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Abstract 

The occurrence and progression of tumors can be established through a complex interplay among tumor cells 
undergoing epithelial-mesenchymal transition (EMT), invasive factors and immune cells. In this study, we employed 
single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (ST) to evaluate the pseudotime 
trajectory and spatial interactive relationship between EMT-invasive malignant tumors and immune cells in primary 
colorectal cancer (CRC) tissues at different stages (stage I/II and stage III with tumor deposit). Our research char-
acterized the spatiotemporal relationship among different invasive tumor programs by constructing pseudotime 
endpoint-EMT-invasion tumor programs (EMTPs) located at the edge of ST, utilizing evolution trajectory analysis 
integrated with EMT-invasion genes. Strikingly, the invasive and expansive process of tumors undergoes remarkable 
spatial reprogramming of regulatory and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs), 
tumor-associated macrophages (TAMs), regulatory T cells (Treg), and exhausted T cells (Tex). These EMTP-adjacent cell 
are linked to EMT-related invasion genes, especially the C-X-C motif ligand 1 (CXCL1) and CXCL8 genes that are impor-
tant for CRC prognosis. Interestingly, the EMTPs in stage I mainly produce an inflammatory margin invasive niche, 
while the EMTPs in stage III tissues likely produce a hypoxic pre-invasive niche. Our data demonstrate the crucial role 
of regulatory and immunosuppressive cells in tumor formation and progression of CRC. This study provides a frame-
work to delineate the spatiotemporal invasive niche in CRC samples.
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Introduction
Colorectal cancer (CRC) is one of the most significant 
health burdens worldwide [1], and 40% of the patients 
develop to the stage eventually leading to death [2]. 
Despite significant advances in understanding the 
molecular mechanisms underlying CRC development, 
including epigenetic regulation [3–6] and its pertinence 
to inflammation [7], our knowledge of CRC disease pro-
gression is still far from satisfactory.

The "seed and soil" hypothesis proposes that primary 
tumors can create a suitable microenvironment for 
tumor cell invasion before they arrive at distant sites, 
which has been instrumental in understanding tumor 
metastasis [8, 9]. We postulate that this hypothesis is 

equally applicable to the early-stage expansion process of 
tumors, particularly during their breach of the basement 
membrane and dissemination to lymph nodes. During 
the process of EMT invasion of tumor metastasis, the 
tumor immune microenvironment (TME) produces a 
highly immunosuppressive pre-metastasis niche [10] that 
induces a systemic loss of antigen-specific T lymphocytes 
[11], which allows tumor cells to invade adjacent normal 
tissues [12]. Similar to the concept of the pre-metastatic 
niche, a microenvironment conducive to tumor growth 
is established at the periphery before tumor development 
and expansion [13]. For the convenience of description, 
we term this microenvironment as the "margin inva-
sive niche". However, the spatial coordination between 
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immune cells and EMT-invasion tumor programs in pri-
mary CRC is largely unknown, and whether the EMT-
invasion microenvironments are different in distinct 
tumor stages remains unclear [14]. Therefore, detection, 
identification and quantification of the temporal and spa-
tial landscape during the EMT tumor invasion process in 
the early stages of primary CRC is increasingly necessary 
to advance our understanding of tumor growth.

ScRNA-seq allows us to determine the degree of tumor 
progression at a single-cell resolution through EMT-
associated genes and provides a new perspective to inter-
rogate the transcriptional heterogeneity of malignant cell 
subsets. In CRC research, scRNA-seq has been used to 
unravel the complexities of TME and tumor cell evolu-
tion [15–17]. On the other hand, spatial transcriptomics 
(ST) has also been employed to analyze RNA levels in a 
spatial context, shedding light on tissue and immune cell 
heterogeneity, and revealing subcellular RNA localiza-
tion [18]. The understanding of tissue architecture aids 
in deciphering individual cell functions in multicellular 
organisms by pinpointing their precise physical loca-
tions within tissue Sections [19]. Moreover, integration of 
scRNA-seq with ST enables the systematic analysis and 
validation of the spatial locations and cell–cell interac-
tions for multiple tumor programs in TME [20].

In this study, we utilized scRNA-seq and ST obtained 
from 42 samples to characterize the transcriptional 
landscape of CRC. Our findings reveal that the immune 
microenvironment of CRC exhibits spatiotemporal dis-
tribution in the process of EMT-invading tumors. Fur-
ther analysis along pseudotime trajectory shows that 
tumor programs in both primary tumor stages shift 
towards more EMT-invasive and immunosuppres-
sive stages where immunosuppressive cells are repro-
grammed at invasion sites. Our study also highlights the 
role of recruited regulatory and suppressive immune 
cells, such as TAMs, MDSCs, Treg, and Tex cells, in pro-
moting tumor progression by supporting the formation 
of margin invasive niches. Moreover, these cells are con-
structed for a variety of properties of niche formation at 
different stages.

