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Abstract 

Background Finding a noninvasive radiomic surrogate of tumor immune features could help identify patients 
more likely to respond to novel immune checkpoint inhibitors. Particularly, CD73 is an ectonucleotidase that cata-
lyzes the breakdown of extracellular AMP into immunosuppressive adenosine, which can be blocked by therapeutic 
antibodies. High CD73 expression in colorectal cancer liver metastasis (CRLM) resected with curative intent is associ-
ated with early recurrence and shorter patient survival. The aim of this study was hence to evaluate whether machine 
learning analysis of preoperative liver CT-scan could estimate high vs low CD73 expression in CRLM and whether such 
radiomic score would have a prognostic significance.

Methods We trained an Attentive Interpretable Tabular Learning (TabNet) model to predict, from preoperative CT 
images, stratified expression levels of CD73  (CD73High vs.  CD73Low) assessed by immunofluorescence (IF) on tissue 
microarrays. Radiomic features were extracted from 160 segmented CRLM of 122 patients with matched IF data, 
preprocessed and used to train the predictive model. We applied a five-fold cross-validation and validated the perfor-
mance on a hold-out test set.

Results TabNet provided areas under the receiver operating characteristic curve of 0.95 (95% CI 0.87 to 1.0) and 0.79 
(0.65 to 0.92) on the training and hold-out test sets respectively, and outperformed other machine learning models. 
The TabNet-derived score, termed rad-CD73, was positively correlated with CD73 histological expression in matched 
CRLM (Spearman’s ρ = 0.6004; P < 0.0001). The median time to recurrence (TTR) and disease-specific survival (DSS) 
after CRLM resection in rad-CD73High vs rad-CD73Low patients was 13.0 vs 23.6 months (P = 0.0098) and 53.4 vs 
126.0 months (P = 0.0222), respectively. The prognostic value of rad-CD73 was independent of the standard clinical 
risk score, for both TTR (HR = 2.11, 95% CI 1.30 to 3.45, P < 0.005) and DSS (HR = 1.88, 95% CI 1.11 to 3.18, P = 0.020).

Conclusions Our findings reveal promising results for non-invasive CT-scan-based prediction of CD73 expression 
in CRLM and warrant further validation as to whether rad-CD73 could assist oncologists as a biomarker of prognosis 
and response to immunotherapies targeting the adenosine pathway.
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Background
Liver metastases is the most common site of colorectal 
cancer progression, a malignancy that remains within 
the top leading causes of cancer-related deaths [1]. Com-
plete resection of colorectal liver metastases (CRLM) 
combined with systemic chemotherapy, has a cura-
tive potential, but approximately 80% of patients recur 
[2]. Currently, no biomarkers can help identify patients 
at high risk of early recurrence after CRLM resection, 
for whom surgery may be futile, who may benefit from 
adjuvant chemotherapy [3], and who should be followed 
up more closely based on the risk of recurrence. Conse-
quently, a significant number of patients are burdened by 
potential complications, side-effects and toxicities associ-
ated with treatments not informed by expected progno-
sis, without overall survival benefits.

Accumulating data support that the immune features of 
CRLM may be more significantly associated with recur-
rence and survival after resection, independently from 
clinical, pathological and tumor genomic features [4]. 
Extracellular adenosine in the tumor microenvironment 
(TME) appears as an immunosuppressive mechanism of 
particular relevance to CRLM microenvironment. The 
Ecto-5′-nucleotidase, or CD73, expressed by cancer and 
stromal cells within CRLM, is a rate-limiting enzyme 
that enhances the breakdown of ATP-derived extracel-
lular adenosine monophosphate into immunosupres-
sive adenosine [5]. The latter binds to the A2A and A2B 
receptors expressed by T cells, Natural Killer cells, and 
other immune cells and inhibits their anti-tumoral cyto-
toxic functions [6]. High intratumoral CD73 expression is 
strongly associated with poor prognosis in both primary 
CRC [7] and CRLM [8].

The current histologic assessment of CD73 expression 
in CRLM, like other histologically-derived biomark-
ers, is however obtained only after resection of CRLM. 
Histological-based markers are also not ideal to asses 
pre-operatively via biopsy given their intratumoral heter-
ogeneous expression [9]. The field still lacks noninvasive 
CRLM biomarkers of immune features to guide prognos-
tication, which may also, at term, help identify patients 
most likely to benefit from immunotherapy. Features of 
computed tomography (CT) images are widely avail-
able and part of routine clinical practice, both at base-
line and on follow-up examinations for assessment of 
treatment response, and radiomics biomarkers obtained 
from these images could help clinical decisions early in 
the treatment course. Current developments in artificial 
intelligence span almost all conventional medical image 
analysis tasks, including the detection and segmentation 
of anatomical structures, classification and registration of 
medical images [10]. Radiomics, consisting in extracting 
quantifiable features from medical images, could detect 

not only macroscopic characteristics, but also hidden 
genomic and proteomic properties involved in biological 
processes [11, 12]. Radiomics studies have shown prom-
ising results in the diagnosis of liver diseases, including 
benign diseases and primary and secondary malignan-
cies, cancer staging and grading and the prediction of 
patient clinical outcomes such as response to therapy [13, 
14]. Concerning the liver, contrast-enhanced CT-scan 
features have been shown able to detect non-alcoholic 
steatohepatitis [15], to identify the histological growth 
pattern of CRLM [16], and to predict response to FOL-
FOX-based chemotherapy in untreated CRLM patients 
[17]. To our knowledge, however, CT-scan image features 
have not been associated with immune features in CRLM 
[18].

The goal of this study was to test whether we could 
train a deep learning model with radiomic features 
extracted from preoperative CT images, to predict post-
operative CD73 expression in resected CRLM, and to test 
whether a probabilistic score predicted by the deep learn-
ing model, termed rad-CD73, was associated with patient 
oncological prognosis.

