Lynn DD, Umari T, Dunnick CA, Dellavalle RP. The epidemiology of acne vulgaris in late adolescence. Adolesc Health Med Ther. 2016;7:13–25.
Article
PubMed
PubMed Central
Google Scholar
Moradi Tuchayi S, Makrantonaki E, Ganceviciene R, Dessinioti C, Feldman SR, Zouboulis CC. Acne vulgaris. Nat Rev Dis Primers. 2015;1:15029.
Article
PubMed
Google Scholar
Fischer H, Fumicz J, Rossiter H, Napirei M, Buchberger M, Tschachler E, et al. Holocrine secretion of sebum is a unique DNase2-dependent mode of programmed cell death. J Invest Dermatol. 2017;137:587–94.
Article
CAS
PubMed
Google Scholar
Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol. 2005;141:333–8.
Article
CAS
PubMed
Google Scholar
Vora S, Ovhal A, Jerajani H, Nair N, Chakrabortty A. Correlation of facial sebum to serum insulin-like growth factor-1 in patients with acne. Br J Dermatol. 2008;159:990–1.
Article
CAS
PubMed
Google Scholar
Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol. 2009;18:833–41.
Article
CAS
PubMed
Google Scholar
Seleit I, Bakry OA, Abdou AG, Hashim A. Body mass index, selected dietary factors, and acne severity: are they related to in situ expression of insulin- like growth factor-1? Anal Quant Cytopathol Histpathol. 2014;36:267–78.
PubMed
Google Scholar
Melnik BC, Zouboulis CC. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. Exp Dermatol. 2013;22:311–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirdamadi Y, Thielitz A, Wiede A, Goihl A, Papakonstantinou E, Hartig R, et al. Insulin and insulin-like growth factor-1 can modulate the phosphoinositide- 3-kinase/Akt/FoxO1 pathway in SZ95 sebocytes in vitro. Mol Cell Endocrinol. 2015;415:32–44.
Article
CAS
PubMed
Google Scholar
Agamia NF, Abdallah DM, Sorour O, Mourad B, Younan DN. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet. Br J Dermatol. 2016;174:1299–307.
Article
CAS
PubMed
Google Scholar
Tsitsipatis D, Klotz LO, Steinbrenner H. Multifaceted functions of the forkhead box transcription factors FoxO1 and FoxO3 in skin. Biochim Biophys Acta. 2017;1861:1057–64.
Article
CAS
PubMed
Google Scholar
Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27:2320–36.
Article
CAS
PubMed
Google Scholar
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168:960–76.
Article
CAS
PubMed
Google Scholar
Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 2017;45:72–82.
Article
CAS
PubMed
Google Scholar
Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci. 2013;126:1713–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnik B. Dietary intervention in acne. Attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4:20–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R, Balato A, et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients’ skin. Exp Dermatol. 2016;25:153–5.
Article
PubMed
Google Scholar
Smith TM, Cong Z, Gilliland KL, Clawson GA, Thiboutot DM. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J Invest Dermatol. 2006;126:1226–32.
Article
CAS
PubMed
Google Scholar
Smith TM, Gilliland K, Clawson GA, Thiboutot D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008;128:1286–93.
Article
CAS
PubMed
Google Scholar
Ottaviani M, Camera E, Picardo M. Lipid mediators in acne. Mediators Inflamm. 2010;2010:858176.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zouboulis CC, Jourdan E, Picardo M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J Eur Acad Dermatol Venereol. 2014;28:527–32.
Article
CAS
PubMed
Google Scholar
Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC. Acne vulgaris: an inflammasomopathy of the sebaceous follicle induced by deviated FoxO1/mTORC1 signalling. Br J Dermatol. 2016;174:1186–8.
Article
CAS
PubMed
Google Scholar
Roca H, Varsos ZS, Pienta KJ. CCL2 is a negative regulator of AMP- activated protein kinase to sustain mTOR complex-1 activation, survivin expression, and cell survival in human prostate cancer PC3 cells. Neoplasia. 2009;11:1309–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song K, Shankar E, Yang J, Bane KL, Wahdan-Alaswad R, Danielpour D. Critical role of a survivin/TGF-β/mTORC1 axis in IGF-I-mediated growth of prostate epithelial cells. PLoS ONE. 2013;8:e61896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Assaf HA, Abdel-Maged WM, Elsadek BE, Hassan MH, Adly MA, Ali SA. Survivin as a novel biomarker in the pathogenesis of acne vulgaris and its correlation to insulin-like growth factor-I. Dis Markers. 2016;2016:7040312.
Article
PubMed
PubMed Central
Google Scholar
Melnik BC. Diet in acne: further evidence for the role of nutrient signalling in acne pathogenesis. Acta Derm Venereol. 2012;92:228–31.
Article
CAS
PubMed
Google Scholar
Melnik BC, John SM, Plewig G. Acne: risk indicator for increased body mass index and insulin resistance. Acta Derm Venereol. 2013;93:644–9.