Material and methods
Clinical sample collection
In this study, the scRNA-seq data were generated from 
two cases of CRC tissue samples, designated as RC1 and 
RC2, collected at the Seventh Affiliated Hospital of Sun 
Yat-sen University (Shenzhen, China), and the patients 
were diagnosed histologically. RC1 was collected from 
the periphery of the tumor exhibited invasion into the 
muscular layer without detectable lymph node metasta-
sis, and was thus classified as stage I (T2N0M0). RC2 was 
also excised from tumor periphery showing invasion into 

extramural parietal fat and fibrous tissues of the rectum 
without distant lymph node metastasis, and was classi-
fied as stage III (T4N1cM0). Information regarding tis-
sue dissociation and cDNA synthesis can be found in the 
Supplemental Methods.

scRNA‑seq data collection
Utilizing 10 × single-cell sequencing, we conducted 
analysis on the two CRC samples. To increase the com-
prehensiveness of our study, we incorporated publicly 
available scRNA-seq datasets (GSE132465, GSE132257, 
GSE144735 and E-MTAB-8107) into our analyses. These 
public datasets downloaded from GEO and ArrayEx-
press encompass 47 samples obtained from 40 patients 
at three different CRC stages, including stages I, II, and 
III, as shown in Additional file  1: Figure S1 and Addi-
tional file  12: Tables S1–S3. These additional cohorts 
were collected from early, treatment-naive patients using 
the 10XGenomics platform, and samples from late-stage 
patients with advanced distant metastasis (stage IV) not 
included.

ST data collection
We employed the 10 × ST sequencing method to simulta-
neously capture the spatial data of RC1 and RC2. Further-
more, to corroborate our results, we obtained additional 
CRC-related ST data from a publicly accessible database 
of the CNGB Nucleotide Sequence Archive (CNSA: 
http:// db. cngb. org, accession number CNP0002432).

scRNA‑seq data quality control and pre‑processing
For the two CRC samples with both scRNA-seq and ST 
analyses conducted in this study, we processed the raw 
fastq data using Cell Ranger (v 3.1.0) with default argu-
ments and the Homo_sapiens GRCh38 dataset as a ref-
erence file. To pre-process and control data quality, 
we mainly used the Seurat (v4.0.5) package to read and 
pre-process the data according to a previous study [21]. 
We first removed the cell data that expressed fewer than 
300 genes or greater than > 20% mitochondrial genes and 
excluded the genes that were expressed in fewer than 
three cells. For the scRNA-seq data, we chose a relatively 
loose filtering standard to avoid excessive filtering of 
MDSCs, as they naturally express low RNA levels. This 
allowed us to retain more non-hematopoietic cells, which 
express many mitochondrial genes due to dissociation 
effects. We then normalized the unique molecular identi-
fiers (UMIs) per cell and corrected the sequencing depth, 
mitochondrial gene percentage, rRNA percentage, G2M 
cycle, and other factors.

For the other publicly available data, we used Seurat to 
read all the count data from different sources and create a 
Seurat object with clinical information, mainly including 
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CRC stages. After scaling the data as before, we selected 
2,000 highly variable genes and merged all the single-cell 
data. Next, we produced principal component analysis 
(PCA) with npcs = 50. The Harmony package was used 
to eliminate the batch effect for the merged data of this 
study and the public data. Clustering analysis was car-
ried out with a resolution of 0.2 on the merged scRNA-
seq and ST data. We plotted the t-distributed stochastic 
neighbor embedding (t-SNE) for the data with 50 PCs. 
Clusters with less than 100 cells were excluded from the 
data analysis.

Celltypes annotation
To obtain specific gene markers from different cell clus-
ters, we separately calculated the differential genes for 
each cell type using the Wilcoxon rank sum test in the 
FindMarkers (q < 0.01). We first used the SingleR soft-
ware based on a previous study [22] to annotate the cell 
types and determine approximate cell types using the 
celldex software package (Human Primary Cell Atlas 
Data; https:// github. com/ LTLA/ celld ex) (Additional 
file 12: Table S5). We then defined the names of cell types 
that accounted for the largest proportion of cell annota-
tion result for each cluster. Furthermore, based on dif-
ferentially expressed genes (Additional file 12: Table S6), 
we further verified the annotation results based on the 
top five differentially expressed genes determined by the 
Cellmarker (http:// biocc. hrbmu. edu. cn/ CellM arker/) 
[23]. Subsequently, to identify immune cell subsets in 
high resolution, we re-clustered the immune subsets of 
stage I/II and stage III CRC samples by the resolution of 
0.2. Furthermore, we also calculated the markers for each 
cluster of immune cell populations (Additional file  12: 
Table  S7). The cell types of immune cells were defined 
according to the cell markers reported in a previous study 
[24]. We further verified the accuracy of T cell classifica-
tion based on their pro-inflammatory and anti-inflamma-
tory activity scores (Additional file 12: Table S8) using the 
AddModuleScore function.

CNV inferring
We used the infercnvpy python package to obtain the 
somatic large-scale chromosomal copy number variation 
(CNV) score. Firstly, a log and normalized counts matrix 
of scRNA-seq data were processed, and the PCA (scanpy.
pp.log1p) and neighbors finding (scanpy.pp.neighbors) 
were running by scanpy. Next, gene annotation and chro-
mosome position files were prepared according to data 
requirements (https:// github. com/ broad insti tute/ infer 
CNV). For each stage of the single cell data, we used 
infercnvpy.tl.infercnv to infer CNV and selected normal 
macrophages and fibroblasts as reference normal cells. 
The infercnvpy.pl.chromosome_heatmap and infercnvpy.

tl.leiden were used to visualize the heatmap of CNV 
results and the Uniform Manifold Approximation and 
Projection (UMAP) of the reduction plot. Finally, the 
CNV scores were calculated by infercnvpy.tl.cnv_score 
and used to distinguish tumor cells from normal epithe-
lial cells and immune cells (Additional file 13: Table S9).

Pathway enrichment analysis
Pathway activity scores of single-cell data were calculated 
based on sc-TPA (https:// github. com/ zgyaru/ testS ctpa) 
software package according to a previous study [25]. The 
software scored each pathway activity after the integra-
tion of different score calculation methods. Pathway gene 
lists for enrichment analysis are downloadeded from 
MsigDB (https:// www. gsea- msigdb. org/ gsea/ msigdb/). 
We mainly utilized the AUCell [26] function to calculate 
the pathway enrichment scores for different populations 
(Additional file 14: Tables S10–S11).