Methods
Study population
This study received the approval of the Institutional 
Review Board (No. 19.185 for patient consent for 
biobanking and database; No. 18.023 for project spe-
cific with radiomics). We retrospectively studied a 
cohort of 215 patients who underwent complete resec-
tion of CRLM at the Centre Hospitalier de l’Université 
de Montréal between 2011 and 2014 and were pro-
spectively followed beyond recurrence and until death 
for clinicopathological and imaging data in a registry. 
Clinical annotations included demographics, dates and 
types of all treatments received, and the Clinical Risk 
Score, calculated by the addition of one point for each 
of the following features: disease-free interval between 
the diagnosis of primary tumor and liver metastases of 
< 12  months; number of metastases > 1; pre-operative 
carcinoembryonic antigen (CEA) level > 200 ng/mL; larg-
est metastasis > 5 cm; and lymph node positive primary 
tumor [19]. A liver pathologist reviewed hematoxylin and 
eosin whole slides of all cases to assess resection margins, 
the presence of tertiary lymphoid structures, the degree 
of necrosis and pathological response to preoperative 
chemotherapy [20].

The inclusion criteria were as follows: (1) CRLM con-
firmed by histopathological analysis; (2) complete resec-
tion of CRLM with curative intent; (3) preoperative, 
intravenous contrast-enhanced abdominal CT scan 
available; and (4) CD73 immunofluorescent quantifica-
tion staining performed. Patients were excluded from the 
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analysis if: (1) preoperative CT images were insufficient 
to perform feature analysis; (2) CRLM was not visible on 
the preoperative CT scan or was calcified; (3) histopatho-
logical results could not be associated with CT image of 
a given CRLM on the basis of its description in pathol-
ogy report and review of the CT-scan. After applying the 
exclusion criteria, 160 CRLM resected in 122 patients 
were available for further analysis.

Evaluation of CD73 expression
CD73 expression in CRLM quantified by immunofluores-
cence were previously generated in this cohort [8]. Briefly, 
we built tissue microarrays (TMA) using six 0.6 µm TMA 
cores per CRLM, with up to three CRLM per patient, 
using FFPE blocks after hematoxylin and eosin review of 
viable tumor areas by a pathologist and trained resident. 
We optimized a multiplex immunofluorescence panel 
to concurrently detect CD73, cytokeratins to compart-
mentalize stromal and cancer cell expression patterns, 
and DAPI for nuclear staining of viable cells. Standard 
deparaffinization and rehydratation protocols were used, 
followed by antigen retrieval (Dako S1699) in sub-boiling 
conditions for 40 min, and protein-block (Dako X0909), 
specific staining with primary antibodies against CD73 
(Abcam ab91086, 1:300 dilution) and cytokeratins 8/18 
(Dako IR094, 1:2 dilution). We used an anti-mouse IgG1 
Alexa-Fluor 647 (Life technology, A21240; 1/800) and 
anti-rabbit Alexa-Fluor 488 (Life technology, A21206; 
1/400) as secondary antibodies, DAPI, and mounted 
the slides with ProLong Gold (ThermoFisher). Slides 
were digitalized at 20 × with NanoZoomer-XR (Hama-
matsu) and core images imported with TMA maps and 
identifiers into Visiomorph v.6 software (Visiopharm) 
for automated quantification. For each core, the percent 
surface area containing  CD73+ cells (expression above 
background) over the surface area containing all viable 
cells was calculated, as well as the mean fluorescence 
intensity in each core. For each CRLM, a mean value 
was calculated from its corresponding six cores. Patients 
were stratified into two classes  (CD73High and  CD73Low) 
using the median  CD73+ positive area score across all 
CRLM evaluated in this cohort as a cutoff value (3.8%). In 
patients with more than one CRLM, the mean CD73 was 
used to classify patients as low or high.

Image preprocessing and radiomics workflow
We analyzed the last contrast-enhanced CT images 
obtained prior to surgery for CRLM resection and 
acquired in portal venous phase. The images had a cross-
sectional volume size of 512 × 512, a mean in-plane reso-
lution of 0.72  mm2 (range = [0.56, 0.98]  mm2) and a mean 
in-depth resolution of 2.26 mm (range = [0.80, 5.0] mm). 
Images were resampled to isotropic resolution (1 × 1 × 1 

 mm3) so as to obtain a uniform pixel spacing within the 
dataset. An automated segmentation algorithm [21] was 
used to segment CRLM lesions. The segmentation model 
consists of two convolutional neural networks trained 
end-to-end in order to jointly segment the liver and the 
lesions within. A manual examination and refinement of 
the ensuing 3D segmentations was subsequently carried 
out by liver radiologists to verify the quality of the vol-
umes of interest to be included in the analysis.

In a subsequent step, radiomic features were extracted 
from the volumes of interest using PyRadiomics v3.0.1 
toolbox [22]. From each image/tumor mask pair, we 
extracted 107 radiomics features consisting of 18 first-
order statistics, 14 shape features and 75 textural fea-
tures. First-order statistics are histogram-derived features 
characterizing the distribution of voxel values within the 
tumor. Shape features encode the 3D shape and size of 
the region of interest. These features are calculated from 
approximated shapes, inferred using triangle meshes 
generated from binary masks using the marching cube 
technique. Details on the marching cubes algorithm 
used to build meshes are presented in the Pyradiomics 
documentation [22]. Thirdly, textural features are derived 
from predefined matrices and aim to construe the spa-
tial arrangement of voxel intensity values within the 
lesion. The textural matrices included are the gray-level 
co-occurrence matrix (GLCM), the gray level depend-
ence matrix (GLDM), the gray-level run length matrix 
(GLRLM), the gray-level size zone matrix (GLSZM) and 
the neighboring gray tone difference matrix (NGTDM).

