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Abstract
Background Cardiometabolic disorders pose significant health risks globally. Metabolic syndrome, characterized by 
a cluster of potentially reversible metabolic abnormalities, is a known risk factor for these disorders. Early detection 
and intervention for individuals with metabolic abnormalities can help mitigate the risk of developing more 
serious cardiometabolic conditions. This study aimed to develop an image-derived phenotype (IDP) for metabolic 
abnormality from unenhanced abdominal computed tomography (CT) scans using deep learning. We used this IDP 
to classify individuals with metabolic syndrome and predict future occurrence of cardiometabolic disorders.

Methods A multi-stage deep learning approach was used to extract the IDP from the liver region of unenhanced 
abdominal CT scans. In a cohort of over 2,000 individuals the IDP was used to classify individuals with metabolic 
syndrome. In a subset of over 1,300 individuals, the IDP was used to predict future occurrence of hypertension, type II 
diabetes, and fatty liver disease.

Results For metabolic syndrome (MetS) classification, we compared the performance of the proposed IDP to liver 
attenuation and visceral adipose tissue area (VAT). The proposed IDP showed the strongest performance (AUC 0.82) 
compared to attenuation (AUC 0.70) and VAT (AUC 0.80). For disease prediction, we compared the performance of the 
IDP to baseline MetS diagnosis. The models including the IDP outperformed MetS for type II diabetes (AUCs 0.91 and 
0.90) and fatty liver disease (AUCs 0.67 and 0.62) prediction and performed comparably for hypertension prediction 
(AUCs of 0.77).

Conclusions This study demonstrated the superior performance of a deep learning IDP compared to traditional 
radiomic features to classify individuals with metabolic syndrome. Additionally, the IDP outperformed the clinical 
definition of metabolic syndrome in predicting future morbidities. Our findings underscore the utility of data-
driven imaging phenotypes as valuable tools in the assessment and management of metabolic syndrome and 
cardiometabolic disorders.
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Background
Cardiometabolic disorders, such as type II diabetes and 
cardiovascular disease, have become a global health 
concern with significant morbidity and mortality rates 
[1–4]. Metabolic syndrome, a condition characterized by 
a clustering of metabolic abnormalities, is a known risk 
factor for these diseases [5–8]. The overall prevalence of 
metabolic syndrome in the United States has moderately 
increased among all adults in the last decade, but has 
increased significantly among specific groups, including 
women, young adults, and Asian and Hispanic adults [9]. 
Clinical definitions of metabolic syndrome vary among 
organizations, but typically consist of a combination of 
high blood pressure, dyslipidemia, central obesity, and 
glucose intolerance [10]. Lifestyle modifications and 
medications have been shown to effectively mitigate 
these conditions, reducing the incidence of metabolic 
syndrome [11–13]. Therefore, early detection and inter-
vention for individuals with metabolic abnormalities may 
help reduce the risk of developing more serious meta-
bolic-related diseases.

Image-derived phenotypes (IDPs) are quantitative 
measurements extracted from medical imaging that are 
used as potential biomarkers for disease. Traditionally, 
hand-crafted features based on prior expert knowledge, 
such as volume, activation, or attenuation of regions of 
interest are extracted to overcome the high dimension-
ality of imaging data. IDPs from brain imaging modali-
ties have shown strong associations with morbidity and 
genetic risk for Alzheimer’s disease [14–16]. Studies 
have also explored IDPs from computed tomography 
(CT) scans and magnetic resonance imaging and their 
associations with metabolic-related diseases [17–19]. In 
particular, hand-crafted features including abdominal 
fat and muscular measurements, aortic calcium quanti-
fication, and volumetric liver attenuation acquired from 
abdominal CT scans were found to be strongly associated 
with metabolic syndrome and subsequent cardiovascular 
events [18, 20]. Unenhanced abdominal CT scans are a 
particularly favorable modality for extracting IDPs as 
they are performed for many indications and allow clini-
cians to extract additional biologically relevant informa-
tion in a non-invasive manner.

Hand-crafted radiomic features, such a volumetric 
measurements, are efficient at converting high-dimen-
sional data into simple representations that can be used 
for disease association or classification. However, imag-
ing data consists of rich information, and these hand-
crafted features rely on previous knowledge and may miss 
biologically relevant signal. Recent advances in machine 
learning have enabled data-driven approaches to derive 
IDPs using deep learning-based models to that are able to 
condense high-dimensional data into compact represen-
tations of unobservable information. Data-driven IDPs 

have been proposed in a variety of settings for both pop-
ulation-based and disease-specific phenotypes [21–25]. 