Trajectory analysis
Monocle v.2 [27] (https:// github. com/ cole- trapn ell- lab/ 
monoc le- relea se) was used to show the cell state tran-
sition in cancer cells for two CRC stages. We created a 
CellDataSet object based on UMI count matrices and 
the negbinomial.size parameter for the default setting. 
We got variable genes in the following cutoff criteria: 
dispersion_empirical > dispersion_fit; and mean expres-
sion > 0.1. In the trajectory analysis for tumor epithelial 
cells of the two stages, variable genes were substituted 
by epithelial differentiation marker genes for semisuper-
vised trajectory reconstruction. DDRTree method and 
the orderCells function were used to reduce dimensional 
and order cells. Finally, we obtained the genes with signif-
icantly differential expression for pseudotime in different 
stages of tumor cells using differentialGeneTest function 
(Additional file 15: Table S12-13).

Construction of EMT‑invasion score for each cell
The intersection of stage I/II and stage III of pseudo-
time differential genes were used to analyze the survival 
time for TCGA-COADREAD data by survival package 
(P < 0.05, Additional file 16: Table S14). Further, we per-
formed the Pearson test and selected the cutoff values of 
cor > (±) 0.1 and P < 0.05 as the pseudotime-associated 
genes (Additional file  16: Tables S15–S16). Next, we 
intersected the gene list of the two stages to obtain the 
EMT-invasion genes and their scores were then calcu-
lated using the AddModuleScore function.

Re‑localization for spatial transcriptome data
We utilized the SPOTlight [28] (https:// marce losua. 
github. io/ SPOTl ight/) package to relocate the single-cell 
data to the position spots of the spatial transcriptome 
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data. Next, FindAllMarkers was used to get the marker 
genes for each cell type. Finally, we used the “spotlight_
deconvolution” function to analyze 500 cells for each cell 
type, 2000 HVGs and nsNMF method to run the decon-
volution step.

Receptor ligand interaction analysis
To understand the communications between high EMT-
invasion tumor cells and immune cells, we utilized the 
software Cellchat [29] (https:// github. com/ sqjin/ CellC 
hat) to calculate the receptor-ligand communication 
networks. CellChat is a computational tool designed to 
quantitatively infer and analyze cell–cell communication 
networks from single-cell RNA-sequencing data, ena-
bling the prediction of major signaling interactions and 
their coordination in cellular functions. It achieves this 
by integrating prior knowledge of the interactions among 
signaling ligands, receptors, and their cofactors. Further-
more, we utilized the NicheNet [30] (https:// github. com/ 
saeys lab/ niche netr) to analyze the interaction intensity of 
the ligands and target genes between the upregulated and 
downregulated invasion genes. NicheNet is another com-
putational tool that utilizes gene expression data from 
a method to predict ligand-target interactions among 
interacting cells based on their gene expression data 
with prior knowledge of signaling and gene regulatory 
networks. Actually, in addition to ligand-receptor inter-
actions, NicheNet also incorporates intracellular sign-
aling that sets NicheNet apart. In this analysis, we used 
NicheNet to pinpoint specific interacting cells and inter-
action pairs of interest, starting from specific gene sets.

TCGA analysis
TCGA COAD and READ gene expression datasets of 
TPM and clinical datasets from Broad GDAC Firehose 
(https:// gdac. broad insti tute. org/) were collected to obtain 
the mean of EMT gene signature. After downloading 
gene expression data from the Illumina HiSeq platform, 
we converted raw counts to normalized TPM values with 
log2-transformation. We selected COAD and READ 
samples with gene expression, stages, and overall survival 
clinical information. The top 50% of samples were classi-
fied as the group of the high-level scores, and the bottom 
50% of samples as the group of the low-level scores. The 
‘survival’ and ‘survdiff’ functions in R were used to gener-
ate Kaplan–Meier survival curves and calculate the P val-
ues of the log-rank test. The immune cell infiltration data 
was downloaded from TIMER [31] website (http:// timer. 
comp- genom ics. org/) for TCGA-COADREAD.

Statistics
We used the Wilcoxon test to compare differences 
between two groups of data. Statistical significance 

among multiple cell types or sample types was deter-
mined using a one-way analysis of variance (ANOVA). 
The Pearson correlation test was used to correlate data 
with homogeneous variance. A P-value of > 0.05 indi-
cates no statistically significant difference, and P ≤ 0.05, 
P ≤ 0.01, P ≤ 0.001, and P ≤ 0.0001 indicated varying 
degrees of statistically significance levels. All statistical 
tests were two-sided and performed using the R version 
4.0.2.

Results
Overview of colorectal cancer TME characterized 
by scRNA‑seq analysis
To decipher the cell composition within CRC, we per-
formed scRNA-seq and spatial transcriptomics (ST) 
analyses on the two margin tissues of two CRC samples, 
one from stage I with invaded muscular layer and the 
other from stage III with metastasis into two cancerous 
nodes (Fig.  1a), using 10X Genomics. To increase the 
sample number of our single-cell data, we included addi-
tional four datasets obtained from the GEO and Array-
Express databases, which were generated based on 49 
samples of 42 CRC patients after removing the samples 
with distant metastasis or therapeutic treatment. The 
t-SNE plots indicate the position of cells for each data-
set, the origin tissues and the patients within the atlas, as 
shown in Additional file 1: Figures S1a, b, and Additional 
file 1: Table S1–S3.