Article
PubMed
CAS
Google Scholar
Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.
Article
CAS
PubMed
Google Scholar
Botchkarev VA, Flores ER. p53/p63/p73 in the epidermis in health and disease. Cold Spring Harb Perspect Med. 2014;4:a015248.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kligman AM. How to use topical tretinoin in treating acne. Cutis. 1995;56:83–4.
CAS
PubMed
Google Scholar
Yeh L, Bonati LM, Silverberg NB. Topical retinoids for acne. Semin Cutan Med Surg. 2016;35:50–6.
Article
PubMed
Google Scholar
Zheng P, Gendimenico GJ, Mezick JA, Kligman AM. Topical all-trans retinoic acid rapidly corrects the follicular abnormalities of the rhino mouse. An ultrastructural study. Acta Derm Venereol. 1993;73:97–101.
CAS
PubMed
Google Scholar
Um SJ, Kim EJ, Hwang ES, Kim SJ, Namkoong SE, Park JS. Antiproliferative effects of retinoic acid/interferon in cervical carcinoma cell lines: cooperative growth suppression of IRF-1 and p53. Int J Cancer. 2000;85:416–23.
Article
CAS
PubMed
Google Scholar
Zheng A, Mäntymaa P, Säily M, Savolainen E, Vähäkangas K, Koistinen P. p53 pathway in apoptosis induced by all-trans-retinoic acid in acute myeloblastic leukaemia cells. Acta Haematol. 2000;103:135–43.
Article
CAS
PubMed
Google Scholar
Curtin JC, Dragnev KH, Sekula D, Christie AJ, Dmitrovsky E, Spinella MJ. Retinoic acid activates p53 in human embryonal carcinoma through retinoid receptor-dependent stimulation of p53 transactivation function. Oncogene. 2001;20:2559–69.
Article
CAS
PubMed
Google Scholar
Lu J, Zhang F, Yuan Y, Ding C, Zhang L, Li Q. All-trans retinoic acid upregulates the expression of p53 via axin and inhibits the proliferation of glioma cells. Oncol Rep. 2013;29:2269–74.
Article
CAS
PubMed
Google Scholar
Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012;10:e1001268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DD, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol. 2009;220:427–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mrass P, Rendl M, Mildner M, Gruber F, Lengauer B, Ballaun C, et al. Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: a possible explanation for tumor preventive action of retinoids. Cancer Res. 2004;64:6542–8.
Article
CAS
PubMed
Google Scholar
Kim J, Nakasaki M, Todorova D, Lake B, Yuan CY, Jamora C, et al. p53 induces skin aging by depleting Blimp1+ sebaceous gland cells. Cell Death Dis. 2014;5:e1141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005;102:8204–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134:451–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooks T, Harris CC, Oren M. Caught in the cross fire: p53 in inflammation. Carcinogenesis. 2014;35:1680–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heyne K, Winter C, Gerten F, Schmidt C, Roemer K. A novel mechanism of crosstalk between the p53 and NFκB pathways: MDM2 binds and inhibits p65RelA. Cell Cycle. 2013;12:2479–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta K. Retinoic acid—a player that rules the game of life and death in neutrophils. Indian J Exp Biol. 2002;40:874–81.
CAS
PubMed
Google Scholar
Channabasappa S, Stewart S, Caldwell S, Carr A, Singh B. Retinoic acid induces apoptosis in activated canine neutrophils. Vet Immunol Immunopathol. 2014;157:175–81.
Article
CAS
PubMed
Google Scholar
Duquette SC, Fischer CD, Feener TD, Muench GP, Morck DW, Barreda DR, et al. Anti-inflammatory effects of retinoids and carotenoid derivatives on caspase-3-dependent apoptosis and efferocytosis of bovine neutrophils. Am J Vet Res. 2014;75:1064–75.
Article
CAS
PubMed
Google Scholar
Nawata H, Maeda Y, Sumimoto Y, Miyatake J, Kanamaru A. A mechanism of apoptosis induced by all-trans retinoic acid on adult T-cell leukemia cells: a possible involvement of the Tax/NF-kappaB signaling pathway. Leuk Res. 2001;25:323–31.
Article
CAS
PubMed
Google Scholar
Fulton JE Jr, Farzad-Bakshandeh A, Bradley S. Studies on the mechanism of action to topical benzoyl peroxide and vitamin A acid in acne vulgaris. J Cutan Pathol. 1974;1:191–200.
Article
PubMed
Google Scholar
Oh CW, Myung KB. An ultrastructural study of the retention hyperkeratosis of experimentally induced comedones in rabbits: the effects of three comedolytics. J Dermatol. 1996;23:169–80.