The resulting feature set was standardized for the sake 
of obtaining a null mean and a unit standard deviation 
across instances. The least absolute shrinkage and selec-
tion operator (LASSO) [23] was used to select the most 
salient features. The rationale behind this step is to apply 
an initial coarse dimensionality reduction in order to dis-
card irrelevant features that would otherwise introduce 
noise into the training process and mislead the model. 
The LASSO λ hyperparameter (λ = 0.249) was deter-
mined by applying five-fold cross validation using the 
mean squared error as an objective function. Each lesion 
segmented on CT was matched to the corresponding 
CRLM in the constructed TMA, using their pathology 
report block number.

TabNet training and evaluation
In this study, we trained an Attentive Interpretable Tabu-
lar Learning (TabNet) model [24] to predict the stratified 
CD73 expression levels  (CD73High vs.  CD73Low). Tab-
Net is a deep learning model that incorporates multiple 
stages of attention modules within its architecture (Addi-
tional file 1: Fig. S1). The attention mechanism is based 
on two transformer blocks: an attentive transformer and 
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a feature transformer. The attentive transformer allows 
to compute learnable masks, which are used to select the 
most salient set of features at each step. It also incorpo-
rates a prior scale which encodes the degree to which 
features have been used in the previous steps. The fea-
ture transformer processes the filtered features through 
shared and decision step-specific layers. The outputs of 
the different decision steps are linearly combined to form 
the model’s encoder output. Finally, a fully connected 
layer processes the encoder’s output to obtain the overall 
output of the model. In order to compare TabNet’s per-
formance with other machine learning models, we also 
trained an XGBoost, a random forest (RF), a support vec-
tor machine (SVM) with a linear kernel function, and a 
logistic regression (LR) model to perform the same task.

For TabNet and the other baseline models, we first 
divided the dataset into a training set (125 lesions) and 
a hold-out test set (35 lesions) for independent valida-
tion using data from our center. We then performed a 
five-fold cross-validation on the first subset. The dataset 
was hence divided into five separate folds on five itera-
tions and in each iteration, four folds were used for train-
ing and the fifth was used for validation (never seen at 
training). Once cross-validation was completed, an exter-
nal validation was performed on the hold-out test set. 
All splits were applied randomly and on a patient-level. 
In other words, lesions belonging to the same patient 
were assigned to the same subset in order to ensure that 
no overlap or information leakage occur between the 
training and the testing sets. TabNet was trained for 100 
epochs on an NVIDIA GeForce GTX TITAN Xp 12 GB 
with a batch size of 64 and a binary cross-entropy loss 
function. Adam optimizer [25] was used with a learning 
rate of 0.02 decaying by 10% after 50 epochs. The area 
under the receiver operating characteristic curve (AUC) 
was used to compare the performance of the models.

Model interpretability analysis
Two types of interpretability analyses were carried out 
in this study: global and local interpretability. In the 
former case, we attempted to holistically describe the 
model’s behavior by running a subsequent analysis on 
the model’s predictions. To this end, we adopted the 
Shapley Additive Explanations (SHAP) technique [26]. 
SHAP is an additive feature attribution algorithm that 
intends to compute, for every feature, a Shapley value 
which mirrors the contribution of that feature to the 
model’s final predictions. In this work, we utilized the 
Kernel SHAP method, which approximates the Shap-
ley values as being the coefficients of a weighted linear 
regression model, built from a set of sample coalitions. 
After computing an average Shapley value for each 
feature over all instances, the features were ranked 

according to their average Shapley values. Addition-
ally, we made use of the inherent interpretability of the 
TabNet architecture to provide instance-level explana-
tions of the model’s predictions. To do so, visualiza-
tions of the selected feature masks were generated and 
analyzed, in order to identify the most salient ones for 
each instance used by the model. The visualization of 
TabNet’s selected feature importance served two main 
purposes: (1) to acquire a local explanation of the mod-
el’s predictions for each instance and (2) to examine 
whether the predictive behavior projected by the mod-
el’s architecture, was concordant with SHAP results.

Statistical analysis
We used the Wilcoxon rank sum test and Fisher’s exact 
test for numerical and categorical variables, respectively. 
Spearman’s correlation coefficient was applied to evalu-
ate correlations. The decision curve analysis [27] was 
performed using the Python dcurves v0.0.3 package by 
plotting the net benefit of the predicted biomarker for dif-
ferent threshold probability values [range = (0–1)], given 
as the minimum probability for which additional testing 
is recommended. The line representing the “all lesions 
are  CD73Low” hypothesis and the curve representing the 
“all lesions are  CD73High” hypotheses were also plotted 
for comparison purposes. Survival curves were generated 
with the Kaplan–Meier method and compared with the 
log-rank test. Disease-specific survival, for which deaths 
due to causes other than cancer progression were cen-
sored observations, and time to recurrence, were com-
puted from the date of the first hepatectomy. Patients 
with missing data on the first surgery were excluded from 
the survival analysis. For survival analysis purposes, Tab-
Net class probabilities, termed rad-CD73, were derived 
and stratified into rad-CD73High and rad-CD73Low by set-
ting a cut-off value equal to the lower tertile (rad-CD73 
> 0.362) based on the distribution of the rad-CD73 score 
(Additional file 1: Fig. S2), which was consistent with the 
optimal p-value cut-off proposed by the X-tile software 
(0.383). For patients with multiple lesions, predicted rad-
CD73 scores were averaged across all lesions. Univariate 
and multivariate Cox proportional hazards regression 
models were used to generate hazards ratios (HR) with 
95% confidence intervals. A two-sided p-value < 0.05 was 
considered statistically significant. Statistical analyses 
were conducted using Python Scipy v1.5.3, Python Life-
lines v0.27.1 and R Survival v3.4 packages.

