NK 
cells caused by lactate and lactate-induced acidification 
of the TME. This includes both aspects of targeting lac-
tate anabolism and targeting lactate transport. One key 
to the strategy of targeting lactate anabolism is LDH-A, 
a key enzyme that catalyzes the conversion of pyruvate to 
lactate during glycolysis. Several small molecule inhibi-
tors targeting LDH-A have been applied in preclinical tri-
als and shown to be effective in inhibiting tumor growth. 
These include substrate (pyruvate)-competitive inhibi-
tors: oxalate [95]; cofactor (NADH)-competitive inhibi-
tors: cotton phenol, quinoline 3-sulfonamides [96–98]; 
and dual competitive inhibitors (substrate and cofactor): 
N-hydroxy-indole (NHI) [99, 100]. Some of these mol-
ecules are in clinical trials, but no LDH-A inhibitor has 
yet been approved for clinical use, and the clinical utility 
of LDHA inhibitors may be limited by their non-selec-
tive toxicity or complex interactions with other cellular 
components. Second, targeting lactate transport. Can-
cer cells take advantage of the widespread expression of 
two monocarboxylic acid transporter (MCT) protein iso-
forms, namely, MCT1, which dominates lactate import, 
and MCT4, which dominates lactate export, to establish a 
lactate shuttle in cancer cells. The use of MCT inhibitors 
to block the release of lactate from cancer cells reduces 
TME acidification and causes lactate accumulation in 
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cancer cells to reach toxic concentrations in tumor cells, 
reducing their growth and inducing apoptosis. An MCT1 
inhibitor, AZD3965, is in clinical trials and modulates 
tumor immune cell infiltration, specifically increasing NK 
cell and DC cell abundance and maturation within the 
tumor [101, 102]. In addition, monotherapy using sys-
temic bicarbonate buffering that neutralizes tumor acid-
ity enhances IFN-γ expression in NK cells and increases 
the number of NK cells in tumor-growing lymphoid 
organs, and delays tumor growth in an NK cell-depend-
ent manner [103]. However, the results of three phase 
I/IIa clinical trials of oral sodium bicarbonate tolerance 
(NCT01846429, NCT01198821, NCT01350583) suggest 
that it is not easy to implement mono buffered thera-
pies in the clinic. The trials were unsustainable because 
patients were experiencing diminished taste and strong 
gastrointestinal reactions thus leading to poor compli-
ance [104].

Targeted amino acid metabolism
Targeting arginine
Low Arg levels affect NK cell proliferation. The small 
molecule arginase inhibitor CB-1158 blocks Arg deple-
tion by myelomonocytic arginase expression in the TME, 
activates NK cells, promotes their infiltration into the 
TME, and acts synergistically with checkpoint inhibition 
to promote tumor clearance [67]. Furthermore, in a study 
that included 18 colorectal cancer patients who under-
went tumor resection, preoperative Arg supplementa-
tion was found to lead to an increase in tumor-infiltrating 
CD16 and CD56 NK cells by histopathological analysis of 
biopsies [105].

Targeting tryptophan
Based on its effects on NK cells as well as other immune 
cells, IDO inhibition has emerged as a potential target 
for anticancer therapies. Most inhibitors bind to IDO 
enzymes and prevent the conversion of tryptophan to 
kynurenine, resulting in toxic effects on NK cells and 
other immune substrates. The use of IDO/TDO-IN-2, 
a dual inhibitor targeting IDO3 and TDO1, reversed 
the inhibition of NK cell-mediated antibody-dependent 
cytotoxicity (ADCC) by oncolytic-positive cancer-asso-
ciated fibroblasts and helped to attenuate Trastuzumab 
resistance in HER2 positive breast cancer [106]. In a 
study on sarcoma, an IDO inhibitor (GDC-0919) was 
in use. Although GDC-0919 alone or in combination 
with anti-PDL1 neither show antitumor activity nor 
affect tumor immune cell infiltration, GDC-0919 was 
found to induce downregulation of granzyme expres-
sion, as well as upregulation of inhibin subunit beta A 
(inhba) and E3 Ubiquitin ligase Dtx4 [107]. It has been 
reported that inhba plays a crucial role in inhibiting NK 

cell proliferation and granzyme B production, leading to 
impaired tumor susceptibility to NK cell-mediated killing 
[108]. These results indicate a potential role for the IDO 
pathway in controlling NK function [107]. By delivering 
immunogenic cell death (ICD) stimuli combined with 
interference with the immunometabolism effects of the 
IDO-1 pathway, a dual-delivery liposomal carrier with 
mitoxantrone and cholesterol fingolimod as prodrugs 
was developed, and the data showed that liposomal deliv-
ery was very effective for inducing a chemoimmunother-
apeutic response with the involvement of NK, which has 
been successfully validated for chemoimmunotherapy in 
mouse models of breast and renal cancer [109]. In addi-
tion, multi-combination immunotherapy, i.e., nanoscale 
reduced graphene oxide-mediated photothermal therapy 
synergized with IDO inhibition and PD-L1 blockade, 
designed by Yan et  al. was shown to directly kill tumor 
cells and induce synergistic anti-tumor immunity. Exper-
iments in  vivo further demonstrated that the immune 
response enhanced the production of tumor-infiltrating 
lymphocytes, including CD4 T cells, CD8 T cells, and NK 
cells, as well as INF-γ [110].