Article
CAS
PubMed
Google Scholar
Waller JM, Dreher F, Behnam S, Ford C, Lee C, Tiet T, et al. ‘Keratolytic’ properties of benzoyl peroxide and retinoic acid resemble salicylic acid in man. Skin Pharmacol Physiol. 2006;19:283–9.
Article
CAS
PubMed
Google Scholar
Gloor M, Klump H, Wirth H. Cytokinetic studies on the sebo-suppressive effect of drugs using the example of benzoyl peroxide. Arch Dermatol Res. 1980;267:97–9.
Article
CAS
PubMed
Google Scholar
Fanta D. Klinische und experimentelle Untersuchungen über die Wirkung von Benzoylperoxid in der Behandlung der Akne. Hautarzt. 1978;29:481–6.
CAS
PubMed
Google Scholar
Wirth H, Spürgel D, Gloor M. Untersuchungen zur Wirkung von Benzoylperoxid auf die Talgdrüsensekretion. Dermatol Monatsschr. 1983;169:289–93.
CAS
PubMed
Google Scholar
Puschmann M. Klinisch-experimentelle Untersuchungen zum Wirkungsmechanismus von Benzoylperoxid. Hautarzt. 1982;33:257–65.
CAS
PubMed
Google Scholar
Mezick JA, Thorne EG, Bhatia MC, Shea LM, Capetola JR. The rabbit ear microcomedo prevention assay. A new model to evaluate antiacne agents. In: Maibach HI, Lowe NJ, editors. Models in Dermatology, vol 3. Karger: Basel, München, Paris, London, New York, New Delhi, Singapore, Tokyo, Sydney; 1987. p. 68–73.
Valacchi G, Rimbach G, Saliou C, Weber SU, Packer L. Effect of benzoyl peroxide on antioxidant status, NF-kappaB activity and interleukin-1alpha gene expression in human keratinocytes. Toxicology. 2001;165:225–34.
Article
CAS
PubMed
Google Scholar
Kennedy CH, Winston GW, Church DF, Pryor WA. Benzoyl peroxide interaction with mitochondria: inhibition of respiration and induction of rapid, large-amplitude swelling. Arch Biochem Biophys. 1989;271:456–70.
Article
CAS
PubMed
Google Scholar
Milani M, Bigardi A, Zavattarelli M. Efficacy and safety of stabilized hydrogen peroxide cream (Crystacide®) in mild-to-moderate acne vulgaris: a randomized, controlled trial versus benzoyl peroxide gel. Curr Med Res Opin. 2003;19:135–8.
Article
CAS
PubMed
Google Scholar
Muizzuddin N, Schnittger S, Maher W, Maes DH, Mammone T. Enzymatically generated hydrogen peroxide reduces the number of acne lesions in acne vulgaris. J Cosmet Sci. 2013;64:1–8.
CAS
PubMed
Google Scholar
Veraldi S, Micali G, Berardesca E, Dall’Oglio F, Sinagra JL, Guanziroli E. Results of a multicenter, randomized, controlled trial of a hydrogen peroxide-based kit versus a benzoyl peroxide-based kit in mild-to-moderate acne. J Clin Aesthet Dermatol. 2016;9:50–4.
PubMed
PubMed Central
Google Scholar
Pronsato L, Milanesi L. Effect of testosterone on the regulation of p53 and p66Shc during oxidative stress damage in C2C12 cells. Steroids. 2016;106:41–54.
Article
CAS
PubMed
Google Scholar
Park JH, Zhuang J, Li J, Hwang PM. p53 as guardian of the mitochondrial genome. FEBS Lett. 2016;590:924–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 2004;304:596–600.
Article
CAS
PubMed
Google Scholar
Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, et al. Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science. 2010;327:1223–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal. 2011;15:1679–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fabbrocini G, Izzo R, Faggiano A, Del Prete M, Donnarumma M, Marasca C, et al. Low glycaemic diet and metformin therapy: a new approach in male subjects with acne resistant to common treatments. Clin Exp Dermatol. 2016;41:38–42.
Article
CAS
PubMed
Google Scholar
Melnik BC, Schmitz G. Metformin: an inhibitor of mTORC1 signaling. J Endocrinol Diabetes Obes. 2014;2:1029.
Google Scholar
Shafiee MN, Malik DA, Yunos RI, Atiomo W, Omar MH, Ghani NA, et al. The effect of metformin on endometrial tumor-regulatory genes and systemic metabolic parameters in polycystic ovarian syndrome—a proof-of-concept study. Gynecol Endocrinol. 2015;31:286–90.
Article
CAS
PubMed
Google Scholar
Boen M, Brownell J, Patel P, Tsoukas MM. The role of photodynamic therapy in acne: an evidence-based review. Am J Clin Dermatol. 2017;18:311–21.
Article
PubMed
Google Scholar
Fonda-Pascual P, Moreno-Arrones OM, Alegre-Sanchez A, Saceda-Corralo D, Buendia-Castaño D, Pindado-Ortega C, et al. In situ production of ROS in the skin by photodynamic therapy as a powerful tool in clinical dermatology. Methods. 2016;109:190–202.