Results
The general workflow of the planned analysis is depicted 
in Fig. 1.
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Patient cohort
The clinicopathological characteristics of the 122 
patients treated for resectable CRLM are summarized 
in Table 1. Mean patient age was 63.4 years (35 to 84), 
and male patients predominated (63.9%). Preopera-
tive chemotherapy was administered in 78.7% of the 
patients, consisting of four to six cycles of folfox-based 
regimen for the vast majority of patients (not shown). 
Most patients (81.1%) also received chemotherapy after 
resection of CRLM. Approximately half of the patients 
were treated for multiple metastasis with a mean num-
ber of two (range 1 to 10) and a mean diameter of 
4.1  cm (range 1.0 to 20  cm). Based on the composite 
Clinical Risk Score [19], 38.5% of patients were at high 
risk of recurrence and death from cancer progres-
sion. At time of analysis, the median follow-up was of 
57.0 months, during which time 76.2% of patients had 
recurred and 64.8% died of disease progression.

Prediction of CD73 expression from preoperative CT 
images
In the training cohort, the ability of the TabNet model to 
classify  CD73High vs.  CD73Low lesions was shown to have 
an AUC of 0.95 (95% confidence interval: 0.87- 1.0). The 
accuracy, sensitivity and specificity were 0.85, 0.91 and 
0.79, respectively. Table  2 summarizes the performance 
of different models on the hold-out test set. Moreover, 
TabNet exhibited a high predictive performance on the 
hold-out test set with an AUC of 0.79 (0.65–0.92). The 
test set accuracy, sensitivity and specificity were 0.71, 
0.63 and 0.79, respectively. Figure 2 depicts the receiver 
operating characteristic curve and the confusion matrix 
of the model on the hold-out test set. The model exhib-
ited balanced sensitivity and specificity values, and no 
class bias was observed. This is reflected by the distribu-
tion of the true positives and true negatives in the matrix. 
We also compared TabNet generalization capability with 

Fig. 1 General workflow. Isotropic spatial resampling was applied on preoperative CT-scan images to segment 160 colorectal liver metastases 
(CRLM) resected in 122 colorectal cancer (CRC) patients who underwent partial hepatectomy. Matching CRLM, identified by their pathology report 
block numbers and anatomical description, were included in tissue microarrays for automated quantification of CD73 intra-tumoral expression 
by immunofluorescence. Radiomic features were extracted from the resulting three-dimensional regions of interest (ROI) (18 first-order statistics, 14 
shape features and 75 textural features) and preprocessed. Subsequently, an Attentive Interpretable Tabular Learning (TabNet) model was trained 
to predict CD73 expression dichotomized as  CD73High vs.  CD73Low based on the surface area expressing CD73 over the total surface of assessable 
tissue. The model was then evaluated, and its predictions were interpreted using ROC curve and the Shapley Additive Explanations technique 
(SHAP). The association between radiomic CD73 (rad-CD73) and oncological survival outcomes was analyzed by Kaplan–Meier and logrank test
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Variable All dataset
(N = 122)

rad-CD73High (n = 79) rad-CD73Low (n = 43) p-value

Age at hepatectomy (Mean, range) (63.4, 35–84) (63.6, 35–84) (63.2, 44–81) 0.894

 ≤ 65 years 66 (54.1) 42 (53.2) 24 (55.8)

 > 65 years 56 (45.9) 37 (46.8) 19 (44.2)

Gender 0.430

 Male 78 (63.9) 48 (60.8) 30 (69.8)

 Female 44 (36.1) 31 (39.2) 13 (30.2)

Number of metastases (Mean, range) (2.0, 1–10) (2.1, 1–10) (1.9, 1–5) 0.643

 Single 59 (48.4) 41 (51.9) 18 (41.9)

 Multiple 63 (51.6) 38 (48.1) 25 (58.1)

Diameter of largest metastasis (Mean, range) (4.1, 1.0–20.0) (4.3, 1.0–20.0) (3.8, 1.3–11.0) 0.830

 ≤ 5 cm 93 (76.2) 59 (74.7) 34 (79.1)

 > 5 cm 29 (23.8) 20 (25.3) 9 (20.9)

KRAS status 0.735

 Wild-type 27 (61.4) 18 (58.1) 9 (69.2)

 Mutated 17 (38.6) 13 (41.9) 4 (30.8)

CEA level 0.287

 ≤ 200 ng/mL 118 (97.5) 77 (98.7) 41 (95.3)

 > 200 ng/mL 3 (2.5) 1 (1.3) 2 (4.7)

Clinical risk  scorea 0.017

 Low risk (0–2) 72 (61.5) 53 (69.7) 19 (46.3)

 High risk (3–5) 45 (38.5) 23 (30.3) 22 (53.7)

Margin liver resection 0.325

 Negative 111 (91.0) 70 (88.6) 41 (95.3)

 Positive 11 (9.0) 9 (11.4) 2 (4.7)

Tertiary lymphoid structure 0.775

 No 107 (87.7) 70 (88.6) 37 (86.0)

 Yes 15 (12.3) 9 (11.4) 6 (14.0)

Necrosis (Mean, range) (12.3, 0.0–81.5) (13.2, 0–81.5) (10.7, 0.0–61.8) 0.358

 ≤ 25% 104 (85.2) 67 (84.8) 37 (86.0)

 > 25% 18 (14.8) 12 (15.2) 6 (14.0)

Primary tumor 0.140

 Left sided 82 (69.5) 58 (74.4) 24 (60.0)

 Right sided 36 (30.5) 20 (25.6) 16 (40.0)

pT category 0.190

 pT1-pT3 93 (83.0) 56 (78.9) 37 (90.2)

 pT4 19 (17.0) 15 (21.1) 4 (9.8)

pN category 0.116

 pN0 43 (35.8) 32 (41.0) 11 (26.2)

 pN + 77 (64.2) 46 (59.0) 31 (73.8)