Targeted glutamine
As mentioned previously, we mentioned that target-
ing glutamine metabolism could enhance NK cell-
based therapies by impairing tumor fuel supply without 
decreasing NK cell function. Based on this idea JHU083 
was used in preclinical studies. JHU083 is a prodrug 
of 6-diazo-5-oxo-L-norleucine (DON), a glutamine 
antagonist that can interfere with tumor cell metabo-
lism by inhibiting glutaminase and a variety of enzymes 
in tumors that require glutamine thereby increasing the 
availability of glucose and oxygen in the TME and reduc-
ing TME acidification [111]. These alterations are ben-
eficial in supporting NK cell effector function. We have 
already known the importance of SLC7A5-dependent 
amino acid uptake in NK cells for the stable and sus-
tained expression of c-MYC [13]. This has led research-
ers to focus on therapeutic strategies that target NK cells 
to upregulate amino acid transporter proteins to enhance 
metabolic adaptations in NK cells: ① Chimeric Antigen 
Receptor (CAR)-expressing NK cells armed with overex-
pressed transporter proteins; ② Overexpression of trans-
porter protein positive regulators (e.g., c-MYC, YBX3) 
and knockdown/silencing of transporter protein nega-
tive regulators (e.g., MARCH1); ③ Enhance the expres-
sion of amino acid transporter proteins specifically using 
cytokines such as IL-15, IL-18 [72]. In addition, MYC 
in NK cells is degraded by glycogen synthase kinase 3 
(GSK3), and several clinical trials (NCT01287520) tar-
geting GSK3 inhibitors (NCT01214603) are ongoing 
[112, 113]. Notably, SREBP activity is not only critical for 
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metabolic reprogramming and obtaining higher glyco-
lysis and OXPHOS in NK cells, but is also required for 
c-MYC protein expression [15, 114]. Activation of SREBP 
transcription factors can be effectively inhibited by cho-
lesterol and oxysterols, and fluoxetine, and betulinic acid 
alcohols have been shown to suppress SREBP activation 
and have shown promising antitumor effects in preclini-
cal studies [115, 116].

Conclusion and outlook
Numerous NK cell-based immunotherapies, including 
ex  vivo NK cell activation, NK cell overlay therapy, and 
CAR-NK cell therapy, are quickly developing in the con-
text of molecularly targeted treatments. Among them, 
CAR-NK cell therapy is regarded as a milestone break-
through in anti-tumor immunotherapy is CAR-NK cell 
treatment. Because of the special biological character-
istics of NK cells, CAR-NK treatment has the distinct 
benefits of low toxicology and multi-cell origin. Even the 
use of allogeneic NK cells prevents allogeneic responses 
and lowers the risk of neurotoxicity and serious toxic side 
effects including acute cytokine release syndrome (CRS) 
and graft-versus-host disease (GVHD). Nevertheless, 
there are still several obstacles in the way of its clinical 
application in solid tumors, including those related to the 
creation of CAR-NK cells, their ability to migrate to the 
tumor site, and their survival and durability in immuno-
suppressed TME. In particular, the importance of "adap-
tive" regulation of CAR-NK cells in TME suggests that 
the eventual development of NK cell exhaustion remains 
a major obstacle to the success of NK cell immunother-
apy treatments, which are closely related to TME. Under-
standing the interactions in the metabolic biology of NK 
cells and specific TMEs will help to identify the necessary 
NK cell modifications and the relevant choices of NK cell 
sources to optimize NK cell-based immunotherapies as a 
cancer immunotherapy boon.

In addition, immunometabolism is a fascinating area 
of research that may be key to successful cancer immu-
notherapy. However, targeting immune metabolism dur-
ing immunotherapy is challenging. Because tumor cells 
and immune cells share similar metabolic pathways for 
energy acquisition, targeting tumor cell metabolism may 
impair immune cell metabolism in the context of TME 
and thus diminish their effector function. An example is 
the uncertainty of the glycolysis inhibitor 2-DG, which 
targets glucose metabolism, on NK cell metabolism. 
Future studies should deepen the differences between the 
metabolic mechanisms of cancer cells and immune cells 
in the context of TME and adjust the strategy of targeting 
metabolic regulation.
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