Article
CAS
PubMed
Google Scholar
Zuliani T, Khammari A, Chaussy H, Knol AC, Dréno B. Ex vivo demonstration of a synergistic effect of Adapalene and benzoyl peroxide on inflammatory acne lesions. Exp Dermatol. 2011;20:850–3.
Article
CAS
PubMed
Google Scholar
Shemer A, Weiss G, Amichai B, Kaplan B, Trau H. Azelaic acid (20%) cream in the treatment of acne vulgaris. J Eur Acad Dermatol Venereol. 2002;16:178–9.
Article
CAS
PubMed
Google Scholar
Schulte BC, Wu W, Rosen T. Azelaic acid: evidence-based update on mechanism of action and clinical application. J Drugs Dermatol. 2015;14:964–8.
CAS
PubMed
Google Scholar
Mayer-da Silva A, Gollnick H, Imcke E, Orfanos CE. Azelaic acid vs. placebo: effects on normal human keratinocytes and melanocytes. Electron microscopic evaluation after long-term application in vivo. Acta Derm Venereol. 1987;67:116–22.
CAS
PubMed
Google Scholar
Detmar M, Mayer-da-Silva A, Stadler R, Orfanos CE. Effects of azelaic acid on proliferation and ultrastructure of mouse keratinocytes in vitro. J Invest Dermatol. 1989;93:70–4.
Article
CAS
PubMed
Google Scholar
Mayer-da-Silva A, Gollnick H, Detmar M, Gassmüller J, Parry A, Müller R, et al. Effects of azelaic acid on sebaceous gland, sebum excretion rate and keratinization pattern in human skin. An in vivo and in vitro study. Acta Derm Venereol Suppl (Stockh). 1989;143:20–30.
CAS
Google Scholar
Passi S, Picardo M, Nazzaro-Porro M, Breathnach A, Confaloni AM, Serlupi- Crescenzi G. Antimitochondrial effect of saturated medium chain length (C8–C13) dicarboxylic acids. Biochem Pharmacol. 1984;33:103–8.
Article
CAS
PubMed
Google Scholar
Chen R, Yang L, McIntyre TM. Cytotoxic phospholipid oxidation products. Cell death from mitochondrial damage and the intrinsic caspase cascade. J Biol Chem. 2007;282:24842–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holley AK, St Clair DK. Watching the watcher: regulation of p53 by mitochondria. Future Oncol. 2009;5:117–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan Y, Liu D, Wei Y, Su D, Lu C, Hu Y, et al. Azelaic acid exerts antileukemic activity in acute myeloid leukemia. Front Pharmacol. 2017;8:359.
Article
PubMed
PubMed Central
Google Scholar
Del Rosso JQ. Topical and oral antibiotics for acne vulgaris. Semin Cutan Med Surg. 2016;35:57–61.
Article
PubMed
Google Scholar
Perret LJ, Tait CP. Non-antibiotic properties of tetracyclines and their clinical application in dermatology. Australas J Dermatol. 2014;55:111–8.
Article
PubMed
Google Scholar
Moore A, Ling M, Bucko A, Manna V, Rueda MJ. Efficacy and safety of subantimicrobial dose, modified-release doxycycline 40 mg versus doxycycline 100 mg versus placebo for the treatment of inflammatory lesions in moderate and severe acne: a randomized, double-blinded, controlled study. J Drugs Dermatol. 2015;14:581–6.
CAS
PubMed
Google Scholar
Mollan SP, Ali F, Hassan-Smith G, Botfield H, Friedman DI, Alexandra J, et al. Evolving evidence in adult idiopathic intracranial hypertension: pathophysiology and management. J Neurol Neurosurg Psychiatry. 2016;87:982–92.
Article
PubMed
PubMed Central
Google Scholar
Regen F, Le Bret N, Hildebrand M, Herzog I, Heuser I, Hellmann-Regen J. Inhibition of brain retinoic acid catabolism: a mechanism for minocycline’s pleiotropic actions? World J Biol Psychiatry. 2016;17:634–40.
CAS
PubMed
Google Scholar
Hellmann-Regen J, Herzog I, Fischer N, Heuser I, Regen F. Do tetracyclines and erythromycin exert anti-acne effects by inhibition of P450-mediated degradation of retinoic acid? Exp Dermatol. 2014;23:290–3.
Article
CAS
PubMed
Google Scholar
Regen F, Hildebrand M, Le Bret N, Herzog I, Heuser I, Hellmann-Regen J. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action? Exp Dermatol. 2015;24:473–6.
Article
CAS
PubMed
Google Scholar
Zhu Z, Hotchkiss SA, Boobis AR, Edwards RJ. Expression of P450 enzymes in rat whole skin and cultured epidermal keratinocytes. Biochem Biophys Res Commun. 2002;297:65–70.