In this study, we aimed to develop a deep learning-
derived IDP of metabolic abnormality and use it to pre-
dict future occurrence of cardiometabolic disorders. To 
do this, we treated the clinical definition of metabolic 
syndrome as a proxy of metabolic abnormality and 
trained a deep learning model to classify it from unen-
hanced abdominal CT scans. We focused on three-
dimensional (3D) segmented liver regions to directly 
compare our results to the performance of liver attenu-
ation (expressed as Hounsfield units), a hand-crafted 
feature that is linearly correlated with hepatic fat and is 
highly associated with metabolic syndrome [18, 26–28]. 
Additionally, we included comparisons to visceral adi-
pose tissue area (VAT), another traditional IDP strongly 
associated with metabolic syndrome [18]. Our IDP dem-
onstrated significant superiority over attenuation and 
VAT in classifying metabolic syndrome. Furthermore, 
we performed an association analysis of the IDP with 
115 clinical phenotypes and observed significant asso-
ciations with anthropometric measurements and endo-
crine, metabolism, and digestive phenotypes. Lastly, we 
used the IDP to predict the future occurrence of meta-
bolic-related morbidities. Our findings revealed that the 
IDP significantly enhanced the prediction of fatty liver 
disease and type II diabetes compared to relevant base-
line covariates and the clinical definition of metabolic 
syndrome and performed comparably for prediction of 
hypertension.

Methods
Data and clinical definitions
Study population
For the model development, we used data from a com-
prehensive health check-up cohort of a Korean popula-
tion consisting of 2,268 individuals (Table 1). The details 
of the dataset are described elsewhere [29]. Briefly, at the 
Seoul National University Hospital Gangnam Center, 
individuals participate in comprehensive health screen-
ing for anthropometric, cardiovascular, digestive, endo-
crinological, metabolic, hematologic, lung, and renal 
conditions with various clinical tests including abdominal 
computed tomography (CT) scans. For 1,397 individu-
als, we collected the 5-year follow up data (Supplemen-
tary Table 1). For external replication of the developed 
model, we used data and CT scans of preoperative evalu-
ation tests from stage I colorectal cancer patients, who 
underwent curative colectomy in Seoul National Uni-
versity hospital [30]. We used the non-contrast (unen-
hanced) abdominal CT scan stored in Digital Imaging 
and Communications in Medicine (DICOM) file format. 
Abdominal CT scans were performed using a 64-slice 
multi-detector CT scanner (Brilliance 64 scanners; 
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Metabolic syndrome (-) Metabolic syndrome (+) P value N
Baseline Age 53.4 ± 8.4 55.0 ± 8.0 <0.001 2268
Year of baseline enrollment 0.203 2268
2014 1607 (90.1%) 430 (88.8%)
2015 145 (8.1%) 49 (10.1%)
2016 32 (1.8%) 5 (1.0%)
Gender <0.001 2268
Female 636 (35.7%) 74 (15.3%)
Male 1148 (64.3%) 410 (84.7%)
Total fat amount (mm2) 25185.2 ± 8438.1 34310.8 ± 8739.1 <0.001 2268
Visceral fat amount (mm2) 10577.3 ± 4873.6 16508.3 ± 4947.0 <0.001 2268
Hypertension diagnosis <0.001 2268
No 1527 (85.6%) 245 (50.6%)
Yes 257 (14.4%) 239 (49.4%)
Hypertension medication <0.001 2268
No 1576 (88.3%) 273 (56.4%)
Yes 208 (11.7%) 211 (43.6%)
Diabetes diagnosis <0.001 2268
No 1715 (96.1%) 407 (84.1%)
Yes 69 (3.9%) 77 (15.9%)
Diabetes medication <0.001 2268
No 1738 (97.4%) 431 (89.0%)
Yes 46 (2.6%) 53 (11.0%)
Dyslipidemia diagnosis <0.001 2268
No 1500 (84.1%) 353 (72.9%)
Yes 284 (15.9%) 131 (27.1%)
Dyslipidemia medication <0.001 2268
No 1609 (90.2%) 397 (82.0%)
Yes 175 (9.8%) 87 (18.0%)
Systolic blood pressure 114.7 ± 12.5 123.4 ± 12.8 <0.001 2263
Diastolic blood pressure 75.7 ± 9.6 82.5 ± 9.2 <0.001 2263
Height 166.7 ± 7.7 169.6 ± 6.9 <0.001 2247
Weight 64.0 ± 10.2 75.4 ± 10.3 <0.001 2246
Body mass index 22.9 ± 2.6 26.1 ± 2.7 <0.001 2260
In body skeletal muscle mass 26.6 ± 5.5 30.4 ± 5.0 <0.001 2244
In body fat mass 16.0 ± 4.5 21.1 ± 5.2 <0.001 2244
In body Fat percent 25.1 ± 6.2 28.0 ± 5.4 <0.001 2244
Waist circumference 82.3 ± 7.3 92.1 ± 6.8 <0.001 2245
Glucose 95.9 ± 13.6 112.1 ± 19.7 <0.001 2246
Triglycerides 95.0 ± 53.4 176.8 ± 96.1 <0.001 2242
HDL cholesterol 54.8 ± 12.0 45.9 ± 9.6 <0.001 2242
HBA1C 5.6 ± 0.5 6.0 ± 0.8 <0.001 2251
Metabolic risk: waist circumference <0.001 2245
No 1478 (83.9%) 122 (25.3%)
Yes 284 (16.1%) 361 (74.7%)
Metabolic risk: Triglycerides <0.001 2242
No 1584 (90.1%) 185 (38.3%)
Yes 175 (9.9%) 298 (61.7%)
Metabolic risk: HDL cholesterol <0.001 2242
No 1569 (89.2%) 289 (59.8%)
Yes 190 (10.8%) 194 (40.2%)
Metabolic risk: glucose <0.001 2249
No 1273 (72.1%) 81 (16.7%)
Yes 492 (27.9%) 403 (83.3%)