Preop chemotherapy 1.000

 No 26 (21.3) 17 (21.5) 9 (20.9)

 Yes 96 (78.7) 62 (78.5) 34 (79.1)

Tumor regression  gradeb 0.575

 1–2 16 (13.1) 9 (11.4) 7 (16.3)

 3–4–5 106 (86.9) 70 (88.6) 36 (83.7)

Extrahepatic recurrence 0.806

 No 32 (36.0) 24 (37.5) 8 (32.0)

 Yes 57 (64.0) 40 (62.5) 17 (68.0)

Disease-free interval between primary and liver met

 < 12 months 88 (72.1) 52 (65.8) 36 (83.7) 0.037

 ≥ 12 months 34 (27.9) 27 (34.2) 7 (16.3)

Table 1 Patient clinicopathological characteristics and correlation with rad-CD73

CEA carcinoembryonic antigen, CD cluster of differentiation, T tumor, N node
a Clinical Risk Score calculated by the addition of one point for the following features: disease-free interval between the diagnosis of primary tumor and liver metastases 
< 12 months; number of metastases > 1; pre-operative CEA level > 200 ng/mL; largest metastasis > 5 cm; and lymph node positive primary tumor[19]
b Measure of histopathological response to neoadjuvant chemotherapy as defined by Rubbia-Brandt et al.[20]
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other machine learning models, which outperformed 
XGBoost, RF, SVM and LR models. Even though the 
XGBoost model achieved a satisfactory AUC of 0.61 
(0.45–0.77), TabNet outclassed it with a high margin.

A significant difference was observed in the pre-
dicted TabNet rad-CD73 scores between  CD73High and 
 CD73Low lesions (Wilcoxon signed rank test, P < 0.0001) 
(Fig.  3A). Rad-CD73 scores were positively correlated 
with CD73 histological expression measured by IF 
(Spearman’s ρ = 0.600, P < 0.0001) (Fig. 3B). With the goal 
of assessing the clinical utility of the predicted rad-CD73 
score, we performed a decision curve analysis and com-
pared the net benefit of using rad-CD73 with the “treat 
all as  CD73High” and the “treat none as  CD73High” strat-
egies. For probability thresholds higher than 0.08, rad-
CD73 had a higher net benefit than both the “treat all” 
and “treat none” approaches (Fig. 4).

Interpretability of the predictive model
Figure  5 shows representative CT-scan images and cor-
responding histological images and CD73 IF expression 
of two CRLM cases with high and low CD73 expression, 
respectively. Case 1 (left) represents a CRLM with a high 
CD73 expression (high red IF signal, % CD73 + surface 
area = 19.24). Concordantly, the corresponding rad-
CD73 probabilistic score was 0.69. On the other hand, a 
low rad-CD73 score (0.06) was attributed to the CRLM 
of case 2 (right) having a low CD73 IF expression (% 
CD73 + surface area = 0.37). This finding supported that 
different CT-scan features could be observed between 
 CD73High and  CD73Low CRLM, with homogeneity in CT 
tumor segmentation in case 1 and heterogeneity in the 
CT tumor segmentation in case 2. To improve the inter-
pretation of TabNet’s predictions, we applied the SHAP 
technique and studied the features that contributed the 

Table 2 Performance of the different models on the hold-out test set

AUC  area under the curve, TabNet attentive interpretable tabular learning, XGBoost extreme gradient boosting; SVM support vector machine, RF random forest, LR 
logistic regression

Model AUC Accuracy Sensitivity Specificity F1 score

TabNet 0.79 (95% CI 0.65–0.92) 0.71 0.63 0.79 0.67

XGBoost 0.61 (95% CI 0.45–0.77) 0.60 0.69 0.53 0.61

SVM 0.60 (95% CI 0.44–0.76) 0.49 0.94 0.11 0.63

RF 0.59 (95% CI 0.43–0.75) 0.63 0.75 0.53 0.65

LR 0.51 (95% CI 0.34–0.68) 0.46 0.63 0.32 0.51

Fig. 2 Performance of TabNet on the hold-out test set. A Comparison of the ROC curves of TabNet with the other baseline models. TabNet 
outperformed all the trained baseline models as mirrored by the area under the ROC curves (AUC). B Confusion matrix of TabNet for CD73 
classification. LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; TabNet, Attentive Interpretable Tabular Learning; XGBoost, 
Extreme Gradient Boosting
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most to the model’s outputs. Figure 6 shows that distinct 
features had different impact on the model’s output, mir-
rored by its average Shapley value. Amongst the top five 
features selected by SHAP, four were textural, reflecting 
the importance of texture-related characteristics of the 
lesions in predicting CD73 expression level.

The feature with the highest Shapley value was the 
“Dependence Non Uniformity Normalized” (DNUN), 
a textural feature computed using the GLDM matrix. 
The DNUN encodes the heterogeneity in terms of the 
dependence throughout the lesion: a high DNUN reveals 
that the image contains regions with disparate depend-
ence levels. The dependence is a term reflecting whether 
the gray level of a given voxel is dependent on those of 
the neighboring ones. A region with a low dependence 
is hence formed of voxels with comparable gray levels 
whereas the voxels of a high dependence region exhibit 

discrepancies in their gray levels. SHAP results show that 
a low DNUN value had a positive impact on the model’s 
output, prompting an increase in the predicted rad-CD73 
score.