Article
CAS
PubMed
Google Scholar
Burt HJ, Galetin A, Houston JB. IC50-based approaches as an alternative method for assessment of time-dependent inhibition of CYP3A4. Xenobiotica. 2010;40:331–43.
Article
CAS
PubMed
Google Scholar
Ross AC, Zolfaghari R. Cytochrome P450 s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr. 2011;31:65–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC. The P450 system and mTORC1 signalling in acne. Exp Dermatol. 2014;23:318–9.
Article
CAS
PubMed
Google Scholar
Ataie-Kachoie P, Pourgholami MH, Bahrami-B F, Badar S, Morris DL. Minocycline attenuates hypoxia-inducible factor-1α expression correlated with modulation of p53 and AKT/mTOR/p70S6K/4E-BP1 pathway in ovarian cancer: in vitro and in vivo studies. Am J Cancer Res. 2015;5:575–88.
CAS
PubMed
PubMed Central
Google Scholar
Lee MD, Ayanoglu E, Gong L. Drug-induced changes in P450 enzyme expression at the gene expression level: a new dimension to the analysis of drug-drug interactions. Xenobiotica. 2006;36:1013–80.
Article
CAS
PubMed
Google Scholar
Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Phys. 2007;76:391–6.
Google Scholar
Matoulková P, Pávek P, Malý J, Vlček J. Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol. 2014;10:425–35.
Article
PubMed
CAS
Google Scholar
Momin SB, Peterson A, Del Rosso JQ. A status report on drug-associated acne and acneiform eruptions. J Drugs Dermatol. 2010;9:627–36.
PubMed
Google Scholar
Du-Thanh A, Kluger N, Bensalleh H, Guillot B. Drug-induced acneiform eruption. Am J Clin Dermatol. 2011;12:233–45.
Article
PubMed
Google Scholar
Kazandjieva J, Tsankov N. Drug-induced acne. Clin Dermatol. 2017;35:156–62.
Article
PubMed
Google Scholar
Peck GL, Olsen TG, Yoder FW, Strauss JS, Downing DT, Pandya M, et al. Prolonged remissions of cystic and conglobate acne with 13-cis-retinoic acid. N Engl J Med. 1979;300:329–33.
Article
CAS
PubMed
Google Scholar
Strauss JS, Stranieri AM. Changes in long-term sebum production from isotretinoin therapy. J Am Acad Dermatol. 1982;6(4 Pt 2 Suppl):751–6.
Article
CAS
PubMed
Google Scholar
Melnik B, Kinner T, Plewig G. Influence of oral isotretinoin treatment on the composition of comedonal lipids. Implications for comedogenesis in acne vulgaris. Arch Dermatol Res. 1988;280:97–102.
Article
CAS
PubMed
Google Scholar
Plewig G, Wagner A. Anti-inflammatory effects of 13-cis-retinoic acid. An in vivo study. Arch Dermatol Res. 1981;270:89–94.
Article
CAS
PubMed
Google Scholar
Strauss JS, Stewart ME, Downing DT. The effect of 13-cis-retinoic acid on sebaceous glands. Arch Dermatol. 1987;123:1538a–41a.
Article
CAS
PubMed
Google Scholar
Kelhälä HL, Fyhrquist N, Palatsi R, Lehtimäki S, Väyrynen JP, Kubin ME, et al. Isotretinoin treatment reduces acne lesions but not directly lesional acne inflammation. Exp Dermatol. 2016;25:477–8.
Article
PubMed
Google Scholar
Landthaler M, Kummermehr J, Wagner A, Plewig G. Inhibitory effects of 13-cis-retinoic acid on human sebaceous glands. Arch Dermatol Res. 1980;269:297–309.
Article
CAS
PubMed
Google Scholar
Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinology. 2009;1:177–87.
Article
CAS
Google Scholar
Tsukada M, Schröder M, Roos TC, Chandraratna RA, Reichert U, Merk HF, et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoid acid receptors. J Invest Dermatol. 2000;115:321–7.
Article
CAS
PubMed
Google Scholar
Kuribayashi K, Krigsfeld G, Wang W, Xu J, Mayes PA, Dicker DT, et al. TNFSF10 (TRAIL), a p53 target gene that mediates p53-dependent cell death. Cancer Biol Ther. 2008;7:2034–8.
Article
CAS
PubMed
Google Scholar
Dhandapani L, Yue P, Ramalingam SS, Khuri FR, Sun SY. Retinoic acid enhances TRAIL-induced apoptosis in cancer cells by upregulating TRAIL receptor 1 expression. Cancer Res. 2011;71:5245–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MJ, Ahn K, Park SH, Kang HJ, Jang BG, Oh SJ, et al. SIRT1 regulates tyrosine hydroxylase expression and differentiation of neuroblastoma cells via FOXO3a. FEBS Lett. 2009;583:1183–8.