Table 1 Characteristics of the baseline development cohort [29]
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Philips Healthcare, Amsterdam, Netherlands) with 3 mm 
thickness and increment.

Clinical assessment and definitions
All participants entered the test after at least ten hours of 
fasting. For the definition of metabolic syndrome, we used 
the criteria suggested by the American Heart Association 
[31]. In the population for model development, metabolic 
syndrome was defined when at least three of the follow-
ing metabolic risk factors were positive: increased waist 
circumference (male > 102  cm, female > 88  cm); triglyc-
erides > = 150 mg/dL; decreased high-density lipoprotein 
(HDL) cholesterol (male < 40  mg/dL, female < 50  mg/
dL); fasting glucose > = 100  mg/dL or on medication for 
hyperglycemia; and blood pressure > = 130/85 mmHg or 
on medication for hypertension, resulting in sixteen pos-
sible combinations. Among individuals with metabolic 
syndrome, the most common contributing factors were 
increased blood glucose, blood pressure, and waist cir-
cumference; elevated blood glucose was the most com-
mon component overall (Supplementary Fig.  1). In the 
validation population from colorectal cancer patients, 
since the waist circumference, HDL cholesterol, triglyc-
eride data were not available, we used a modified criteria 
for metabolic syndrome, indirectly; at least three of the 
following metabolic risk factors were positive: increased 
body mass index > = 25 kg/m2; on medication of dyslipid-
emia; fasting glucose > = 100 mg/dL or on medication for 
hyperglycemia; and blood pressure > = 130/85 mmHg or 
on medication for hypertension. The visceral adipose tis-
sue area was measured at the level of the umbilicus of the 
abdominal CT scan, as previously described [32]. 

For all follow up analyses, we defined hypertension and 
type II diabetes as “on medication for the disease”, and 
abdominal ultrasound was used to diagnose fatty liver. 
The abdominal ultrasound procedure was performed 
by an experienced radiologist. The definition of fatty 
liver was based on the vascular blurring, attenuation, 
hepatorenal echo contrast and liver brightness in ultra-
sonography image [33]. We classified as “normal liver” 
versus “at least mild degree of fatty liver”, annotated by 
radiologists.

Liver segmentation in abdominal CT scans
Abdominal CT preprocessing
All DICOM series were converted to 3D Neuroimag-
ing Informatics Technology Initiative (NIfTI) file format 

using the dicom2nifti python package. 3D volumes were 
preprocessed using the nnU-Net software [34]. Briefly, 
the intensity values are clipped at the 0.5 and 99.5 per-
centiles, and each volume is resampled to the median val-
ues of the training data spacing in each axis.

Segmentation model architecture and optimization
The segmentation model followed the U-Net architec-
ture (Supplementary Fig.  2a) [34]. This model, popular 
in medical imaging segmentation, adopts an encoder-
decoder structure aiming to learn a dense embedding 
of the input data (encoder) and localize the relevant 
information back into the input dimensions through 
an expanding path (decoder). We again used the nnU-
Net software to optimize the network topology and 
the input patch size [34]. The final patch size was set to 
28 × 256 × 256.

Training and validation
The segmentation model was trained and validated on 
358 abdominal CT scans with the liver regions anno-
tated. The annotations were generated by a technician 
using a commercially available segmentation software 
program (AVIEW Modeler, version 1.1.42, Corelinesoft 
Co. Ltd., Seoul, South Korea). We performed 5-fold cross 
validation and used the Dice coefficient as the perfor-
mance metric.

The top-performing segmentation model was used 
to create liver segmentation masks for all remaining 
samples.

Image-derived phenotypes
Liver attenuation
Liver attenuation values were extracted by applying the 
mask to the original CT volume and calculating the 
median attenuation of the voxels predicted as liver.

Visceral adipose tissue area
Visceral adipose tissue area was measured at the level of 
the umbilicus of the abdominal CT scan, as previously 
described [32]. We defined the visceral adipose tissue 
are as the adipose tissue area, in parameter cm2, located 
intra-abdominally, confined by the parietal peritoneum 
[35]. 