Similarly, the textural feature “Size Zone Non Uni-
formity Normalized” (SZNUN), which encodes the het-
erogeneity in the size zone volumes of a lesion defined as 
areas with a constant gray level, had an effect compara-
ble the DNUN on TabNet predictions. The “Small Area 
Emphasis” (SAE) and the “Informational Measure of 
Correlation 1” (IMC1) came in third and fourth, respec-
tively. The SAE reflects the prevalence of small zones 
while the IMC1 encodes the complexity of the textures. 
Both features had a positive impact on the model’s out-
put; a higher feature value was corresponded to a higher 
Shapley value. These findings show that the model had 
the tendency to output high rad-CD73 scores for lesions 
exhibiting finer textures.

Interestingly, the shape of the lesions also had an 
impact, albeit less prominent, on the model’s behavior. In 
fact, SHAP results reveal that spherical lesions were asso-
ciated with high CD73 expression levels. Finally, Fig.  7 
shows that the DNUN was selected for almost all test set 
instances among the most salient features in TabNet’s 
third feature selection stage. This finding was consistent 
with SHAP, as the DNUN had the highest average Shap-
ley value.

Association of rad-CD73 with clinicopathological 
characteristics and oncological outcomes
We then analyzed the potential clinical significance of 
rad-CD73 high vs low status. As shown in Table  1, the 
proportions of rad-CD73High and rad-CD73Low patients 
were generally similar according to most clinicopatho-
logical characteristics, including CRLM size and number, 

Fig. 3 Assessment of the predicted TabNet probabilistic score, rad-CD73. A Violin plot depicting the distribution of rad-CD73 score by CD73 
expression level. A statistically significant difference was observed in the radiomic score between the  CD73High and  CD73Low groups (Wilcoxon 
signed rank test; P < 0.0001). B Spearman’s correlation between rad-CD73 and the actual CD73 expression (the percentage of CD73 positive area 
per metastasis)

Fig. 4 Decision curve analysis. The red line shows the treat 
none as  CD73High approach while the blue line shows the treat 
all as  CD73High approach. For threshold values greater than 0.08, 
rad-CD73 had a higher net benefit than both the “treat all” and “treat 
none” approaches
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having received chemotherapy or not prior to liver 
resection, and pathological response to pre-operative 
chemotherapy. There was hence no statistically signifi-
cant difference in CRLM diameter (P = 0.830), whether 
the primary tumor is located in the right or left colon 
(P = 0.140), the KRAS mutation status (P = 0.735) and 
the CEA level (P = 0.287) between rad-CD73High and 
rad-CD73Low CRLM. More patients with rad-CD73High 
CRLM were however found in those who were diagnosed 
with liver metastases less than 12 months after the diag-
nosis of primary CRC (P = 0.037). Although this criterion 
is one of those constituting the composite clinical risk 
score (CRS), there were less rad-CD73High patients in 
those classified as higher risk of recurrence (CRS score 
3, 4 or 5).

By univariate analysis, rad-CD73 high vs low status 
was significantly associated with TTR and DSS, as well 
as expected clinicopathological features such as the pri-
mary tumor depth of invasion (pT stage), high pre-opera-
tive CEA, and the composite CRS (Table 3). In the initial 
immunohistochemical study of CD73 expression in this 
patient cohort [8], patients with high intratumoral CD73 
expression had significantly shorter median TTR com-
pared to low CD73 (11.0 vs 46.4 months) and DSS (19.0 

vs. 61.5  months), independent of conventional clinico-
pathological variables by multivariate analyses. Con-
sistent with the worse prognosis observed in patients 
bearing tumor with high intratumoral CD73 expression 
assessed by immunohistochemistry [8, 28–31], patients 
with rad-CD73High CRLM had a shorter median TTR of 
13.0  months compared to 23.6  months in rad-CD73Low 
CRLM patients (P = 0.0098). Consistently, the median 
DSS of rad-CD73High CRLM patients was 53.4  months 
compared to 126.0  months in rad-CD73Low CRLM 
patients (P = 0.0222) (Fig. 8). Consistent with the lack of 
positive association observed between the CRS and rad-
CD73, multivariate modeling supported that the prog-
nostic value of rad-CD73 was independent of the CRS for 
both TTR and DSS (Table 4).

Discussion
In this study, we developed a noninvasive imaging surro-
gate of CD73 by leveraging state-of-the-art deep learning 
techniques trained with radiomic features. Despite recent 
progress in prognostication based on immune features 
of CRLM resected with curative intent [4], there are no 
noninvasive immune biomarkers that ultimately may 
guide clinical decision making. To our knowledge, this 

Fig. 5 Representative cases with high and low CD73 expression. A A preoperative CT image of a  CD73High CRLM (arrow) in the right hemiliver. 
B A preoperative CT image of a  CD73Low CRLM (arrow) in the left hemiliver. C, D Representative tissue microarray cores of the high C and low 
D CD73 expression of the respective CRLM. Hematoxylin and eosin staining (left) shows the integrity and general architecture of the tissue. 
Immunofluorescent staining (right) shows cell nucleus (blue, DAPI), CD73 expression (red), and the cancer cells with the pan-cytokeratins epithelial 
cell marker (green). Scale bars represent 100 µm
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Fig. 6 TabNet global interpretability analysis using the Shapley Additive Explanations (SHAP) technique. A Summary plot listing radiomics features 
from top to bottom in a decreasing order of their impact on the model’s decision. The top four most significant features were texture-related 
features. B Variation of the SHAP value of four selected features with respect to the actual feature value. Homogeneous textures were associated 
with a higher CD73 expression, as mirrored by the effect of the top-ranking features
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Fig. 7 Visualization of TabNet learnable mask from the third decision step. The dependence non uniformity normalized (DNUN) feature, designated 
as the top 1 feature in SHAP analysis, was selected by the learnable mask among the most salient features for almost all test set instances. Brighter 
colors indicate higher feature importance

Table 3 Univariate analyses of outcomes according to clinicopathological variables and rad-CD73