After strict quality control as described in Materials 
and Methods section, we selected 99,689 cells from the 
samples (n = 49), including 45,146 cells from stage I/II 
samples (n = 25) and 54,543 cells from stage III samples 
(n = 24), for further analysis (Additional file 12: Table S4, 
Fig.  1b). We performed clustering analysis (Additional 
file  1: Fig. S1d) and defined initial cell types using Sin-
gleR [22] and cell marker genes (Fig. 1f, Additional file 12: 
Table S5, Methods). We identified epithelial cells, T cells, 
macrophages, B cells, fibroblasts, tissue stem cells, com-
mon myeloid progenitors (CMP), and monocytes from 
the CRC samples (Fig. 1c). The epithelial cells exhibited 
high expression levels of epithelial markers, such as epi-
thelial cell adhesion molecule (EPCAM), stratifin (SFN), 
and cytokeratins (KRT18/19) (Additional file 1: Fig. S1c). 
The proportion of immune cells in stage III was larger 
than that in stage I/II, with a ~ 5% increase in T cells 
(Fig. 1d), suggesting an activity increase of intratumoral 
immunity from stage I/II to stage III.

To identify the malignant tumor cells from all epi-
thelial cells, we assessed the CNVs in the epithelial cell 
subgroups on a genome-wide scale (Additional file  2: 
Fig. S2a, b). After unsupervised clustering analysis, we 
derived CNVs from the multiple populations of epithe-
lial and immune control cells for stage I/II (Additional 
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file  2: Fig. S2c, left) and stage III (Additional file  2: Fig. 
S2d, left). As expected, the CNVs in most epithelial cell 
subsets were higher than those in macrophages and neu-
trophils. Furthermore, we observed that the CNV scores 
of specific epithelial cell clusters were markedly lower 

than that of other epithelial cells, which were subse-
quently removed and used as normal epithelial cells for 
both stages of CRC samples (Additional file  2: Fig. S2c, 
middle; Fig. S2c, middle). We retained the epithelial cells 
with higher CNV scores, indicating their properties of 

Fig. 1 Single-cell gene profiling of colorectal cancer (CRC) tissues. a Illustration of sampling in this study. b tSNE plots of malignant 
and non-malignant cells colored by different stages of cancer samples c, tSNE plots for initial annotation on broader cell-type categories. CMP: 
common-myeloid progenitors. d The proportion of different cell types from the two stages of cancer samples. e tSNE plot showing the annotation 
of immune cell types for lymphocytes and myeloid cells. Th: T helper cells, TAM: tumor-associated macrophage, Teff: effector T cells, Tex: exhausted 
T cells, Treg: regulatory T cells. MDSC: myeloid-derived suppressor cells. f Proportions of immune cell types in stage I/II and stage III samples. g tSNE 
plots of T cells colored by pro-inflammatory (left) and anti-inflammatory (right) gene signatures
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malignant epithelial cells, for further analysis (Additional 
file 2: Fig. S2d, right; Fig. S2d, right).

Moreover, we integrated SingleR and manual marker-
based annotation to define immune cell subsets further 
for analysis. We identified eight main cell populations 
based on their marker genes (Fig.  1c, Additional file  3: 
Fig. S3a): T helper cells (Th, N = 12,416), tumor-associ-
ated macrophages (TAM, N = 10,838), effector T cells 
(Teff, N = 6605), exhausted T cells (Tex, N = 5241), regu-
latory T cells (Treg, N = 3531), B cells (N = 5720), plasma 
cells (N = 3714) and myeloid-derived suppressor cells 
(MDSC, N = 1009) from the CD45 + dataset. Notably, 
MDSCs were identified by high expression of CXCR1/2 
(Additional file  3: Fig. S3b). The UMAP plot of T cells 
indicated that Tex and Teff are pro-inflammatory, while 
Treg and Th are anti-inflammatory in CRC, based on 
their gene expression signatures (Fig.  1g), which fur-
ther validated the annotation results. Additionally, the 
analyses of myeloid cells, including TAMs and MDSCs, 
colored by inflammatory signatures, indicated that both 
TAMs and MDSCs are anti-inflammatory in CRC (Addi-
tional file  3: Fig. S3b). Notably, the proportion of Teff 
was relatively low and Th was high in stage III samples 
compared to those in stage I/II samples (Fig. 1f ). Taken 
together with previous reports in multiple cancers (25–
27), our data indicated that EMT is likely associated with 
the quantity of immunosuppressive T cells. In the follow-
ing analysis, we further characterized the tumor TME in 
the EMT process of primary CRC at the temporal and 
spatial levels.

EMT‑associated tumor programs at the end of pseudotime
Given the heterogeneous cellular compositions across 
different stages (Additional file  2: Fig. S2c, d), we asked 
whether and how EMT process varied with pseudotime 
among different malignant epithelial populations. Before 
addressing this, we utilized Monocle v.2 [27] to estimate 
the pseudotime of each cell, which used machine learning 
reverse graph embedding to order malignant cells with 
distinct cellular fates or biological processes. By reduc-
ing the dimensionality of the data, we identified 7 clusters 
and 5 states for stage I/II malignant cells and 7 clusters 
and 3 states for stage III malignant cells (Fig. 2a, b). Both 
clusters and states represented types of cell populations 
that focus on gene expression or pseudotime. Addition-
ally, the trajectory inference analysis further identified a 
clear developmental trajectory from population state 1 
to state 4 and state 1 to stage 5, as another trajectory for 
stage I/II malignant cells. Similarly, the developmental 
process from population state 1 to state 2 and state 1 to 
stage 3 was identified as another trajectory for stage III 
malignant cells (Fig. 2a, b). Our data revealed regulatory 

processes for cells and helped to identify cell’s differentia-
tion endpoints for their pseudotime.