Metabolic syndrome (-) Metabolic syndrome (+) P value N
Metabolic risk: hypertension <0.001 2268
No 1285 (72.0%) 102 (21.1%)
Yes 499 (28.0%) 382 (78.9%)
Extended information available in Supplementary Table 2. P-values are from t-test for continuous variables and the Fisher exact test for categorical variables

Table 1 (continued) 
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Deep learning image-derived phenotype
To derive the imaging phenotype, we initially masked 
the original volumes, selecting only the predicted liver 
region. Next, we employed a multi-stage deep learning 
pipeline [36]. First, we used the pre-trained encoder from 
the segmentation model to extract a latent representa-
tion of the data. Specifically, we performed global aver-
age pooling over each encoder block output to aggregate 
the spatial information and concatenated the pooled 
embeddings (Supplementary Fig.  2b). Second, we input 
these embeddings into a neural network classifier with a 
single node output to classify metabolic syndrome using 
the binary cross-entropy loss function. (Supplemen-
tary Fig. 2c). More details on the model architecture are 
described in Supplementary Fig. 2. As the segmentation 
model was optimized for patch-based input, each input 
volume was divided into X  three-dimensional patches, 
and a latent representation was created for each patch. 
The classifier incorporated a learned gated attention-
pooling function to aggregate the patch information into 
a volume-level embedding [37]. The classifier was trained 
using the AdamW optimizer in PyTorch version 1.12.1 
with default parameters. To validate the deep learning 
IDP, we used stratified five-fold cross validation repeated 
ten times for a total of fifty models. For each split we 
reserved 20% of the total dataset for testing and evalu-
ation and with the remaining data, trained on 80% and 
used 20% as a validation set to tune the hyperparameters.

For the metabolic syndrome classification, the final 
hidden layer of the classifier, containing 256 nodes, was 
extracted as the IDP. For the phenotypic association and 
follow-up analyses, the output of the classifier was used 
as a condensed version of the IDP.

Baseline metabolic syndrome classification
We employed elastic-net logistic regression to incorpo-
rate the IDP with clinical covariates to predict metabolic 
syndrome using the R package glmnet version 4.1-1. Spe-
cifically, we used the default parameters of the cv.glmnet 
function to perform ten-fold cross-validation in training 
datasets only and used the optimal hyper parameters to 
evaluate the performance in the hold-out testing datas-
ets (the validation sets used in hyperparameter tuning 
for IDP development are not used in these analyses). All 
numerical features were centered and scaled based on the 
training dataset means and standard deviations.

Phenome-wide association analysis
We conducted linear regression for each phenotype of 
interest, correcting for age and sex in R version 4.1.0. All 
reported p-values were corrected for multiple-testing 
using the Bonferroni correction.

Follow-up disease analyses
We conducted predictive analyses for three metabolic-
related morbidities—hypertension, fatty liver disease, 
and type II diabetes. For each disease, we removed all 
individuals at baseline who already had the respective 
condition, extracted baseline condensed IDPs for the 
remaining individuals, and collected baseline metabolic 
syndrome status and covariate measurements. We com-
pared models that included relevant baseline covariates, 
clinically defined metabolic syndrome, and the IDP.

We used the same training splits as in the previous 
analyses to fit a logistic regression, and then used that 
model to predict disease status in the hold-out datasets 
(the validation sets used in hyperparameter tuning for 
IDP development are not used in these analyses). All 
numerical features were centered and scaled based on the 
training dataset means and standard deviations.

To classify individuals as metabolically abnormal at 
baseline, the optimal cutoff value of the IDP was deter-
mined as the threshold value that maximized the sensi-
tivity and specificity [38]. 

Performance evaluation and statistical tests
We employed the area under the receiver operating 
characteristic curve (AUC) and area under the preci-
sion-recall curve (AURPC) as measures of model perfor-
mance. A paired t-test was used to compare the AUCs 
between different models.

For statistical tests comparing demographic and clini-
cal information between metabolic syndrome positive 
and negative cases, we used the t-test for continuous 
variables and the Fisher exact test for categorical vari-
ables in R version 4.1.0.

Results
IDP accurately classifies baseline metabolic syndrome
To develop the image-derived phenotype (IDP) of meta-
bolic abnormality, we constructed a multi-stage deep 
learning pipeline that involved segmentation of the liver 
region from 3D unenhanced CT scans followed by train-
ing a metabolic syndrome classifier on the segmentation 
model embeddings (Fig. 1a, Methods). The liver segmen-
tation model was trained on 358 manually annotated 
CT scans and achieved a Dice score of 0.98 through 
five-fold cross-validation. The final hidden layer of the 
trained metabolic syndrome classifier is extracted as the 
IDP. (The classification network achieved a mean AUC 
of 0.81 (0.02) and AUPRC of 0.52 (0.05)). Using regular-
ized logistic regression to classify metabolic syndrome, 
the IDP achieved an AUC of 0.82 through ten times 
repeated five-fold cross-validation compared to an AUC 
of 0.69 using extracted volumetric liver attenuation, an 
AUC of 0.80 using visceral adipose tissue area (VAT), and 
an AUC of 0.59 using age and sex (Fig. 1b, top, Table 2, 
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and Methods). Additionally, we assessed the utility of our 
model in combination with VAT. When including VAT 
as an additional covariate the model achieved an AUC 
of 0.84, suggesting complementary information between 
the two IDPs (Fig. 1b, bottom, and Table 2).