HR hazard ratio, CI confidence interval

Disease-specific survival Time-to-recurrence

HR (95% CI) p-value HR (95% CI) p-value

Age at hepatectomy
(≤ 65 vs > 65 years)

0.88 (0.56–1.39) 0.58 0.70 (0.46–1.07) 0.10

Gender
(male vs female)

1.16 (0.72–1.84) 0.54 0.97 (0.63–1.51) 0.91

Number of metastases
(single vs multiple)

1.37 (0.87–2.16) 0.17 1.50 (0.98–2.29) 0.06

Diameter of largest metastasis
(≤ 5 vs > 5 cm)

1.43 (0.87–2.37) 0.16 1.44 (0.90–2.30) 0.13

Disease-free interval
 < 12 months (no vs yes)

1.52 (0.90–2.58) 0.12 1.43 (0.89–2.28) 0.14

CEA level
(≤ 200 vs > 200 ng/mL)

4.38 (1.34–14.38) 0.01 5.12 (1.57–16.62) 0.01

Tertiary lymphoid structure
(absent vs present)

0.86 (0.43–1.73) 0.68 0.95 (0.49–1.84) 0.88

Liver resection margin (negative vs positive 
for cancer cells)

1.06 (0.50–2.22) 0.89 1.10 (0.55–2.18) 0.79

Necrosis
(≤ 25 vs > 25%)

1.18 (0.63–2.18) 0.61 1.02 (0.57–1.80) 0.96

Primary tumor
(left vs right)

0.79 (0.48–1.28) 0.33 0.87 (0.55–1.37) 0.54

pT category
(T1-T2-T3 vs T4)

2.05 (1.16–3.59) 0.01 2.51 (1.45–4.34) < 0.005

pN category
(N0 vs N +)

1.25 (0.77–2.02) 0.37 1.30 (0.84–2.01) 0.25

Pre-operative chemotherapy
(no vs yes)

1.73 (0.91–3.27) 0.09 1.73 (0.99–3.03) 0.05

Tumor regression grade
(1–2 vs 3–4–5)

0.84 (0.44–1.61) 0.61 1.31 (0.68–2.52) 0.43

KRAS status
(wild-type vs mutated)

1.18 (0.61–2.28) 0.63 2.23 (1.14–4.37) 0.02

Clinical Risk Score
(0–1–2 vs 3–4–5)

1.60 (1.01–2.51) 0.04 1.97 (1.29–3.03) < 0.005

rad-CD73
(low vs high)

1.80 (1.08–3.00) 0.02 1.84 (1.15–2.95) 0.01
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is the first work developing and testing a machine learn-
ing tool to predict immunosuppressive CD73 expression 
from diagnostic CT images. The proposed model exhib-
ited good performance in classifying CRLM lesions into 
 CD73High and  CD73Low groups. We also demonstrated 
that the predicted rad-CD73 score was highly correlated 
with the actual expression as measured in vitro by immu-
nohistochemistry. Moreover, the clinical significance of 
rad-CD73 was supported by its association with patient 
prognosis.

Radiomics has achieved major breakthroughs in recent 
years in precision oncology and has paved the way for 
individualized patient care. Its clinical applications 
include disease diagnosis, prognosis and treatment plan-
ning [32, 33]. It could hence be applied for cancer detec-
tion, allowing for a noninvasive differentiation between 
benign and malignant neoplasms and consequently 
minimizing the unwarranted collection of tissue sam-
ples. Moreover, radiomics was coupled with conventional 

diagnostic tools in order to augment their sensitivity to 
detect diseases early in their development [34]. Finally, it 
was shown to be able to forecast oncological outcomes of 
patients such as survival, recurrence, response to adju-
vant therapy and metastatic progression [35]. The main 
advantage of radiomics over conventional techniques is 
that it provides a holistic and noninvasive assessment of 
the tissues, as opposed to more invasive histopathologi-
cal tissue analysis methods and RNA sequencing which 
require biopsies taken from tumor regions. Its perfor-
mance is hence less affected by the tumoral heterogeneity 
associated with the biopsy site. Moreover, it is less labor 
intensive and allows a quicker profiling of the patients 
than existing diagnostic tools. Nevertheless, the transla-
tion of radiomics to the clinic has been hindered by some 
challenges including the current retrospective design of 
the majority of the radiomics studies and the “black box” 
nature of the predictive models. Therefore, radiomics 
should be considered as a promising complementary tool 
for personalized treatment to be validated prospectively.

In the past few years, several efforts have been made 
for the interpretation of the results produced by machine 
learning models, which are still considered as black 
boxes. Model interpretability is particularly impor-
tant in the medical oncology field to ensure traceability 
and informed clinical decision-making. Interpretability 
techniques could be divided into two major categories: 
model-specific and model-agnostic [36]. The former 
interpretability is acquired in models that are conceived 
to be inherently explainable through attention mecha-
nisms for instance, which provides feedback on regions 

Fig. 8 Prognostic value of rad-CD73 in colorectal liver metastases (CRLM). A Disease-specific survival according to rad-CD73 and B 
time-to-recurrence after the initial complete surgical resection of CRLM. In patients with more than one CRLM, the mean rad-CD73 was used 
to classify patients as low or high. The lower tertile was used as a cut-off value (rad-CD73 > 0.362)

Table 4 Multivariate analyses of outcomes according to clinical 
risk score and rad-CD73

HR hazard ratio, CI confidence interval

Disease-specific 
survival

Time-to-recurrence

HR (95% CI) p-value HR (95% CI) p-value

Clinical risk score
(0–1–2 vs 3–4–5)

1.83 (1.15–2.92) 0.01 2.40 (1.54–3.74) < 0.005

rad-CD73
(low vs high)