We observed an enrichment of MYC targets, oxidative 
phosphorylation, and the reactive oxygen species (ROS) 
pathway in state 5 of stage I/II samples and state 3 of 
stage III samples, based on the analysis shown in Addi-
tional file 4: Fig. S4. The biological function of cell popu-
lations at the endpoint of the trajectory likely promoted 
EMT of malignant cells in the processes of tumor prolif-
eration, metabolism and migration, according to previ-
ous reports [32, 33]. Similarly, MDSCs enriched in the 
margin-invasive niches could also inhibit anti-tumor T 
cells through ROS production, manifesting the important 
role of the ROS pathway in the margin-invasive niche of 
CRC [34].

We hypothesized that some EMT invasion genes could 
be functionally increased with pseudotime in tumor cell 
populations. Therefore, we constructed a set of EMT 
invasion genes by collecting them from the differential 
gene set of PT-states, and filtered them based on signifi-
cant prognostic values validated in TCGA samples (over-
all survival time, log-rank P-value < 0.05). We further 
obtained the intersected genes significantly correlated 
with pseudotime for both stage I/II and stage III tumor 
programs (see Materials and Methods section). Finally, 
we retained three valuable genes: CXCL1, CXCL8, and 
SRF that exhibited the highest expression in state 5 and 
state 3 populations at the endpoint of the evolutionary 
trajectory (Additional file  5: Fig. S5a). Notably, CXCL1 
and CXCL8, which are the key functional genes in the 
hallmark pathway of EMT (Additional file  5: Fig. S5b), 
are essential for the activation and trafficking of inflam-
matory mediators as well as tumor progression and 
metastasis.

Along with the increased in pseudotime, the expres-
sion of CXCL1/CXCL8 is not linear in the two stages 
(Fig. 2c) due to the influence of different trajectories on 
gene expression tendency, while SRF showed no signifi-
cant change of pseudotime (Additional file  5: Fig. S5d). 
We then constructed an EMT-invasion score based on 
the three EMT-pseudotime genes for the two CRC stages 
using Seurat (Additional file  5: Fig. S5e). Notably, the 
scores in cluster 3 for both stages were the highest and 
located at the endpoint of the pseudotime evolutionary 
trajectory (Fig.  2d, Additional file  5: Fig. S5f, ANOVA 
test, p < 0.0001). Given that the change in EMT-invasion 
score does not show a clear tendency for all state popu-
lations (Fig.  2f–g, left, Additional file  4: Fig. S4e), we 
selected the individual state population for correlation 
analysis. It is reasonable to observe that the pseudotime 
in state 5 (Fig.  2f, right, R = 0.31, P < 2.2e-16) and state 
4 (Additional file  5: Fig. S5g, R = 0.46, P < 2.2e-16) for 
stage I/II and state 3 (Fig. 2g, right, R = 0.34, P < 2.2e-16) 
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Fig. 2 Malignant epithelial cells associated EMT-related tumor programs. a and b Pseudotime trajectory of CRC single cell transcriptomes, colored 
by cluster, pseudotime, and development state for stage I/II (a) and stage III (b) samples. c Kinetics plots showing relative expression of EMT invasion 
genes (CXCL1/CXCL8) across developmental pseudotime and development state for stage I/II and stage III samples. d and e Boxplots of gene 
expression analyses. The data show differential expression of the EMT invasion score across clusters (1–7) (d), and EMT invasion genes across EMTPs 
(e) for stages I/II and III samples. f Kinetics and scatterplots showing the positive correlation between the pseudotime and EMT invasion scores 
for stages I/II (f) and III (g) samples. Pearson correlation coefficients (R values) and P values are indicated. The square region indicates the cell plot 
for state 5/3 (right), and the independent correlation coefficients and P values for state 5 and state 3 are provided
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for stage III samples showed a significant correlation 
with the EMT-invasion score, which was located at the 
endpoint of trajectory. The results indicate that these 
pseudotime-endpoint cell populations in each stage had 
relatively strong invasion ability compared to other pop-
ulations (Fig.  2d). Notably, we have named these popu-
lations as pseudotime-endpoint EMT-invasion tumor 
programs (EMPTs), and the EMT invasion genes were 
highly expressed in the EMPTs of stage III compared to 
stage I/II samples (Fig. 2e, Wilcox test, p-value < 0.0001). 
In summary, the EMT-invasion genes can mediate a 
functional shift of EMT, which reflects the strength of 
tumor invasion and the direction of tumor development 
in CRC.

Spatiotemporal relationship of tumor programs 
with EMT‑status
In our further spatial analysis, we performed ST sequenc-
ing and clustering analysis on the two CRC samples. 
After quality control, we used 4,895 spots from the stage 
I sample, and 4,900 spots from the stage III sample for 
further analysis. Unsupervised clustering divided the 
two samples into distinct clusters (ST-clusters) (Fig.  3a, 
b, left) that were mapped to different regions on HE-
stained images (Fig.  3c, d, left). We further observed 
significant enrichment of the EMT-invasion scores in 
ST-cluster 1, located in the margin of the right for stage 
I (Fig. 3c, right). In stage III, ST-cluster 3, located in the 
margin of the top region, showed significant enrichment 
of the EMT-invasion score (Fig. 3c, right). Moreover, the 
margin of the right region, including ST-clusters 2 and 
4, showed significant enrichment of the EMT-invasion 
scores to some extent.