Article
CAS
PubMed
Google Scholar
Sakoe Y, Sakoe K, Kirito K, Ozawa K, Komatsu N. FOXO3A as a key molecule for all-trans retinoic acid-induced granulocytic differentiation and apoptosis in acute promyelocytic leukemia. Blood. 2010;115:3787–95.
Article
CAS
PubMed
Google Scholar
Kurinna S, Stratton SA, Tsai WW, Akdemir KC, Gu W, Singh P, et al. Direct activation of forkhead box O3 by tumor suppressors p53 and p73 is disrupted during liver regeneration in mice. Hepatology. 2010;52:1023–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renault VM, Thekkat PU, Hoang KL, White JL, Brady CA, Kenzelmann Broz D, et al. The pro-longevity gene FoxO3 is a direct target of the p53 tumor suppressor. Oncogene. 2011;30:3207–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nayak G, Cooper GM. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling. Cell Death Dis. 2012;3:e400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Z. p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol. 2010;2:a001057.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 2011;1813:1978–86.
Article
CAS
PubMed
Google Scholar
Nelson AM, Zhao W, Gilliland KL, Zaenglein AL, Liu W, Thiboutot DM. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid- induced apoptosis of human sebaceous gland cells. J Clin Invest. 2008;118:1468–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson AM, Cong Z, Gilliland KL, Thiboutot DM. TRAIL contributes to the apoptotic effect of 13-cis retinoic acid in human sebaceous gland cells. Br J Dermatol. 2011;165:526–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu NL, Lee TA, Tsai TL, Lin WW. TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J Invest Dermatol. 2011;131:874–83.
Article
CAS
PubMed
Google Scholar
Tsujita-Kyutoku M, Kiuchi K, Danbara N, Yuri T, Senzaki H, Tsubura A. p63 expression in normal human epidermis and epidermal appendages and their tumors. J Cutan Pathol. 2003;30:11–7.
Article
PubMed
Google Scholar
Rudman SM, Philpott MP, Thomas GA, Kealey T. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen? J Invest Dermatol. 1997;109:770–7.
Article
CAS
PubMed
Google Scholar
Ben-Amitai D, Laron Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol. 2011;25:950–4.
Article
CAS
PubMed
Google Scholar
Melnik BC, John SM, Schmitz G. Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond). 2011;8:41.
Article
CAS
Google Scholar
Plewig G. Acne vulgaris: proliferative cells in sebaceous glands. Br J Dermatol. 1974;90:623–30.
Article
CAS
PubMed
Google Scholar
Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Dermatol Forsch. 1971;242:12–29.
Article
CAS
PubMed
Google Scholar
Werner H, Karnieli E, Rauscher FJ, LeRoith D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci USA. 1996;93:8318–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC. Milk—A nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16:17048–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werner H, Sarfstein R, LeRoith D, Bruchim I. Insulin-like growth factor 1 signaling axis meets p53 genome protection pathways. Front Oncol. 2016;6:159.
Article
PubMed
PubMed Central
Google Scholar
Hilmi C, Larribere L, Deckert M, Rocchi S, Giuliano S, Bille K, et al. Involvement of FKHRL1 in melanoma cell survival and death. Pigment Cell Melanoma Res. 2008;21:139–46.
Article
CAS
PubMed
Google Scholar
Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37:8471–86.
Article
CAS
PubMed
Google Scholar
Hay N. Interplay between FOXO, TOR, and Akt. Biochim Biophys Acta. 2011;1813:1965–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson AM, Gilliland KL, Cong Z, Thiboutot DM. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126:2178–89.
Article
CAS
PubMed
Google Scholar
Boulaire J, Fotedar A, Fotedar R. The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris). 2000;48:190–202.
CAS
Google Scholar
Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.
Article
CAS
PubMed
Google Scholar
el-Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, et al. Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res. 1995;55:2910–9.
CAS
PubMed
Google Scholar
Agarwal S, Bell CM, Taylor SM, Moran RG. p53 Deletion or hotspot mutations enhance mTORC1 activity by altering lysosomal dynamics of TSC2 and Rheb. Mol Cancer Res. 2016;14:66–77.
Article
CAS
PubMed
Google Scholar
Downie MM, Sanders DA, Maier LM, Stock DM, Kealey T. Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous gland organ cultures in vitro. Br J Dermatol. 2004;151:766–75.
Article
CAS
PubMed
Google Scholar
Trivedi NR, Cong Z, Nelson AM, Albert AJ, Rosamilia LL, Sivarajah S, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002–9.
Article
CAS
PubMed
Google Scholar
Dozsa A, Dezso B, Toth BI, Bacsi A, Poliska S, Camera E, et al. PPARγ- mediated and arachidonic acid-dependent signaling is involved in differentiation and lipid production of human sebocytes. J Invest Dermatol. 2014;134:910–20.