1.88 (1.11–3.18) 0.02 2.11 (1.30–3.45) < 0.005
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of focus in deep learning [37, 38]. On the other hand, 
model-agnostic interpretability techniques are usually 
implemented separately and do not depend on the mod-
el’s architecture. While the latter involves the implemen-
tation of an additional step, it presents the advantage of 
being applicable to a variety of models. In this work, we 
tested both techniques. We first trained a TabNet model 
and sought to understand its instance-level decisions by 
visualizing its feature selection masks. In a post-hoc anal-
ysis, we applied SHAP technique to decipher its overall 
behavior. The study revealed that the most salient fea-
tures for the prediction of CD73 expression were texture-
related. Moreover, textural heterogeneity was associated 
with a lower CD73 expression and inversely applica-
ble. This was mirrored by the impact of the DNUN, the 
SZNUN and the IMC1 on the model’s predictions. These 
findings are in line with several previous studies associ-
ating textural features with response to immunotherapy 
[39]. Tang et al. [40] found a cluster of non-small cell lung 
cancer patients exhibiting concurrent tumoral hetero-
geneity and high CD3 T cell infiltration. Yoon et al. [41] 
showed that type 2 helper T cells were associated with 
high variance and IMC, mirroring lesion heterogene-
ity. On the other hand, Sun et al. [42] found, in a study 
combining several cancer sites, that a high CD8 score, 
indicative of inflammatory infiltrate, was associated with 
homogeneous lesion appearances. They also attributed 
heterogeneity in pixel intensities to convoluted underly-
ing processes such as excessive disorderly tumor vascu-
larization. CT-scan image features may also be enhanced 
by the use of nanoparticles, characterized by a high per-
meability and retention in tumors. Several nanoparticles 
have been tested [43], including silver nanoparticles [44]. 
In this context, Devkota et  al. [45] demonstrated that 
radiomics features, extracted from nanoparticle contrast-
enhanced CT rather than conventional imaging, were 
better suited for the prediction of response to cellular 
immunotherapy.

Immunotherapy has become a mainstay in the treat-
ment of several advanced malignancies. This has moti-
vated several researchers to leverage radiomics to 
forecast response to immunotherapeutic agents [46–48] 
either by predicting established biomarkers within the 
tumor microenvironment or by attempting to directly 
associate imaging features with patient outcomes, such as 
radiological response, survival and time-to-recurrence. 
However, the vast majority of the conducted studies 
focus on non-small cell lung cancer given the universal 
availability of chest images and the proven effectiveness 
of immune checkpoint inhibitors (ICI) in advanced lung 
cancer. The application of radiomics in CRLM immuno-
oncology remains vastly unexplored. While prior work on 

radiomics of CRLM have focused on response to chemo-
therapy as measured by the tumor regression grade [49] 
or the RECIST criteria [50, 51], and tumor histological 
features such as the histological growth patterns [16], 
we aimed to develop and validate a radiomic immune 
marker for CRLM.

While first generation ICI such as anti-programmed 
cell death protein 1 (PD1), anti-PD1 ligand and anti-cyto-
toxic T lymphocyte antigen 4 have proven to be effective 
in some cancers [52], 95% of metastatic CRC are refrac-
tory to these immunotherapies [53, 54]. The underlying 
mechanisms driving these poor outcomes include tumor 
heterogeneity and the coexistence of complex immune 
escape mechanisms within the hepatic tumor microen-
vironment. Because of the immunosuppressive nature of 
the adenosine pathway, adenosinergic molecules are now 
being explored for the development of novel therapeutic 
agents [55]. In particular, CD73 ectonucleotidase plays 
a major role in the generation of immunosuppressive 
adenosine and has recently emerged as a novel immu-
notherapeutic target that can be blocked by monoclonal 
antibodies, while adenosine receptor inhibitors are also 
being tested in early phase trials [56, 57].

Overall, the clinical use of high rad-CD73 on CT-
scan imaging of patients with resectable CRLM, as it 
may identify a subset of patients with earlier recur-
rence, death, and higher intratumoral CD73 expression, 
could be tested prospectively in many ways to determine 
whether: a) closer follow-up after CRLM resection could 
lead to earlier treatment of recurrence and survival ben-
efits; b) adjuvant systemic therapy after CRLM resection 
could reduce the risk of recurrence and death; and c) it 
can predict the efficacy of patients more likely to respond 
to anti-CD73 or adenosine receptor inhibitors.

Our work has some limitations notwithstanding. 
First, because this is a single-center investigation, it will 
be important to verify the reproducibility of the results 
by testing the model on a cohort of patients recruited 
in different institutions. Leveraging epidemiologically 
diversified databases is of equal importance in order to 
minimize any bias that could be introduced by unrepre-
sentative datasets. Second, the sample size is relatively 
limited to deploy deep learning models. Nevertheless, 
radiomic pipelines have the advantage of being more 
transparent than end-to-end black box models due to 
the interpretability of radiomic features. Third, our work 
does not take into account the dynamic aspect of the 
tumor microenvironment, with varying delays between 
the preoperative CT and the histopathological analysis 
from one patient to another. Future studies should take 
into account the temporal fluctuations when training 
artificial intelligence tools to characterize tumor biology. 
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This is markedly true in radiomics-based analyses since 
medical images could be leveraged in longitudinal studies 
as a result of their omnipresence.

Conclusions
In this study, we introduced a deep learning pipeline for 
the prediction of CD73 expression in curatively resected 
CRLM from preoperative CT images. The conceived rad-
CD73 biomarker could serve as a noninvasive, fast and 
low cost tool to identify candidates for targeted immu-
notherapy. Due to its association with patient prognosis, 
it could also be leveraged to assist oncologists to person-
alize the need for adjuvant treatments and the intensity 
of follow-up strategies. The generalizability of the model 
needs to be validated on independent, large and epidemi-
ologically diverse cohorts, and its impact on clinical deci-
sion making will need to be tested prospectively.
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