To fully characterize the ST data, we mapped the 
staged paired single-cell transcriptome data to the ST 
data and located the PT (pseudotime) states of tumor 
population to the spatial position of HE-stained images. 
In stage I, the first trajectory of PT-states 1, 3 to 4 were 
mainly distributed to the right side of tumor lesion, and 
PT-state 4 was distributed to the right margin (Fig.  3e, 
g). The second trajectory of PT-states 2 to 5 was mainly 
distributed to the left side of tumor lesion, and PT-state 

5 was distributed to the left margin (Fig. 3f, g). In addi-
tion, the results of PT-cluster, a supplement cluster for 
PT-state, indicated that PT-clusters 7 and 2 located at the 
trajectory endpoint were mainly distributed to the right 
but not the left margin for an unknown reason (Addi-
tional file 6: Fig. S6a, b). In stage III, the trajectory for PT-
clusters 1 to 3 was mainly distributed to the right side of 
tumor lesion, and PT-cluster 7 was mainly distributed to 
the upside of the tumor lesion (Fig. 3h, i). However, for 
unknown reasons, the results of PT-states were not clear 
enough to support this conclusion (Additional file 6: Fig. 
S6c, d).

Among these tumor clusters, we defined the PT-states 
4/5 in stage I/II samples and PT-clusters 3/7 in stage 
III samples as the pseudotime-endpoint EMT-invasion 
tumor programs, or EMTPs, with increased expression of 
EMT invasion genes and located at the endpoint of devel-
opment, which are most likely the forward for tumor 
invasion. These EMTPs are likely distributed to the grow-
ing margin of tumor lesion space. Also, in our additional 
ST datasets of CRC, we noted a significant enrichment in 
invasion scores along the tumor region’s periphery (Addi-
tional file  7: Fig. S7). The results highlighted the spati-
otemporal dynamic tumor cell landscape of CRC patients 
across tumor invasion process.

Quantification of immune cell diversity adjacent to the 
EMTPs
To better understand the EMTPs that may drive the inter-
actions with the immune system, we next sought to iden-
tify the patterns of spatially adjacent immune cell types 
across EMTPs. We mapped all immune cells derived 
from different biopsies of stages using single-cell expres-
sion data to focus on the overlapped spatial location of 
EMTPs. Across ST of stage I, four types of immune cells, 
including Treg, Tex, TAM and MDSC, were found to 
be distributed to the same location as PT-states 4 and 
5 (Fig.  4a–d). The locations of Treg and MDSC specifi-
cally overlapped with PT-state 4, while TAM overlapped 
with both endpoint PT-states 4 and 5 (Fig.  4e), includ-
ing both directions of evolution of stage I/II. Similarly, 
these immune cell types were also distributed to the 

(See figure on next page.)
Fig. 3 Spatiotemporal relationship of tumor programs with the EMT-status. a and b Distribution of the clustered spatial transcriptome data 
in hematoxylin–eosin (HE) stained images of the CRC samples of stages I (a) and III (b). Boxplots (right) shows the relative heterogeneity levels 
of EMT invasion scores across clusters. c and d HE-stained images (left) and distribution of EMT invasion scores across all spots (right) for stage I (c) 
and III (d) samples. f The cells of pseudotime-states 1, 3 and 4 likely belonging to the same evolutionary trajectory shown on spatial transcriptome 
data spots for stage I samples. g The cells of pseudotime-states 2 and 5 likely belonging to the same evolutionary trajectory shown on spatial 
transcriptome data spots for stage I samples. h The pseudotime trajectory colored by the development pseudotime-state for stage I samples. 
The dotted lines mean different evolutionary trajectories. g The cells of pseudotime-clusters 1, 3 and 7 likely belonging to the same evolutionary 
trajectory shown on spatial transcriptome data spots for stage III samples. h The pseudotime trajectory colored by pseudotime-clusters for stage III 
samples. The dotted line means the evolutionary trajectory, and the circle depicts the end of the evolutionary trajectory
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same location as PT-clusters 3 and 7 in the stage III biop-
sies, which included two cancerous nodes of metastases 
(Fig.  4f–i). The infiltration levels were also significantly 
elevated in the high level of EMT invasion scores for 

Treg, TAM and MDSC in bulk cancer samples of TCGA 
(Additional file  7: Fig. S7a, Wilcox test) obtained from 
the TIMER website. Other immune cells, such as Teff 
and plasma, were mainly enriched in stage I samples but 

Fig. 3 (See legend on previous page.)
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Fig. 4 Quantification of immune cell diversity adjacent to the high-EMT tumor programs. a, b, c and d Co-localization of Treg (a), Tex (b), TAM (c), 
and MDSC (d) cells in stage I samples using the spatial transcriptome data. e Co-localization of the cells of states 4 (up) and 5 (down) for stage I 
malignant tumor cells at the end of evolutionary trajectory. f, g, h and i Co-localization of Treg (f), Tex (g), TAM (h), and MDSC (i) cells in the stage 
III samples determined by the spatial transcriptome data. e Co-localization of the cells of clusters 4 (up) and 7 (down) for stage III malignant tumor 
cells at the end of evolutionary trajectory
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not those of stage III (Additional file 8: Fig. S8b, c). Con-
versely, Th and B cells were mainly enriched in stage III 
samples but not in stage I (Additional file 8: Fig. S8b, c). 
However, all the locations of these immune cells did not 
clearly overlap with the region for EMTPs. Furthermore, 
by examining the co-localization of immune cells in an 
additional set of three spatial sample datasets, we clearly 
observed significant enrichment of myeloid lineage cell 
types, including TAM and MDSC, in these tumor sam-
ples (Additional file 9: Fig. S9).