The output of the deep learning model exhibited signif-
icant correlations with each of the individual metabolic 
syndrome components (Fig.  1c). The direction of these 
correlations aligns with the definition of metabolic syn-
drome, with the strongest correlations observed for waist 
circumference and lipid levels. Many studies have previ-
ously shown the associations between waist circumfer-
ence and lipid levels with liver diseases [39–41]. 

To validate the IDP, we predicted metabolic syndrome 
in 521 individuals from an external cohort (Supplemen-
tary Table 3). For this analysis, we used a modified defi-
nition of metabolic syndrome due to data availability 
(Methods). The IDP significantly outperformed covari-
ate models, achieving an AUC of 0.66 compared to AUC 
of 0.62 and 0.54 for liver attenuation and age and sex, 
respectively (Supplementary Fig.  3 and Table  2). This 
decrease in performance compared to the development 
dataset may be due to the underlying disease profiles and 
imaging characteristics of the external dataset.

These results suggest that our framework learns 
a strong IDP for metabolic abnormality. Through 

Table 2 Performance metrics for metabolic syndrome 
classification, mean and standard deviation
Cohort Features AUC AUPRC
Development Age, Sex 0.589 (0.038) 0.041 (0.044)

Age, Sex, Attenuation 0.693 (0.025) 0.381 (0.034)
Age, Sex, IDP 0.817 (0.020) 0.531 (0.046)
Age, Sex, VAT 0.804 (0.023) 0.518 (0.043)
Age, Sex, VAT, Attenuation 0.805 (0.023) 0.520 (0.043)
Age, Sex, VAT, IDP 0.837 (0.019) 0.574 (0.042)

External Age, Sex 0.542 (0.017) 0.067 (0.039)
Age, Sex, Attenuation 0.618 (0.005) 0.267 (0.002)
Age, Sex, IDP 0.664 (0.007) 0.321 (0.010)

IDP image-derived phenotype; AUC area under receiver-operating curve; 
AUPRC area under precision-recall curve; Attenuation, median volumetric liver 
attenuation (expressed as Hounsfield units); VAT visceral adipose tissue

Fig. 1 a, Overview of three-stage IDP development model: Stage 1 - Training the 3D liver segmentation model; Stage 2 - Using the pretrained encoder 
to extract latent representations from input CT scans; Stage 3 - Training the metabolic system classifier. b, Predictive performance comparing covari-
ates and attenuation to the IDP. c, Correlation between the IDP and metabolic syndrome risk factors. IDP, image-derived phenotype; AUC, area under 
receiver-operating curve; Attenuation, median volumetric liver attenuation (expressed as Hounsfield units); VAT, visceral adipose tissue; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; WC, waist circumference; Gluc, glucose; HDL, high-density lipoprotein; TG, triglycerides; **** P < 0.0001, n.s. not 
significant, paired t-test
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cross-validation, it can better classify metabolic syn-
drome versus existing biomarkers and covariates and 
this trend holds when applied to an external validation 
cohort.

IDP shows sex-specific differences
To investigate potential variations in the IDP between 
sex, we performed stratified analyses. Males have a 
metabolic syndrome prevalence rate of 26% (410/1558) 
and females have a prevalence of 10% (74/710). We 
found that the IDP significantly improves prediction of 

metabolic syndrome in both males and females (Fig.  2; 
Table  3). Additionally, incorporating VAT with our IDP 
yielded improved performance in both sexes compared 
to a model utilizing VAT alone. Interestingly, for males 
the IDP alone achieved a higher AUC than VAT and for 
females VAT outperformed the IDP (Table 3).

To investigate the biological signal captured by the 
IDP, we analyzed the underlying differences in etiology 
between sex. Among males, the most prevalent com-
ponents for diagnosing metabolic syndrome were glu-
cose levels, blood pressure, and waist circumference 

Fig. 2 a, Predictive performance comparing covariate models to the IDP, stratified by sex. (Male, left column. Female, right column). b, Correlation 
between the IDP and metabolic syndrome risk factors. IDP, image-derived phenotype; AUC, area under receiver-operating curve; Attenuation, median 
volumetric liver attenuation (expressed as Hounsfield units); VAT, visceral adipose tissue; SBP, systolic blood pressure; DBP, diastolic blood pressure; WC, 
waist circumference; HDL, high-density lipoprotein; TG, triglycerides; **** P < 0.0001, paired t-test
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(Supplementary Fig.  1). In females, the most prevalent 
components were glucose levels, HDL levels, and waist 
circumference (Supplementary Fig.  1). Consistently, the 
IDP demonstrated the strongest correlations with waist 
circumference, glucose, and triglycerides for both males 
and females (Fig. 2b).