Article
CAS
PubMed
Google Scholar
Schedlich LJ, Graham LD, O’Han MK, Muthukaruppan A, Yan X, Firth SM, et al. Molecular basis of the interaction between IGFBP-3 and retinoid X receptor: role in modulation of RAR-signaling. Arch Biochem Biophys. 2007;465:359–69.
Article
CAS
PubMed
Google Scholar
Baxter RC. Nuclear actions of insulin-like growth factor binding protein-3. Gene. 2015;569:7–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Lee HY, Weinzimer SA, Powell DR, Clifford JL, Kurie JM, et al. Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-alpha regulate transcriptional signaling and apoptosis. J Biol Chem. 2000;275:33607–13.
Article
CAS
PubMed
Google Scholar
Lee KW, Ma L, Yan X, Liu B, Zhang XK, Cohen P. Rapid apoptosis induction by IGFBP-3 involves an insulin-like growth factor-independent nucleomitochondrial translocation of RXRalpha/Nur77. J Biol Chem. 2005;280:16942–8.
Article
CAS
PubMed
Google Scholar
Chan SS, Schedlich LJ, Twigg SM, Baxter RC. Inhibition of adipocyte differentiation by insulin-like growth factor-binding protein-3. Am J Physiol Endocrinol Metab. 2009;296:E654–63.
Article
CAS
PubMed
Google Scholar
Buckbinder L, Talbott R, Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR, et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature. 1995;377:646–9.
Article
CAS
PubMed
Google Scholar
Melnik BC. Apoptosis may explain the pharmacological mode of action and adverse effects of isotretinoin, including teratogenicity. Acta Derm Venereol. 2017;97:173–81.
Article
PubMed
Google Scholar
Van Nostrand JL, Brady CA, Jung H, Fuentes DR, Kozak MM, Johnson TM, et al. Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature. 2014;514:228–32.
PubMed
PubMed Central
Google Scholar
Melnik BC. Over-expression of p53 explains isotretinoin’s teratogenicity. Exp Dermatol. 2017. doi: 10.1111/exd.13420. [Epub ahead of print].
Franks S, Layton A, Glasier A. Cyproterone acetate/ethinyl estradiol for acne and hirsutism: time to revise prescribing policy. Hum Reprod. 2008;23:231–2.
Article
CAS
PubMed
Google Scholar
Hassoun LA, Chahal DS, Sivamani RK, Larsen LN. The use of hormonal agents in the treatment of acne. Semin Cutan Med Surg. 2016;35:68–73.
Article
PubMed
Google Scholar
Inoue T, Miki Y, Kakuo S, Hachiya A, Kitahara T, Aiba S, et al. Expression of steroidogenic enzymes in human sebaceous glands. J Endocrinol. 2014;222:301–12.
Article
CAS
PubMed
Google Scholar
Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H, et al. Insulin- like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem. 2007;282:7329–38.
Article
CAS
PubMed
Google Scholar
Pappas K, Xu J, Zairis S, Resnick-Silverman L, Abate F, Steinbach N, et al. p53 maintains baseline expression of multiple tumor suppressor genes. Mol Cancer Res. 2017;15:1051–62.
Article
CAS
PubMed
Google Scholar
Azmahani A, Nakamura Y, McNamara KM, Sasano H. The role of androgen under normal and pathological conditions in sebaceous glands: the possibility of target therapy. Curr Mol Pharmacol. 2016;9:311–9.
Article
CAS
PubMed
Google Scholar
Barrault C, Garnier J, Pedretti N, Cordier-Dirikoc S, Ratineau E, Deguercy A, et al. Androgens induce sebaceous differentiation in sebocyte cells expressing a stable functional androgen receptor. J Steroid Biochem Mol Biol. 2015;152:34–44.
Article
CAS
PubMed
Google Scholar
Shenk JL, Fisher CJ, Chen SY, Zhou XF, Tillman K, Shemshedini L. p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction. J Biol Chem. 2001;276:38472–9.
Article
CAS
PubMed
Google Scholar
Alimirah F, Panchanathan R, Chen J, Zhang X, Ho SM, Choubey D. Expression of androgen receptor is negatively regulated by p53. Neoplasia. 2007;9:1152–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001;11:558–68.
Article
CAS
PubMed
Google Scholar
Lo Celso C, Berta MA, Braun KM, Frye M, Lyle S, Zouboulis CC, et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells. 2008;26:1241–52.
Article
CAS
PubMed
Google Scholar
Ceballos E, Delgado MD, Gutierrez P, Richard C, Müller D, Eilers M, et al. c-Myc antagonizes the effect of p53 on apoptosis and p21WAF1 transactivation in K562 leukemia cells. Oncogene. 2000;19:2194–204.