Collectively, our observation of distinct EMTPs spa-
tially overlapping with different immune cells may 
explain previously reported phenomena of intimate 
interaction between heterogeneously infiltrated malig-
nant cells and infiltrated immunosuppression cells in 
pre-metastasis [16, 35, 36]. In fact, the presence of these 
EMTP adjacent immunosuppressive cells strongly sug-
gest their causative role of EMTP invasion in the pre-
metastasis niche of CRC [37, 38].

Interaction of EMTPs with immune cells
Given the observation of TAM, MDSC, Treg, and Tex 
adjacent to the EMTPs in the CRC samples of for both 
stage I and III, we hypothesized that EMTPs participated 
in a complex crosstalk with tumor-associated immune 
cells. In this study, we extensively assessed the interac-
tion of EMTPs with adjacent immune cells via known 
receptor-ligand pairs using CellChat [29] (Fig.  5a, b). 
Then we utilized NicheNet [30] to infer the ligand-target 
interaction of EMT invasion genes for precise dissection. 
Based on the observation of the number and strength 
of interactions for EMTPs and PT-state 5 (Fig.  5a) in 
stage I/II and PT-cluster 3 in stage III (Additional file 10: 
Fig. S10a) with other immune cells, we found that both 
EMTPs in both cases were inferred to signal to TAM 
for the expression of macrophage migration inhibitory 
factor (MIF), which interacted with CD74, CD44, and 
CXCR4 (Fig. 5c). Among them, CD74 plays a pivotal role 
in maintaining tumor homeostasis by releasing a tumor 
escape signal to inhibit T cell activity [39]. CD44 is a 
non-kinase transmembrane glycoprotein that is highly 
expressed in metastasized tumors, while CD44 variants 
may play a role in the EMT and adaptive plasticity of can-
cer cells [40]. Meanwhile, CXCR4, the most well-studied 
chemokine receptor, has a role in regulating cell progres-
sion and metastasis [41]. Similarly, EMTPs for both PT-
state 4 in stage I/II and PT-cluster 7 in stage III were also 
enriched in the interaction of MIF-(CD74 + CD44) with 
TAM and other immune cells (Additional file  10: Fig. 
S10a, b and c).

We also observed evidence of interactions between 
EMTPs and EMT invasion genes. Consistent with the 
results of CellChat, the MIF gene was also inferred by 

ligand-target genes interaction as ligand genes upon 
NicheNet (Fig. 5d). MIF was previously found to recruit 
TAM to liver pre-metastatic niches and induce fibronec-
tin via TGF in pancreatic cancer [42]. Furthermore, 
the results for TAM showed that MIF only interacted 
with CXCL8 for PT-state 4 in stage I/II but not stage 
III (Fig.  5d, e). Consistent with TAM, other regulatory 
and suppressive immune cells, such as MDSC, Treg and 
Tex, showed no interaction with MIF-CXCL8 in stage 
III samples (Additional file 11: Fig. S11). A critical func-
tion of CXCL8 in tumors is the activation and trafficking 
of inflammatory mediators, promoting tumor growth 
and metastasis [43, 44]. From the results above, Teff was 
found to be more enriched in stage I spatial data than 
that in stage III samples (Additional file  8: Fig. S8a, b). 
Taken together, these results indicated that the presence 
of metastasis niches of stage III is different from stage I 
in CRC.

On the other hand, another type of EMTP-adjacent 
immune cells, Tex, likely used interferon signaling to 
cause cancer cells and immune cells to negate each 
other and establish a regulatory relationship that atten-
uates both adaptive and innate immune killing [45, 46]. 
IFNG, produced by Tex (Additional file  9: Fig. S9a, b), 
also exhibited increased interaction with CXCL8/1 in the 
EMTPs of both stages, which is critical for CRC tumor 
invasion and deserves further analysis.

Strikingly, the difference analysis of hallmark pathways 
indicates that the EMTPs are enriched in NF-κB and 
hypoxia signaling for stage III samples, and interferon 
α/γ immune response for stage I samples (Fig. 5f, Wilcox 
test, P-value < 0.0001). Combining the previous results, 
we conclude that the margin invasive niche of stage III 
samples is hypoxic, which is different from the inflamma-
tory niche of stage I in CRC samples. In summary, tumor 
cell-derived chemokines and cytokines, such as CXCL1/
CXCL8 and SRF, recruit MDSCs, TAMs, Treg and Tex, 
and interact with target genes, like MIF and IFNG. 
These recruited regulatory and suppressive immune cells 
enhance metastasis through promoting the formation of 
margin invasive niches.