IDP is associated with metabolic-related phenotypes
To explore the biological relevance of the IDP, we per-
formed a phenome-wide association analysis (PheWAS) 
between 115 phenotypes corroborated by comprehen-
sive health check-ups and the output of the IDP classifier 
(Supplementary Table 4). We found that the IDP is sig-
nificantly associated with 32 phenotypes after Bonferroni 
correction (Fig. 3 and Supplementary Table 4). Notably, 
the most significant associations were observed with 

anthropometric measurements, including fat and muscle 
measurements, which are highly correlated with waist 
circumference, a component of metabolic syndrome. 
Other metabolic syndrome related phenotypes, including 
hypertension, hemoglobin A1c, type II diabetes diagno-
sis, and dyslipidemia, are also strongly associated. Hema-
tologic features, such as white blood cell counts, as well 
as the endocrine phenotype uric acid are also significant. 
Additionally, digestive features related to the liver, such 
as alanine transaminase (ALT), aspartate transaminase 
(AST), and gamma-glutamyl transferase (GGT), demon-
strated notable associations with the IDP. Of particular 
interest, the IDP exhibited a strong association with fatty 
liver disease compared to its association with liver atten-
uation (Supplementary Table 4). These findings suggest 
that the IDP, developed to classify metabolic syndrome, 
may also possess predictive capabilities for other meta-
bolic-related conditions.

IDP predicts future occurrence of metabolic-related 
morbidities
We conducted predictive analyses for three morbidi-
ties—hypertension, fatty liver disease, and type II diabe-
tes. Briefly, for each disease, we removed all individuals 
at baseline diagnosed with the respective condition, col-
lected baseline IDP, covariates, and metabolic syndrome 
status from the remaining individuals, and predicted 
future disease (Fig.  4a). For these analyses, we consider 
the output of the classifier as a condensed representation 
of the IDP.

Table 3 Performance metrics for metabolic syndrome 
classification by sex, mean and standard deviation
Sex Features AUC AUPRC
Male Age, Attenuation 0.601 (0.056) 0.334 (0.129)

Age, IDP 0.785 (0.026) 0.543 (0.046)
Age, VAT 0.770 (0.027) 0.532 (0.046)
Age, VAT, IDP 0.810 (0.023) 0.587 (0.042)

Female Age, Attenuation 0.664 (0.089) 0.241 (0.131)
Age, IDP 0.812 (0.053) 0.419 (0.122)
Age, VAT 0.819 (0.057) 0.391 (0.130)
Age, VAT, IDP 0.848 (0.054) 0.460 (0.128)

IDP image-derived phenotype; AUC area under receiver-operating curve; 
AUPRC area under precision-recall curve; Attenuation median volumetric liver 
attenuation (expressed as Hounsfield units); VAT visceral adipose tissue

Fig. 3 Phenotypic association analysis, corrected for age and sex. All P values are Bonferroni corrected. AM, anthropomorphic measurements; CV, cere-
bro-cardiovascular; DS, digestive system; EM, endocrine and metabolism; HS, hematologic system; LS, lifestyle; MC, musculoskeletal; OS, ophthalmic 
system; PS, pulmonary system; RS, renal system; TM, tumor markers
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Fig. 4 Overview of the follow-up disease prediction framework. Individuals diagnosed with the disease of interest as baseline are removed, and the base-
line IDP and covariates are extracted from the remaining individuals. These are used as features to predict disease in the follow-up period. b, Predictive 
performance comparing relevant covariates and baseline metabolic syndrome diagnosis to the IDP. First row, hypertension; second row, type II diabetes; 
third row, fatty liver disease. SBP, systolic blood pressure; DBP, diastolic blood pressure; MetS, baseline metabolic syndrome; GGT, gamma-glutamyl trans-
ferase; TG, triglycerides; IDP, image-derived phenotype; AUC, area under receiver-operating curve.**** P < 0.0001, ** P < 0.001, n.s. not significant, paired 
t-test
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For hypertension prediction, we incorporated baseline 
blood pressure measurements as additional covariates. 
We found that the deep learning IDP did not improve 
the performance of predicting hypertension (Fig.  4b; 
Table  4). We included baseline GGT levels, TG levels, 
and liver attenuation as additional covariates for fatty 
liver disease prediction. Our analysis demonstrated that 
the IDP model significantly outperformed the model with 
covariates alone and the model including baseline clini-
cal metabolic syndrome (Fig. 4b; Table 4). For type II dia-
betes prediction, baseline glucose levels were included. 
Once again, we observed that the IDP outperformed the 
two baseline models (Fig. 4b; Table 4). We see the same 
trends for disease prediction in models with only age and 
sex as covariates (Supplementary Table 5).