Article
CAS
PubMed
Google Scholar
Cottle DL, Kretzschmar K, Schweiger PJ, Quist SR, Gollnick HP, Natsuga K, et al. c-MYC-induced sebaceous gland differentiation is controlled by an androgen receptor/p53 axis. Cell Rep. 2013;3:427–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peck B, Ferber EC, Schulze A. Antagonism between FOXO and MYC regulates cellular powerhouse. Front Oncol. 2013;3:96.
Article
PubMed
PubMed Central
Google Scholar
Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007;104:19983–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci USA. 2014;111:3008–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23:862–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, et al. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 2011;7:e1002242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Zhang C, Zhao Y, Feng Z. MicroRNA control of p53. J Cell Biochem. 2017;118:7–14.
Article
CAS
PubMed
Google Scholar
Chen L, Wolff DW, Xie Y, Lin MF, Tu Y. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up- regulation of death receptor 5. BMC Cancer. 2017;17:179.
Article
PubMed
PubMed Central
Google Scholar
Boudou P, Soliman H, Chivot M, Villette JM, Vexiau P, Belanger A, et al. Effect of oral isotretinoin treatment on skin androgen receptor levels in male acneic patients. J Clin Endocrinol Metab. 1995;80:1158–61.
CAS
PubMed
Google Scholar
Kretzschmar K, Cottle DL, Donati G, Chiang MF, Quist SR, Gollnick HP, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Rep. 2014;3:620–33.
Article
CAS
Google Scholar
Yan J, Jiang J, Lim CA, Wu Q, Ng HH, Chin KC. BLIMP1 regulates cell growth through repression of p53 transcription. Proc Natl Acad Sci USA. 2007;104:1841–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horsley V, O’Carroll D, Tooze R, Ohinata Y, Saitou M, Obukhanych T, et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell. 2006;126:597–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zouboulis C, Seltmann H, Neitzel H, Orfanos C. Establishment and characterization of an immortalized human sebaceous gland cell line. J Invest Dermatol. 1999;113:1011–20.
Article
CAS
PubMed
Google Scholar
Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120:905–14.
Article
CAS
PubMed
Google Scholar
Barrault C, Dichamp I, Garnier J, Pedretti N, Juchaux F, Deguercy A, et al. Immortalized sebocytes can spontaneously differentiate into a sebaceous-like phenotype when cultured as a 3D epithelium. Exp Dermatol. 2012;21:314–6.
Article
PubMed
Google Scholar
Zouboulis CC, Xia L, Akamatsu H, Seltmann H, Fritsch M, Hornemann S, et al. The human sebocyte culture model provides new insights into development and management of seborrhoea and acne. Dermatology. 1998;196:21–31.
Article
CAS
PubMed
Google Scholar
Hubbard K, Ozer HL. Mechanism of immortalization. Age (Omaha). 1999;22:65–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jha KK, Banga S, Palejwala V, Ozer HL. SV40-mediated immortalization. Exp Cell Res. 1998;245:1–7.
Article
CAS
PubMed
Google Scholar
McCormick F, Clark R, Harlow E, Tjian R. SV40 T antigen binds specifically to a cellular 53 K protein in vitro. Nature. 1981;292:63–5.
Article
CAS
PubMed
Google Scholar
Dobbelstein M, Roth J. The large T antigen of simian virus 40 binds and inactivates p53 but not p73. J Gen Virol. 1998;79:3079–83.
Article
CAS
PubMed
Google Scholar
Jiang D, Srinivasan A, Lozano G, Robbins PD. SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene. 1993;8:2805–12.
CAS
PubMed
Google Scholar
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol. 2011;21:285–300.
CAS
PubMed
Google Scholar
Wróbel A, Seltmann H, Fimmel S, Müller-Decker K, Tsukada M, Bogdanoff B, et al. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol. 2003;120:175–81.
Article
PubMed
Google Scholar
Guruvayoorappan C, Pradeep CR, Kuttan G. 13-cis-retinoic acid induces apoptosis by modulating caspase-3, bcl-2, and p53 gene expression and regulates the activation of transcription factors in B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol. 2008;27:197–207.
Article
CAS
PubMed
Google Scholar
Melnik BC, Schmitz G. Are therapeutic effects of antiacne agents mediated by activation of FoxO1 and inhibition of mTORC1? Exp Dermatol. 2013;22:502–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6:909–23.
Article
CAS
PubMed
Google Scholar
Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal. 2017;33:49–58.
Article
CAS
PubMed
Google Scholar
Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem. 2009;284:13987–4000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melnik BC. Pro-inflammatory sebocyte growth and survival signalling in acne vulgaris are reversed by pro-apoptotic isotretinoin signalling. Exp Dermatol. 2016;25:676–7.
Article
PubMed
Google Scholar
Melnik BC. The TRAIL to acne pathogenesis: let’s focus on death pathways. Exp Dermatol. 2017;26:270–2.
Article
PubMed
Google Scholar