Discussion
In the current study, we characterized the cellular and 
spatial tumor and immune landscape of tumor margin 
invasive niches in primary CRC using the state-of-the-
art high-throughput scRNA-seq and ST for stage I/II and 
stage III samples. We defined the malignant cell popula-
tion with pseudotime states and clusters as EMTPs with 
high EMT ability and at the endpoint of pseudotime tra-
jectory (Figs. 2a, b; 3). These EMTPs were enriched in the 
hallmark pathways of MYC-target, oxidative phospho-
rylation, and ROS pathways, which play central roles in 
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Fig. 5 Interactions of higher EMT tumor programs with immune cells. a and b The number and interaction strength of the receptor-ligand 
interaction among the state 5 (a) and cluster 3 (b) tumor programs and other immune cells in stage I/II and III samples. Line thickness 
is proportional to interaction numbers (left) and strength (right). c Probability of receptor-ligand interactions with immune cells for the EMTPs 
of state5 in stage I/II samples and EMTPs of cluster3 in stage III samples. d The heatmaps of the ligand-target gene interactions between the states 
5 (left)/4 (right) and TAM of the three target EMT invasion genes in stage I/II samples. e The heatmaps of the ligand-target gene interactions 
between the clusters 3 (left) and 7 (right) programs and TAM for the three EMT invasion genes in stage III samples. f Boxplot for the difference 
of hallmark pathways in different EMTPs of the two stages. The hallmark pathway scores were calculated by the AddModuleScore function 
and Wilcox test
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almost every aspect of oncogenic process, orchestrating 
cell proliferation, apoptosis, differentiation, metabolism 
and immune surveillance [47, 48]. Interestingly, both 
stages of EMTPs were found at the edge of tumor lesions 
and possessed higher expression levels of EMT-invasion 
genes than interior tumor cells. Consistently, this phe-
nomenon was also reported in other cancers, in which 
tumors generally grow from the cores to the invasion 
edges [49, 50]. In summary, EMTPs are important causal 
factors for the margin invasive niches.

By quantifying immune cells of scRNA-seq data and ST 
data at the locations of HE-stained images, we observed 
that suppressive TAM, MDSC, Treg and Tex were located 
in the regions spatially adjacent to EMTPs, suggesting 
that intratumor immunosuppressive cells were highly 
active in invasion edge (Fig.  4). Interestingly, the distri-
bution of immunosuppressive cells did not change sig-
nificantly between the two tumor stages, and they were 
reported to have a crucial role in metastatic CRC [51]. 
However, in stage I samples, a large fraction of Teff and a 
small fraction of Th and B cells were identified, while an 
opposite trend was observed in stage III samples. As for 
the underlying mechanism, one possibility is that such 
immune reprogramming in stage I samples was induced 
by an inflammatory margin invasive niche to help tumor 
growth and break through the basal layer, which was 
also reported in other studies [52, 53]. Therefore, the 
pro-inflammatory mediator IFNG secreted by stage I/II 
margin invasive niches induced chemokines CXCL1 and 
CXCL8 associated with TAM activation. Previous analy-
ses have reported that CXCL8 expression was negatively 
correlated with Erα expression and linked to increased 
invasiveness potential of breast cancer [54]. CXCL1 has 
also been shown to promote the progression of tumors 
and participate in the angiogenesis of colon cancer and 
melanoma [55, 56].

In general, MIF secreted by EMTPs in both stages had 
high interactions with ligand CXCL4/CD74/CD44 and 
target genes CXCL1/SRF, inducing the recruitment of 
immune cells, especially TAMs (Fig. 5c, d). However, in 
stage III samples, we observed that increased interac-
tions between MDSCs and CXCL1/2/3 chemokines, and 
EMTPs expressed higher levels of EMT-invasion genes 
than stage I samples, indicating a different and progres-
sive process. Pathway analysis verified the hypoxic mar-
gin invasive niche in stage III CRC. Previous studies also 
reported that the presence of MDSCs led to elevated 
ROS production and increased immunosuppression, 
augmenting metastasis [57]. Moreover, MDSC-mediated 
immunosuppression supported by TNF signaling in liver 
pre-metastatic niche formation can promote liver metas-
tasis [58]. The above results indicate that both pre-meta-
static niche and invasive niche of early-stage tumors are 

characterized by the formation of an immune-suppres-
sive TME, facilitating the ingress of tumor cells.

The immune cells residing at tumor’s edges play mul-
tifaceted roles. They can serve as either accomplices or 
adversaries of the tumors [59, 60]. This prompts us to 
consider the possibility of intervening with pharmaco-
logical agents at the expanding tumor edges, aiming to 
transform these barrier cells into supportive entities. 
Such an intervention may hold the potential to impede 
tumor dissemination and hinder their growth. Indeed, 
the interaction between the EMT-invasion CXCL8 with 
its receptors CXCR1 represents a promising therapeutic 
target, as demonstrated by multiple ongoing clinical trials 
[61–65].

Our studies bear several limitations and unresolved 
issues. Firstly, we only examined the outcomes of a lim-
ited number of CRC samples, with a limited number 
of spatial samples as well. This raised the question of 
whether a more extensive dataset would reveal addi-
tional insights. Secondly, if the microenvironment at 
tumor expansion periphery exhibits similarity to pre-
metastatic microenvironment, can we extend this phe-
nomenon to other cancer types? This intriguing query 
deserves further investigation. Furthermore, it is impera-
tive to underscore that the results of our analysis need to 
be validated by wet-lab molecular biology experiments 
which is a critical gap in our study. To complement this 
gap, we reviewed a number of previous studies that used 
molecular experimental approaches to explore the inhibi-
tory effects of immune cells within TME [66–70]. These 
studies focused on the factors, CXCL1, CXCL8 and SRF, 
which exhibited high immune suppression potential and 
promote tumor cell migration and invasion. These effects 
have been observed in various cancer types, includ-
ing glioblastoma [70], breast cancer [71, 72], and gastric 
cancer [73, 74] to impact the overall survivals of cancer 
patients. The results in these previous reports are con-
sistent with the crucial roles of the invasion genes in the 
progression of CRC progression identified in this study.

In conclusion, our current study reveals a previously 
unappreciated spatiotemporal immune landscape of 
EMTPs in primary CRC, and provides the spatiotempo-
ral characteristics of the pre-invasive niche for different 
stages of primary CRC.
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