We performed additional analyses in which individu-
als who were not diagnosed with metabolic syndrome 
at baseline were removed. We used logistic regression 
to compare the performance of models containing base-
line covariates alone and models including the IDP. In all 
cases except for hypertension, the models including the 
IDP demonstrated superior performance compared to 
the covariate models (Supplementary Table 6).

To illustrate the robustness of the deep learning IDP, 
we identified cases where individuals appeared clinically 
healthy at baseline but subsequently developed meta-
bolic-related morbidities in the follow-up period. Specifi-
cally, we selected individuals who had an IDP value that 
classified them as metabolically abnormal (Methods), 
however no diagnosis of metabolic syndrome or disease 
at baseline, a total of 705. We identified 34% (50/149) 
of the individuals who developed hypertension, 66% 
(126/190) of the individuals who developed fatty liver 

disease, and 78% (31/40) of the individuals who devel-
oped type II diabetes. Many of these individuals had two 
metabolic risk factors at baseline, high glucose levels 
being the most prevalent (Supplementary Fig. 4).

Discussion
Metabolic syndrome represents a significant risk factor 
for the development of severe cardiometabolic diseases. 
It is characterized by a set of potentially reversible meta-
bolic abnormalities, emphasizing the importance of early 
and accurate detection for clinical management. In this 
study, we successfully developed a deep learning-based 
image-derived phenotype of metabolic abnormality that 
can classify metabolic syndrome directly from unen-
hanced abdominal CT scans in a large cohort of over 
2,000 individuals. Our approach involved training a 3D 
segmentation model to localize the liver and utilizing this 
region to predict metabolic syndrome through a combi-
nation of a pretrained segmentation encoder and a deep 
learning classifier. In comparison to traditional hand-
crafted radiomic features that are known to be signifi-
cantly associated with metabolic syndrome, volumetric 
liver attenuation and visceral adipose tissue, our analy-
sis demonstrated that the deep learning IDP was able to 
more accurately classify metabolic syndrome than the 
radiomic features and clinical covariates alone.

We performed sex stratified analysis and found that for 
males, the IDP showed a stronger classification perfor-
mance than visceral adipose tissue, while in females the 
opposite was shown, and visceral adipose tissue showed 
stronger performance. Studies suggest that visceral fat 
influences metabolic syndrome risk differently between 
sex, posing a greater risk for females. This risk is linked 
more to fat composition and distribution rather than 
total fat quantity [42].. Males tend to accumulate fat vis-
cerally, predominantly in the abdomen, while females 
predominantly store it subcutaneously [43, 44]. Thus, 
the risk of metabolic syndrome is often assessed based 
on sex-specific visceral fat thresholds rather than abso-
lute amounts [45]. This implies that females may be more 
metabolically sensitive to visceral fat accumulation.

The IDP was strongly correlated with each of the met-
abolic risk components and showed significant asso-
ciations with 32 clinical phenotypes, many of which are 
directly related to cardiometabolic abnormalities. Given 
that the IDP is derived from imaging focused on the 
liver, liver-specific features including alanine transami-
nase (ALT), aspartate transaminase (AST), and gamma-
glutamyl transferase (GGT), and fatty liver disease were 
some of the most strongly associated phenotypes.

To explore the clinical utility of the IDP, we further 
investigated its predictive capabilities for future occur-
rences of cardiometabolic diseases, including hyperten-
sion, fatty liver disease, and type II diabetes in a subset of 

Table 4 Performance metrics for follow-up disease prediction 
(n = 1,397), mean and standard deviation
Disease Features AUC AUPRC
Hypertension Age, Sex, SBP, DBP 0.765 (0.039) 0.439 (0.082)

Age, Sex, SBP, DBP, 
MetS

0.765 (0.040) 0.441 (0.081)

Age, Sex, SBP, DBP, IDP 0.768 (0.038) 0.444 (0.080)
Fatty liver 
disease

Age, Sex, GGT, TG 0.625 (0.057) 0.422 (0.065)
Age, Sex, GGT, TG, 
MetS

0.619 (0.062) 0.416 (0.065)

Age, Sex, GGT, TG, 
Attenuation

0.647 (0.050) 0.449 (0.062)

Age, Sex, GGT, TG, IDP 0.673 (0.046) 0.453 (0.065)
Type II 
diabetes

Age, Sex, Glucose 0.897 (0.041) 0.508 (0.110)
Age, Sex, Glucose, 
MetS

0.903 (0.037) 0.508 (0.109)

Age, Sex, Glucose, IDP 0.912 (0.035) 0.522 (0.108)
AUC area under receiver-operating curve; AUPRC area under precision-recall 
curve; SBP systolic blood pressure; DBP diastolic blood pressure; MetS baseline 
metabolic syndrome; GGT gamma-glutamyl transferase; TG triglycerides; IDP 
image-derived phenotype; Attenuation median volumetric liver attenuation 
(expressed as Hounsfield units)
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over 1,300 individuals who had follow-up data. Inclusion 
of the IDP significantly improved predictive performance 
for each of the diseases when compared to baseline 
covariate models for fatty liver disease and type II diabe-
tes. Our analyses clearly demonstrated that the IDP out-
performed the clinical definition of metabolic syndrome 
in terms of predictive accuracy. We hypothesize that this 
may be due to the nature of the clinical metabolic syn-
drome definition. There are sixteen possible combina-
tions of five risk factors for diagnosis, but an individual 
can have up to two risk factors and not be diagnosed. 
Due to the heterogeneity of the diagnosis, the proposed 
IDP may be learning information at a more granular 
scale. Additionally, the IDP successfully identified a sub-
set of individuals who appeared clinically healthy at base-
line but later developed a cardiometabolic disease during 
the follow-up period. Specifically, the IDP identified 34%, 
66%, and 78% of the individuals who developed hyper-
tension, fatty liver disease, and type II diabetes, respec-
tively, despite these individuals not meeting the criteria 
for a metabolic syndrome diagnosis at baseline.

We validated the IDP in an external validation dataset, 
which was collected for a different purpose (colorectal 
cancer patients) compared to the comprehensive health 
check-up cohort. This difference in data collection may 
have contributed to the reduced performance observed 
in the external validation, as the underlying characteris-
tics and disease profiles of the cohorts varied. Although 
the performance in classifying metabolic syndrome 
decreased, it remained significantly higher than the 
hand-crafted feature and covariate models. The reduced 
performance could also be attributed to inherent differ-
ences in data resulting from variations in devices and 
acquisition protocols used for obtaining the abdomi-
nal CT scans. Domain shift, which refers to a change in 
the underlying data distribution, is a well-known phe-
nomenon in machine learning research that can lead to 
challenges in model translation from the training data 
to external datasets. This issue is particularly prevalent 
especially in medical imaging research, where datasets 
are collected within specific scopes that encompass fac-
tors such as time-frame, demography, clinical settings, 
and acquisition devices [46]. It is important to note 
that while the external validation cohort differed in its 
intended use, it still provided valuable insights into the 
generalizability and robustness of the IDP model. The 
variations observed between the cohorts emphasize the 
need for further validation in diverse populations and 
contexts to establish the broader applicability of the IDP.

This study has some limitations that need to be 
addressed in future research, including the character-
istics of the selected cohort and the interpretability of 
the model. The comprehensive health check-up popula-
tion consisted mainly of individuals who were generally 

healthy, which limited our ability to study a broader 
range of cardiometabolic diseases. We chose hyperten-
sion, fatty liver disease, and type II diabetes due to their 
moderate representation in the dataset. While we were 
able to validate the IDP for metabolic syndrome predic-
tion using an external cohort, we were unable to exter-
nally validate the prediction of subsequent diseases in 
the follow-up analyses. Additionally, all individuals in 
this study belonged to a Korean population, necessitating 
replication in more diverse populations. Further, due to 
lack of comprehensive annotated data, the proposed IDP 
pipeline focused only on the liver. We would expect addi-
tional information would be found from other regions 
of the scan, as suggested by previous work [18]. Finally, 
while the deep learning IDP is a stronger representation 
of metabolic abnormality, it lacks biological interpret-
ability. In future work, additional analyses need to be 
performed in order to better understand the underlying 
biological processes driving the performance of the pro-
posed IDP and validating its connections with individual 
metabolic risk factors. Additionally, it is necessary to 
conduct prospective studies in diverse clinical settings to 
further validate our method and explore the utility of the 
IDP guiding personalized treatment strategies.

Conclusions
This work establishes a robust framework for data-driven 
IDP discovery in the context of metabolic abnormality. It 
emphasizes the efficient approach of using non-specific 
CT scans for IDP extraction and underscores the utility 
of deep learning-driven imaging phenotypes as valuable 
tools in the assessment and management of metabolic 
syndrome and cardiometabolic disorders. Abdominal 
CT scans, performed for various reasons, currently pro-
vide insights restricted to the radiologist’s analysis, pri-
marily concentrating on specific organ irregularities. 
However, providing the possibility of additional imaging 
phenotypes in patients undergoing abdominal CT for 
pathological reasons or routine check-up could provide 
additional valuable medical information for intervening 
before other complications arise, thus promoting over-
all health. While this work focuses on the liver region of 
unenhanced abdominal CT scans and cardiometabolic 
disorders, the general framework can be readily adapted 
for other diseases and regions of interest segmented from 
various imaging modalities.
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